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Abstract

Purpose Various regulatory and fiscal policy instruments are

in force to reduce the amount of greenhouse gases and local

pollutants emitted by private cars. The incentives operate pri-

marily—or exclusively—on the newest generation of cars.

But how fast will technological developments affecting new

vehicle models penetrate into the car fleet? The speed at which

the adverse effects of private car use will be mitigated through

the normal vehicle renewal process, or through an accelerated

one, carries considerable interest. Suitable modelling tools are

needed. This paper aims to demonstrate the usefulness and

flexibility of a bottom-up stock-flow modelling approach to

private car fleet forecasting and policy analysis.

Methods In the BIG model of the Norwegian automobile

fleet, the annual stocks and flows characterising the car fleet

are specified as matrices of 682 mutually exclusive and ex-

haustive cells, formed by cross-tabulations between 22 vehicle

segments and 31 age classes. New car registrations follow

from a disaggregate generic discrete choice model based on

two decades of complete sales data for individual passenger

car models.

Results Example projections are presented onto the 2050 ho-

rizon under a low carbon fiscal policy scenario as well as a

business-as-usual scenario. The fiscal policy is seen to make a

large difference in terms of long term fuel consumption and

CO2 emissions.

Conclusions Stock-flow cohort modelling of the automobile

fleet is a powerful and handy tool for policy analysis. Even

quite simple and straightforward accounting relations may

provide important insights into the dynamics of fleet develop-

ment. It is possible to incorporate, into the stock-flow model-

ling framework, interesting and useful behavioural relations,

explaining aggregate automobile ownership and travel de-

mand, scrapping and survival rates, or consumer choice in

the market for new cars.

Keywords Passengercars .Fleet forecasting .Fueleconomy .

Greenhouse gases . Recursivemodel . Bottom-up

1 Introduction and rationale

The prospect of having two billion private cars roaming the

planet’s streets and roads, while emitting greenhouse gases as

well as local pollutants, is discomforting [1]. Responsible gov-

ernments worldwide are contemplating how to prevent the

motor vehicle stock from reaching unsustainable levels and/

or to decouple income and travel demand growth from envi-

ronmental degradation and climate change [2]. In most OECD

countries, passenger cars constitute the primary source of

greenhouse gas (GHG) emissions from transport.

The European Commission has mandated maximum CO2

emission targets for new passenger cars sold in 2015 and

2021, respectively. The targets are 130 g of CO2 per km in

2015 and 95 g/km in 2021, as measured by the NEDC labo-

ratory test cycle. To meet the targets, automobile manufac-

turers are working to reduce the type approval fuel consump-

tion of conventional vehicles equipped with internal combus-

tion engines (ICE), while also introducing a widening range of

zero and low emission vehicles, such as battery electric (BEV)

and plug-in hybrid electric vehicles (PHEV).

Similarly, the Euro 1–6 standard for light duty vehicles and

the Euro I–VI standard for heavy duty engines oblige
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manufacturers to fulfil steadily more demanding requirements

in terms of nitrogen oxide (NOX), particulate matter (PM),

hydrocarbon (HC) and carbon monoxide (CO) emissions.

A common feature of the approaches taken in OECD coun-

tries is that the regulatory and fiscal policy instruments operate

primarily—or exclusively—on the newest generation of cars.

If one can make sure that the next generation of vehicles is

consistently more eco-friendly than the previous one, the car

fleet will be steadily improving in terms of its environmental

footprint.

But how fast will this improvement take place? The need to

reduce the annual amount of GHG emitted into the atmo-

sphere is an urgent one [3]. Hence the speed at which the

adverse effects of private car use will be mitigated through

the normal vehicle renewal process, or through an accelerated

one, carries considerable interest. How long will it take for a

new technology to penetrate (almost) the entire car fleet? How

fast can we lower the fleet’s mean CO2 emission rate? If cer-

tain technologies, such as combustion engines, were to be

banned from new cars, or subjected to stiff taxes, how long

would it take before emissions from the car fleet had dropped

by, say, 50 or 90 %? What kind of modelling apparatus is

needed to resolve such questions? The aim of this paper is to

provide some answers to these questions.

In Norway, the government has set a CO2 target of maxi-

mally 85 g/km emitted, according to the NEDC type approval

tests, from new cars sold in 2020 on average.While there is no

domestic car manufacturing, the purchase, ownership and use

of zero emission vehicles—BEVs and fuel cell electric vehi-

cles (FCEV)—enjoy substantial fiscal and regulatory incen-

tives. These vehicles are exempt of value added tax (VAT),

vehicle purchase tax, road tolls and public parking charges.

They benefit from strongly reduced annual circulation tax and

ferry fares. Moreover, they are generally allowed to travel in

the bus lane andmay be parked and recharged for free inmany

public parking lots.

Also, the vehicle purchase tax payable upon first registra-

tion in Norway strongly penalises conventional cars with high

CO2 emission rates, be they petrol or diesel driven, while low

emission vehicles, such as PHEVs, may in the best of cases

come out with almost no purchase tax.1

The stock of vehicles, be it at the global, national, local or

company level, is the result of several flows operating over

time: new registrations, scrapping, and second hand import

and export. To keep track of how fast technological develop-

ments and other changes in the attributes of new vehicles

penetrate into the vehicle fleet, a stock-flow cohort model

approach is an obviousmethodological choice.We have there-

fore set out to develop a detailed, comprehensive and coherent

vehicle turnover model for the Norwegian passenger car fleet.

While ours is not the first stock-flow model of the passen-

ger car fleet,2 few—if any—of these modelling efforts have

been exhaustively described in the scientific literature. Our

paper should help fill this gap. It aims to illustrate the fruitful-

ness of the stock-flow vehicle cohort approach, while also

demonstrating the wealth of relevant information accessible

through a rigorous and detailed bottom-up accounting system

for passenger car segments and their respective attributes.

Relying almost exclusively on administrative records avail-

able from government or corporate agencies, our approach

does not depend on costly household data collection or on

any other type of stated or revealed choice survey.

In Section 2, we describe the general structure and segmen-

tation used in our BIG3model of the Norwegian passenger car

fleet, while also presenting a first picture of the car stock, by

segments and age, as of our base year 2012. In Section 3, we

show how the systematic information put into the model can

be used to derive a host of intermediate results, such as mile-

age patterns, CO2 emission developments, vehicle survival

rates and life expectancy. In Section 4, a we present a simula-

tion exercise demonstrating the usefulness of the discrete

choice model of automobile purchase. Another BIG model

application is presented in Section 5, where a set of scenario

projections illustrate the long-term impact of a low carbon

fiscal policy. Certain strengths, weaknesses and opportunities

to our approach are discussed in Section 6. Conclusions are

drawn in Section 7.

2 Model structure and empirical foundation

2.1 Segmentation

The BIG model splits the car stock into 22 segments and 31

age classes. There are nine segments for petrol driven cars and

nine for diesel driven ones, each fuel class being subdivided

into weight classes. In addition, there is one segment for hy-

brid vehicles (HEVs, including PHEVs), one for BEVs, one

for FCEVs, and one for vehicles using other energy carriers

(compressed natural gas, ethanol, etc.).

The segmentation is based on objective criteria only. We

have chosen to avoid the commonly accepted segmentation

into ‘compact’ cars, ‘mid-sized’ cars, ‘luxury’ cars, etc., for

the simple reason that these labels are to some extent subjec-

tive and hence elusive. Relying on objective measurements,

we will always be able to know how to classify a given vehi-

cle, and even a hypothetical one, as long as its engine type and

curb weight are declared.

1 See companion paper by Fridstrøm L and Østli V (2016, under review,

Transportation Research A).

2 A fairly well-known model of this kind is the Dutch DYNAMO model

[4, 5]. Also, Hugosson et al. [6] describe a car fleet model for Sweden.
3 BIG is an acronym for ‘bilgenerasjonsmodell’ – meaning ‘car genera-

tion model’ in Norwegian.
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The composition of the Norwegian automobile fleet as of

31 December 2012 is shown in Fig. 1.

One notes that, while older vehicle generations are made up

predominantly by petrol driven cars, diesel driven vehicles

have become more frequent from the 2007 cohort onwards.

In later years BEVs and HEVs have acquired noticeable mar-

ket shares (Fridstrøm L and Østli V, 2016, under review for

Transportation Research A).

Vintage cars older than 30 years are fairly numerous in

Norway. These are exempt of the purchase tax otherwise pay-

able upon first registration or import, and subject to a strongly

reduced annual circulation tax.

2.2 Accounting relations

The recursive structure of the BIG forecasting algorithm is

shown in Fig. 2. To each cell in the 22 × 31 matrix of the car

fleet, various attributes are assigned, such as mean type ap-

proval fuel consumption per km, mean annual distance driven,

annual rate of scrapping, and an annual rate of second hand

(used car) import. There is also a residual outflow of vehicles

defined, with its own annual rate, covering second hand vehi-

cle export and net temporary or permanent deregistration.4

Let Ai,j
n , (i = 1, 2,...., 22; j = 1, 2,…, 31) denote the num-

ber of vehicles in segment i and age class j at the end of year n.

Also, let bi,j
n , si,j

n and di,j
n denote, respectively, the used car

import, the scrapping, and the net deregistration of vehicles

in segment i and age class j during year n.

For notational clarity, we use capital letter symbols for

stocks, while lower case letters denote flows. For coefficients,

we shall use lower case Greek letters.

Now, the following accounting identities apply:

Anþ1
i; jþ1 ¼ An

i; j þ bnþ1
i; jþ1 þ snþ1

i; jþ1 þ dnþ1
i; jþ1

¼ An
i; j þ βi; jþ1A

n
i; j þ σi; jþ1A

n
i; j þ δi; jþ1A

n
i; j

¼ An
i; j 1þ βi; jþ1 þ σi; jþ1 þ δi; jþ1

� �

j ¼ 1; 2;…; 30ð Þ;

ð1Þ

where we have defined the used car import, scrapping and net

deregistration rates

βi; jþ1 ¼ bnþ1
i; jþ1=A

n
i; j; σi; jþ1 ¼ snþ1

i; jþ1=A
n
i; j; δi; jþ1 ¼ dnþ1

i; jþ1=A
n
i; j : ð2Þ

Most cars survive until the next year. The j’th youngest cohort

in year n becomes the j + 1 youngest cohort in year n + 1. In

addition, second hand vehicle import augments the stock of ve-

hicles within segment i and each age class j by a fraction βi,j of

the stock at New Year. Similarly, scrapping and deregistration

mean that each year there is some attrition. Here, for notational

simplicity, we have assumed that the used car import, scrapping

and deregistration rates are temporally stable, i. e. they do not

depend on the year n. In practical model applications, this default

option may or may not be adhered to.

From the Norwegian motor vehicle registry we extracted

the following vehicle stock, used car import and scrapping

data for 2010, 2011 and 2012:

A2010
i; j ; A2011

i; j ;A2012
i; j ; b2011i; j ; b2012i; j ; s2011i; j ; s2012i; j

i ¼ 1; 2;…; 22; j ¼ 1; 2; :::31ð Þ:

From these data we estimated the following used car import

and scrapping rates:

β̂i; j ¼
1

2

b2011i; j

A2010
i; j−1

þ
b2012i; j

A2011
i; j−1

" #

; σ̂i; j ¼
1

2

s2011i; j

A2010
i; j−1

þ
s2012i; j

A2011
i; j−1

" #

;

i ¼ 1; 2;…; 22; j ¼ 2; 3;…; 31ð Þ;

ð3Þ

i. e., by taking the average empirical rates as observed over the

2 years 2011 and 2012.

The residual net deregistration rate was determined—how

else?—residually, by taking

δ̂i; j ¼
1

2

A2011
i; j −b2011i; j −s2011i; j −A2010

i; j−1

A2010
i; j−1

þ
A2012
i; j −b2012i; j −s2012i; j −A2011

i; j−1

A2011
i; j−1

" #

i ¼ 1; 2;…; 22; j ¼ 2; 3;…; 31ð Þ;

ð4Þ

i. e. by solving Eq. (1) for δ̂i; j and computing the average over

the years 2011 and 2012.

For hybrid and battery electric vehicles, the empirical basis

for the assessment of survival rates and mileage is scant, to say

the least. As of 2012, few of these vehicles were old enough to

have made their first odometer reading at periodic vehicle

inspection, and too few were old enough to provide reliable

statistical information on annual survival rates up to the end of

the vehicles’ lifespan. Moreover, since early BEV and HEV

models are uncharacteristic—typically smaller and simpler—

compared to later generations, it would be quite misleading to

base long-term projections on the scrapping rates and mileage

observed for these early varieties. Instead, provisional ad hoc

survival rates and mileage parameters for BEVs, HEVs and

FCEVs have been set similar to those of mid-size petrol driven

cars, or somewhat lower. Information released by Nissan on

their battery electric model LEAF5 suggests an average annual

4 By ‘scrapping’, we mean turning the car in to an authorised vehicle

recycling facility, whereby the scrap deposit payable upon the vehicle’s

first registration is reimbursed. Residual net deregistration covers all those

cases where the vehicle is removed from (Norwegian) roads, however

without the owner collecting the scrap deposit. Net deregistration could

be negative, if more vehicles are reregistered than deregistered. It is not

uncommon for owners to temporarily hand in the vehicle’s license plates,

i. e. to deregister the car, so as to avoid paying the annual circulation tax.

5 See, e. g., http://www.greencarcongress.com/2015/01/20150119-leaf.

h tml or ht tp : / /www.newsroom.nissan-europe.com/uk/en-

gb/Media/Media.aspx?mediaid=128587
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mileage of 16 500 km, comparable to that of new ICE cars.

Figenbaum et al. [7] confirm that modern BEVs in Norway

are driven 14–15,000 km per year—just about as much as the

average, new petrol driven car.

Fig. 1 The Norwegian passenger car fleet at year-end 2012, by fuel type, kg curb weight and year of first registration

Rates for 
2nd hand import, 
scrapping, and

net deregistration 

Scrapping 
year n+1

22 segments

x 31 age classes

Net deregistration 
year n+1

22 segments

x 31 age classes

2nd hand import 
year n+1

22 segments
x 31 age classes

Car fleet
as of Dec 31 year n

22 segments

x 31 age classes

Car fleet 
as of Dec 31 year n+1

22 segments
x 30 age classes

22 

x 

1

New
cars

year 

n+1

Coefficients for
annual kilometrage 

and per km fuel 
consumption

Vehicle kilometres 
travelled year n+1

(million km)

Aggregate fuel 
consumption year n+1

(1000 tonnes)

CO2 emissions year n+1

(1000 tonnes)

and so on

Fig. 2 Flowchart of the BIG stock-flow cohort model of the Norwegian passenger car fleet
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2.3 A discrete choice model for new cars

For j = 1, i. e. for the youngest cohort of cars, shown in Fig. 2

as the blue, left-most column of the vehicle stock matrix An=

[Ai,j
n ], one cannot start from cohort data taken from the previ-

ous year. A different source of information is needed. To this

purpose, a nested logit model of new car purchases was de-

veloped by Østli V et al. (2016, under review, European

Transport Research Review).

Drawing on the software and data organising facilities of

the Norwegian Road Federation (www.ofv.no), complete and

detailed new car sales data were extracted for the period from

January 1992 through July 2011. A total of 44,087 different

passenger car models enter this data set.

For reasons of completeness, only the period 1996–2011

was used for estimation, including 1.6 million transactions

involving 38,468 different automobile models. Obviously,

few—if any—of these models are available on the market

throughout the period. Only a certain subset of car models

enter the choice set in a given year.

In the logit model every single car sale is regarded as a sep-

arate discrete choice where, in principle, every car model avail-

able in the market at that time is included in the buyers’ set of

alternatives. For each vehicle model, the data set includes infor-

mation such as the vehicle’s make, list price, purchase tax

amount, type of fuel, calculated per kilometre cost of fuel, curb

weight, engine power, drivetrain (rear, front or 4-wheel drive),

utility load, width, length, and number of seats and doors, as well

as the number of units sold each year. The nested logit model

uses these individual vehicle characteristics as explanatory vari-

ables, i. e. as arguments in the buyers’ indirect utility function.

Since the model is supposed to predict the market share of

potential new car models with known or assumed attributes, care

was taken to specify the model as a generic one. There are no

alternative specific coefficients, other than the dummies captur-

ing the vehicle’s make. Model coefficients have the expected

sign, almost all of them being highly significant by the robust

t-test. The per kilometre fuel cost coefficient is compatible with

car buyers taking full account of future energy cost savings,

while also not applying a discount rate much higher than zero

(Table 1).

Extensive testing was done in order to find the appropriate

nest structure. It was found that the only permissible nest

structure is one that assigns all cars of a given make to one

nest. There are 21 such nests in the model, the last one being a

residual nest assembling ‘all other makes’.

The model does not predict automobile sales at the level of

the individual vehicle model with any degree of precision. Nor

is this the intention. Some vehicle models are very similar—

indeed, in some cases deciding whether two cars represent two

different models or two versions of the same model may seem

like a matter of fine judgment. Hence the prediction of de-

mand at the level of the individual vehicle model carries less

political interest than forecasting at the somewhat more aggre-

gate level, whereby cars are grouped according to, e. g., their

make, size, fuel economy or exhaust emissions. At this level,

the model appears to discriminate well between various policy

scenarios, as demonstrated by the simulation exercise de-

scribed in Section 4 below.

In using the model for such purposes, one is greatly helped

by the fact that the model includes, in addition to the retail

price, an explanatory variable defined as the share of the retail

price which is not made up by tax. One may interpret this

variable as a proxy for all those quality attributes which are

not captured by other explanatory variables. With this speci-

fication we may have avoided, and at worst reversed, one type

of omitted variable bias commonly found in econometric stud-

ies of demand for heterogeneous products—that of ignoring

that the price variable reflects quality differences between the

products, something which results in a numerically

underestimated price elasticity.

According to our model, price changes due to taxation have

larger demand effects than those originating from the

manufacturing or marketing side. Example price elasticities,

calculated under two distinct assumptions are exhibited in

Fig. 3. On the horizontal axis, we measure arc elasticities

resulting from uniform 10% increases in tax and pre-tax price.

These are typically between −3 and −1. On the vertical axis,

elasticities resulting from a tax increase alone are shown.Most

of these are between −5 and −4.

Elasticities depend crucially on the level of aggregation.

Since the assumption in Fig. 3 is that the price changes only

for one particular model at a time, the elasticities shown are

numerically large. Much smaller elasticities result if one as-

sumes that all models of a given make have their prices

changed by the same percentage (red dots in Fig. 4). In such

a case, some less expensive cars may actually experience

higher sales, i. e. a positive price elasticity, as buyers flock

to cheaper models.

One notes that the more expensive models come out as

consistently more price elastic. This follows from the structure

of the generic multinomial logit model, whereby the price

Table 1 Selected coefficient

estimates from generic

automobile choice model.

Source: Østli V et al. (2016,

under review for European

Transport Research Review)

Variable description Variable name Estimate Robust t-statistic

Real retail price measured in 100,000 NOK 2010 Price −0.153 −6.44

Share of retail price that is not purchase tax or VAT Resourcecostshare 1.310 5.15

Operating cost: fuel price × fuel consumption per 10 km Fuelcost −0.063 −5.60
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elasticity of demand for a certain alternative is proportional to

its initial price and to the estimated price coefficient [8: 111].

Further details on our discrete choice model of automobile

purchase can be found in the companion paper by Østli Vet al.

(2016, under review European Transport Research Review).

Our model differs from most vehicle choice models reported

in the literature in that it contains no information on the vehicle

owners or their households. Hence the model cannot predict the

effect of changes occurring to the car owners rather than to the

vehicles themselves. Yet the buyers’ preferences are implicit in

the utility functions estimated. The model coefficients are inter-

pretable as the vehicle attributes’ (relative) marginal utility, as

judged by the average buyer.

The benefit of disregarding buyer characteristics is one of

considerable simplification, leaving room for a maximally de-

tailed, exhaustive and disaggregate representation of the auto-

mobiles themselves. Also, it means that no input is required on

such variables as household structure, population and income

growth, or transport infrastructure and prices, in order for the

model to produce a forecast.

By aggregating the predicted, model specific market shares

into the segments shown in Fig. 1, and multiplying by an ex-

ogenously given aggregate number of new cars registered, we

obtain, for each forecasting year n, the 22 × 1 vector of new car

purchases forming the left-most column of the stock matrix An.

2.4 Mileage, fuel consumption and exhaust emissions

Denote by fi,j
n the aggregate fuel consumption of vehicles in

segment i and age class j during year n, and by mi,j the

kilometrage of segment i cars in their jth life year. Also, denote

by ϕi,j the mean real-world per kilometre fuel consumption

within segment i and cohort j, by ~ϕi; j the corresponding labo-

ratory measured, type approval fuel consumption rate, and by

η* j ¼ ϕi; j=~ϕi; j the cohort specific ratio of real-world to type

approval rates of fuel use, as established byMock et al. [9, 10].

For lack of better information, we assume this ratio to be

uniform across vehicle segments. Also, we assume that the

fuel efficiency of a cohort of passenger cars does not change

with the vehicles’ age. Here, again, we rely onMock et al. [9].

The total fuel consumption of the car fleet in year n is then

calculable as

f n ¼
X

22

i¼1

X

31

j¼1

f ni; j ¼
X

22

i¼1

X

31

j¼1

η* j~φi; jmi; j A
n−1
i; j−1 þ An

i; j

h i

=2;ð5Þ

where we have weighted the fuel consumption of each cohort

by the average size of the car stock6 through year n.

6 By convention, we set Ai,0
n ≡0 ∀ i, n. Since, on the average, last year’s

cohort of cars enter the stock around mid-year, they travel only half a

normal annual mileage.

Fig. 3 Estimated effect of a price

change due to increased purchase

tax for single Volvo models as of

2010 (vertical axis), plotted

against the models’ respective

price elasticities of demand

(horizontal axis). Ten percent arc

elasticities

Fig. 4 Estimated price elasticities of demand for Volvo models as of

2010, plotted against the models’ respective retail prices. Ten percent

arc elasticities
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Letting ε i denote the kilogram amount of CO2 emitted per

litre of fuel consumed by cars in segment i, we compute the

total amount of CO2 emissions from the car fleet in year n by

the formula

en ¼
X

22

i¼1

εi
X

31

j¼1

f ni; j ¼
X

22

i¼1

εi
X

31

j¼1

η* j~φi; jmi; j A
n−1
i; j−1 þ An

i; j

h i

=2:

ð6Þ

The ratio of CO2 emissions to fuel combustion is,

with small variations, a physical constant specific to

each type of fuel. In the BIG algorithm, we have set

εi = 2.316 gCO2/l for hybrid (i = 1) and petrol driven

cars (i = 5, 6,…,13) and εi = 2.663 gCO2/l for diesel

driven ones (i = 14, 15,…, 22).

To obtain data on the annual mileage of cars in their

jth life year (mi,j), we have extracted odometer readings

from the registry of periodic vehicle inspection. Under

EU regulations, passenger cars are generally inspected

at 2-year intervals, the first inspection taking place

about 4 years after the vehicle’s first registration.

Certain interpolations and adjustments were made in or-

der to convert these 4-year and 2-year readings into

consistent annual mileage estimates (see Section 3.2).

3 Intermediate results

Using the above framework, programmed as a set of Excel

spreadsheets, we are able to simulate several paths of devel-

opment, differing primarily in terms of new car entries, until

the 2050 horizon. Interesting pieces of information can be

distilled from the stock-flow modelling framework even be-

fore making the first model projection.

3.1 Survival rates and vehicle life expectancy

The sum of the scrapping and net deregistration rates

translate into age and segment specific survival rates

given by

ρi; j ¼ 1−σi; j−δi; j ð7Þ

and cumulative survival probabilities

πi;k ¼ ∏

k

j¼1

ρi; j ¼ ∏

k

j¼1

1−σi; j−δi; j
� �

i ¼ 1; 2;…; 22; k ¼ 1; 2;…; 31ð Þ:

ð8Þ

The life expectancy of a car within a given segment is

calculable as

Ψ i ¼ πi;1 þ
X

30

k¼2

k πi;k−πi;k−1

� �

þ k* πi;31−πi;30

� �

i ¼ 1; 2;…; 22ð Þ; ð9Þ

where k∗ is the average age of vintage cars older than 30 years.

We have set this constant to 35 years.

The survival probabilities and life expectancies are exhib-

ited in Figs. 5 and 6, in which the colour codes are roughly the

same as in Fig. 1.

Note that in the BIG stock-flow model, life expectancy mea-

surements exceed the vehicles’ real life span, as reckoned in

calendar months, by a little more than 1 year. This is so because,

in the stock-flow model, age is counted from January 1 in the

year of first registration to December 31 in the scrapping year.

But on the average new vehicle enters the stock at mid-year,

while scrapping is concentrated between 1 January and 20

March, since the annual circulation tax is due at the latter date.

Larger cars live longer than smaller cars. While nearly half

of the largest petrol cars last as long as 25 years, the smallest

diesel cars have an average life span in Norway of only 14–

16 years. The overall life expectancy of Norwegian registered

passenger cars is 17.8 years, as reckoned in the BIG model, or

roughly 16.5 years as counted from the date of first registra-

tion to the date of scrapping, export or final deregistration.

3.2 Annual vehicle kilometres travelled

The annual vehicle kilometres travelled, as distilled from the

odometer readings taken during periodic vehicle inspection,

are shown in Fig. 7.

Diesel driven cars travel considerably farther than petrol

cars, and younger vehicles are used a lot more than older ones.

Behind the latter phenomenon there are probably three

mechanisms at work. Newer cars are perceived as safer, more

comfortable, more fuel efficient, and generally more attractive

as a travel mode, than older cars. Put otherwise, the same

person would have a higher probability of choosing her own

car over travelling by bus or coach, if this car is new and

technologically up-to-date, than if it is old and tattered. Also,

the overall trip frequency may be positively influenced by

having access to a nice new car.

Secondly, since purchase decisions are made, not by the

vehicles themselves, but by people, there is a selection process

going on, whereby car owners with a large road travel demand

tend to invest in newer and more expensive cars.

Thirdly, somewhere between 40 and 50 % of all new pas-

senger cars are registered to a company,7 in many cases to a

7 Source: www.ofv.no
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leasing, car rental or taxi company. These cars are typically

driven longer than average distances, until they are traded in

the second hand market after a few years.

Some vehicle segments, such as the smallest diesel cars and

the biggest petrol cars, exhibit seemingly erratic mileage pat-

terns at high age. This is simply because the number of vehi-

cles in these categories is quite small, which gives rise to

pronounced random variation. We have chosen not to smooth

out the empirical curves and replace them by artificial rates,

since, on account precisely of the small number of vehicles

affected, the potential aggregate forecasting error is quite

limited.

3.3 CO2 emission rates

The mean type approval rates of per kilometre CO2 emissions

characterising different cohorts of vehicles within each seg-

ment are shown in Fig. 8. The trend is clearly downwards in

all segments. Note, however, that the growing discrepancy

Fig. 6 Life expectancy of Norwegian registered passenger cars, by fuel type and kg curb weight, estimated from 2010 to 2012 scrapping and net

deregistration

Fig. 5 Cumulative survival rates

of Norwegian registered

passenger cars, by fuel type and

kg curb weight, estimated from

2010 to 2012 scrapping and net

deregistration flows
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between type approval and real-world emission rates serves to

neutralise a large part of the improvement.8

4 Short-term policy simulations

The consumers’ choice of cars being sensitive to retail prices,

and to the share of the price which is not made up by tax, the

logit model of vehicle choice can be used to predict changes in

the different car models’ market share under changes in the

vehicle purchase tax regime. The Norwegian automobile pur-

chase tax, payable upon first registration of a vehicle, is a sum

of four independent components, calculated on the basis of curb

weight, ICE power, and type approval CO2 and NOX emission

rates, respectively (Fig. 9). All but the NOX component are

convex, exhibiting increasingmarginal tax rates. The CO2 com-

ponent is negative (as of 2014) for vehicles emitting less than

105 gCO2/km by the type approval test. For PHEVs, the electric

motor does not count towards the tax on engine power, only the

combustion engine does, and the weight component is reduced

by a benchmark 15 % (as of 2014), so as to leave the weight of

the battery pack out of the calculation. As noted above, BEVs

and FCEVs are altogether exempt of purchase tax, as well as of

the standard 25 % value added tax (VAT).

In Figs. 10 and 11, we show the results of a simulation

exercise, in which the effects of certain hypothetical changes

to the VAT and vehicle purchase tax rates are simulated.

The fiscal policy changes simulated are the following:

A. Ten per cent higher total purchase tax for all vehicle

models

B. Ten per cent increase in the CO2 component of the pur-

chase tax

C. Introduction of VAT and purchase tax on BEVs, accord-

ing to same rules as for PHEVs.

Figure 10 depicts relative changes in market shares, under

each of the above three assumptions, for the 20most important

segments of the BIG model (confer Fig. 1). By assumption,

any tax increase is passed on entirely to the buyers, in the form

a higher retail price.

According to the model, a generally 10 % higher purchase

tax (alt. A) will boost the market for BEVs by almost 10 %,

since these vehicles are exempt of the tax. Hybrid cars also

gain market shares. The larger petrol and diesel driven cars

will, however, lose up to 14 % of their sales.

More moderate effects in the same direction are pre-

dicted under a 10 % increase in the CO2 component

only (alt. B).

If and when the tax rules applicable to PHEVs are

brought to bear even on BEVs (alt. C), a 24 % drop in

BEV sales can, according to the model, be expected.

All other vehicle segments will see their market shares

increase.

The corresponding changes in average type approval CO2

emissions are shown in Fig. 11. A 10 % stiffer overall pur-

chase tax is consistent with a 2.41 gCO2/km lower average

type approval emission rate from all new passenger cars.

Abolishing the tax exemptions for BEVs will, on the other

8 As shown by Fridstrøm L and Østli V (2016, under review,

Transportation Research A) drawing on Mock et al. [9, 10] and Tietge

et al. [11], as much as 78 % of the ‘improvement’ recorded in the EU

between 2006 and 2014 is fictitious.

Fig. 7 Average annual distance driven by Norwegian registered ICE automobiles 2010–2012, by fuel type, kilogram curb weight and age
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hand, boost the mean emission rate by 3.85 gCO2/km, through

changes in the mix of cars sold.

The left-most and right-most policy options shown in

Fig. 11 differ by 6.3 gCO2 per km. This difference corre-

sponds to roughly 2.5–3 ml/km lesser fuel consumption by

the type approval test. For a car running 200,000 km before

scrapping, the total fuel savings are 7–800 l over the vehicle’s

lifetime, when considering that the real-world, on-the-road

fuel consumption of the 2014 cohort of cars is about 40 %

higher than according to the EU type approval test [11]. For

the entire 2014 cohort of Norwegian registered cars, the life-

time CO2 emissions difference between the two policy options

is around 250,000 tonnes. Today’s policy choice affects GHG

emissions for decades to come.

5 Long-term scenario projections

The main objective of the BIG stock-flow model is to provide

a tool for long-term policy analysis. A few applications are

presented below.

In Fig. 12, we show the stock of vehicles at year-end 2030

according to a reference path developed by Fridstrøm et al.

[12]. In this scenario, no changes are made to the design of the

Fig. 9 Vehicle purchase tax as a

function of curb weight,

combustion engine power, and

type approval CO2 and NOX

emission rates, in Norway 2014

(NOK = Norwegian kroner. As of

1 July 2014, € 1 = NOK 8.43).

Source: Fridstrøm et al. [12]

Fig. 8 Average type approval CO2 emission rates of new petrol and diesel driven passenger cars registered in Norway 1992–2011, by fuel type, kg curb

weight and year of first registration
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vehicle purchase tax as applicable in 2014, but the tax and toll

exemptions for BEVs are gradually abolished between 2018

and 2022.

Regarding technology development, the following as-

sumptions were made. The manufacturing cost differential

between BEVs and petrol driven cars will decrease gradually

and disappear around 2022. Energy efficiency improvements

will take place for all ICE and hybrid vehicles. The mean type

approval rate of fuel consumption of new petrol and diesel

driven cars is assumed to drop by 1 % per year throughout

the period 2014–2050. For hybrid vehicles, the rate is set at

3 % per year, reflecting an assumption than an increasing

share of these vehicles will be plug-in hybrids.

On top of the improvements in fuel economy and

manufacturing costs, BEVs are also assumed to undergo

gradual quality improvements (e. g., extended range), valued

at NOK 100 000 (= € 11 862) per vehicle by 2022 and another

NOK 60,000 by 2050. For hybrid vehicles, half as large an

improvement is assumed.

One notes that even under the ‘business-as-usual’ scenario,

hybrid and battery electric vehicles are projected to become

considerably more numerous.

The 2- to 10-year old cohorts are seen to be more numerous

than the youngest one. This has nothing to do with changes in

the total number of new cars registered, which is assumed

constant throughout our projection period. The explanation

is second hand car import, which typically adds 20–25 %

more vehicle registrations on top of the new car sales. The

great majority of second hand cars imported are between 2

and 5 years of age.

Fig. 10 Relative changes in fuel and weight segments’ market shares under three fiscal policy scenarios, assuming that tax increases are passed on

100 % to buyers

Fig. 11 Absolute changes in

mean type approval CO2

emission rates of new passenger

cars, compared to reference case,

under three fiscal policy scenarios
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In Fig. 13, we show a corresponding picture from the

alternative ‘low carbon’ policy scenario, in which the

purchase tax incentives to buy low and zero emission

vehicles are strengthened considerably. Here, hybrid and

Fig. 12 Business-as-usual scenario. Projected Norwegian passenger car fleet at year-end 2030, by fuel type, kg curb weight and year of first registration

Fig. 13 Low carbon fiscal policy scenario. Projected Norwegian passenger car fleet at year-end 2030, by fuel type, kg curb weight and year of first

registration

22 Page 12 of 15 Eur. Transp. Res. Rev. (2016) 8: 22



battery electric vehicles are seen to make up more than

50 % of the youngest cohort, but still only 21 % of the

total car fleet in 2030.

A car fleet is, in other words, an inert matter. This

becomes even more visible when we plot average CO2

emission rates , as in Fig. 14. The red curve,

representing the car fleet’s mean type approval rate of

CO2 emissions, lags 10–15 years behind the green

curve, which represents the newest generation of cars.

Moreover, the real-world CO2 emissions, shown in blue,

are considerably higher than the type approval rates.

This gap is widening, since the discrepancy between

laboratory and on-the-road emissions has been growing

with later generations of cars [9–11].

Figure 15 shows the development of the automobile stock

2012–2050, as segmented by energy carrier or propulsion

technology, under the low carbon scenario. One notes that

in this particular projection, the aggregate car fleet increases

slightly between 2012 and 2030, before levelling out. In the

BIG model, aggregate car ownership is endogenous, follow-

ing from new car acquisitions and from the second hand

import, scrapping and net deregistration rates. By adjusting

these rates, the user may, however, steer the size of the car

fleet towards a given target, if desired.

Fig. 14 Passenger cars’ average CO2 emission rates under business-as-usual (a) and low carbon fiscal policy (b) scenarios 2013–2050. Source: [12]

Fig. 15 Norwegian passenger car

fleet 2012–2050 under

low carbon policy

scenario. Source: Fridstrøm L and

Østli V (2016, under review,

Transportation Research A)
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6 Discussion

The BIG stock-flow cohort model constitutes a bottom-

up approach to vehicle fleet forecasting. New car regis-

trations follow from a disaggregate discrete choice mod-

el based on sales data for individual passenger car

models. The flows and stocks characterising the car

fleet are specified at a somewhat coarser, yet relatively

detailed level, describing each year’s stocks and flows

of vehicles as the aggregation of 22 × 31 = 682 mutually

exclusive and exhaustive cells. This accurate bottom

level accounting guards against gross errors of aggrega-

tion, without, of course, preventing the model user from

producing and presenting results at a much less detailed

level.

In the interest of tractability, it has been necessary to

make certain simplifying assumptions. As a default op-

tion, age and segment specific scrapping, deregistration

and second hand car import rates have been assumed

temporally stable, calibrated in accordance with the em-

pirical means observed over the 2-year period 2010–

2012. Also, for lack of better information, certain de-

fault parameters have been assumed invariant across ve-

hicle segments or cohorts. The model user may, of

course, deviate from these default values whenever

suitable.

Also, since annual mileage factors are set exogenous-

ly for each cell in the 22 × 31 vehicle stock matrix,

and—as a default—do not vary over time, the model

does not take account of rebound effects, such as when

aggregate road travel demand increases in response to a

lower average per km energy cost. Moreover, since

there is no behavioural relation explaining aggregate

car ownership or acquisition, there is also a possible

rebound effect—not accounted for—in terms of a larger

( o r sma l l e r ) c a r f l e e t . A s d emon s t r a t e d by

D’Haultfoeuille et al. [13] in the context of the French

feebate system for car purchases, such effects could be

quite important.

With the present version of the BIG algorithm, re-

bound effects must be calculated outside the model, by

combining BIG model runs with travel demand model-

ling. Fridstrøm et al. [12] used the national and regional

travel demand systems for Norway to assess the effect

of a 50 % lower average per km fuel cost, brought

about by fiscal incentives bearing on new car purchases.

Car travel demand is then projected to increase by

15 %, as measured in vehicle kilometres on short-haul

(urban) trips, and by 48 % on long-haul (interurban)

trips. As measured in terms of overall CO2 emissions,

however, the rebound effect is more important in the

urban than in the interurban setting. This is so because,

while short urban car trips compete with generally more

climate friendly public transport, long-haul interurban

car trips in Norway compete primarily with the air

mode.

The BIG stock-flow model is primarily a coherent

accounting framework, into which economic, behaviour-

al or technological relations can be built. Apart from the

discrete choice model of new car purchases, the frame-

work itself is almost void of behavioural content. But

the accounting identities allow for several useful deduc-

tions, such as when we estimate the time lag between

changes occurring to, respectively, the flow of new cars

registered and the stock of cars, or when the survival

rates of different vehicle segments are derived from a

few years’ data on the stock of cars and the flow of

vehicles scrapped.

Potential extensions and improvements of the stock-flow

model include (i) the integration, into the framework, of be-

havioural relations endogenising, e. g., scrapping rates, aggre-

gate vehicle miles travelled, or aggregate car purchases, in-

cluding second hand import, (ii) the extension to a wider set of

knock-on effects covered, so as to include, e. g., particulate

matter, NOX emissions, or accidents, and (iii) the extension to

other types of vehicles, such as buses, vans and heavy freight

vehicles.

7 Conclusions

Stock-flow vehicle cohort models exploit the accounting rela-

tions inherent in the processes of fleet development, new car

acquisition, scrapping, import, export and deregistration, in a

way very similar to how, in a demographic forecasting model,

the flows of births, deaths, immigrants and emigrants would

influence and depend on the stock of individuals, i. e. the

human population.

Stock-flow cohort modelling of the car fleet is a powerful

and handy tool for policy analysis. Even quite simple and

straightforward accounting relations may provide important

insights into the dynamics of fleet development. A particularly

useful piece of information concerns the amount of inertia

involved, as characterised, e. g., by the time lag between tech-

nological improvements affecting new vehicles and their pen-

etration into the car fleet.

It is possible to incorporate, into the stock-flow modelling

framework, interesting and useful behavioural relations,

explaining aggregate passenger car ownership and travel de-

mand, scrapping and survival rates, or consumer choice in the

market for new cars. Even without such behavioural relations,

the framework is useful for analysing and predicting policy

dependent developments in terms of energy use, GHG emis-

sions, local pollution, accident rates, fiscal impact and eco-

nomic costs.
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Far from presupposing sophisticated computer program-

ming, the recursive stock-flow cohort model can be imple-

mented by means of standard spreadsheet software.
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