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Abstract

Stomata are morphological structures of plants that have been receiving constant attention.
These pores are responsible for the interaction between the internal plant system and the
environment, working on different processes such as photosynthesis process and transpiration
stream. As evaluated before, understanding the pore mechanism play a key role to explore
the evolution and behavior of plants. Although the study of stomata in dicots species of
plants have advanced, there is little information about stomata of cereal grasses. In addition,
automated detection of these structures have been presented on the literature, but some gaps
are still uncovered. This fact is motivated by high morphological variation of stomata and the
presence of noise from the image acquisition step. Herein, we propose a new methodology of an
automatic stomata classification and detection system in microscope images for maize cultivars.
In our experiments, we have achieved an approximated accuracy of 97.1% in the identification
of stomata regions using classifiers based on deep learning features.

Keywords: deep learning, image classification, pattern recognition.

1. Introduction1

According to Willmer and Fricker [1], from all points of view, the stomata have received more2

constant attention probably than any other single vegetative structure in the plant. Regulating3

gas exchange between the plant and the environment[2], these structures are small pores on the4

surfaces of leaves, stems and parts of angiosperm flowers and fruits [3, 4], formed by a pair of5

specialized epidermal cells (guarder cells), which are found in the surface of aerial parts of most6

higher plants [1]. Due to the controlling of the exchange of water vapour and CO2 between the7

interior of the leaf and the atmosphere [3]; the photosynthesis, the transpiration stream, the8

nutrition and the metabolism of land plants are in different ways related to the opening and9

closing movements of the stomata [4, 1]. Furthermore, Hetherington and Woodward point that10

the acquisition of stomata and an impervious leaf cuticle are considered to be key elements in11

the evolution of advanced terrestrial plants, allowing the plant to inhabit a range of different,12

often fluctuating environments but still control water content [3].13

The stomatal movements distinguish this structure from other pores found in plant organs,14

as for example, pneumathodes, hydathodes, lenticels, and the breathing pores found in the thalli15
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of liverworts [1]. The control of stomatal aperture requires the coordinated control of multiple16

cellular processes [3] and its morphogenesis is affected by several environmental stimuli, such17

as relative humidity, temperature, concentration of atmospheric carbon dioxide, light intensity,18

and endogenous plant hormones [2, 3, 1]. Global warming for example could increase leaf19

transpiration and soil evaporation, and as consequence leaf stomata movements can control20

plant water loss and carbon gain under this water stress condition [5]. Stomatal aperture21

might also represent an initial response to both plants and human pathogenic bacteria [2]. In22

plants, it has been reported that microscopic surface openings serve as passive ports of bacterial23

entry during infection and the stomatal closure is part of a plant innate immune response to24

restrict bacterial invasion [6].25

The number of pores per unit area varies not only between species but also within species26

because of the influence of environmental factors during growth, leaf morphology and genetic27

composition [4, 1]. In general, it happens due to the influence on cell size [4], e.g. smaller guarder28

cells are usually associated with higher stomatal frequencies [1]. Besides stomata differentiation29

is a process that occurs together with the development of plant organs and, therefore, counts of30

stomata per unit area carried out at different stages in leaf development will differ [4]. Another31

characteristic with great variation is the spacing of stomata, which may be fairly evenly spaced32

throughout a leaf, located in regular rows along the length of a leaf, or they may be clustered33

in patches [1].34

In view of the considerations above, the types of stomatal configuration are highly different.35

The study and identification of these pores are key points to understand several mechanisms of36

plants. Haworth et al. [7] also state that it may be reasonable to assume that stomatal structures37

have played a significant role in plant evolution over the last 400 million years. Nevertheless, the38

examination of stomata from microscope images involves manual measurement and is highly39

dependent on biologists with expert knowledge to correctly identify and measure stomatal40

morphology [8].41

Even with the clear relevance of these structures, a recent study [9] indicated that surpris-42

ingly we still know little about stomata of cereal grasses. These grasses are extremely important,43

because they provide the majority of calories consumed by humans either directly through the44

consumption of grains or indirectly through animals fed a diet of grains and forage[10].45

As pointed by [9], the stomatal complexes in grasses differ of the dicots in many ways, e.g.46

the guard cells of dicots are kidney-shaped and form stomata that are scattered throughout the47

epidermis in a less orderly pattern, while stomatal configuration of grasses develop in parallel48

rows within defined and specific epidermal cell files [9]. Herein we selected microscope images49

of maize, which represent the most produced and consumed cultivars in the world.50

In this scenario, in order to assist the biological community to perform stomata studies, we51

develop an automated strategy for stomata detection in microscope images. The introduction52

of such techniques in these analyses represent a less time consuming way of examining stomatal53

behavior, enabling biologists to use more data-points from the images and study a broader54

range of stomata.55

2. Related Work56

This section presents some works concerned on stomata identification using image processing57

techniques.58

The research of stomata image processing started in the 80s. Recognized as possible pi-59

oneers, Omasa and Onoe [11] proposed a technique for measuring stomata characteristics in60

gray scale images using Fourier Transform and threshold filters for image processing and seg-61

menting [8].62
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More recently, Sanyal et al. [12] compared tomato cultivars using several morphological char-63

acteristics, including stomata measures. Microscope images of different cultivars were obtained64

using a scanning electron microscope and the segmentation was performed using a watershed65

algorithm resulting in one stomata per image, followed by morphological operations (e.g., ero-66

sion and dilation) and Sorbel kernel filters to remove noise and obtain stomatal boundaries.67

Using 100 images of tomato cultivars and a multilayer perceptron algorithm, it was achieved68

96.6% of accuracy.69

In [13], a remote sensing processing was used to estimate stomata density. Three differ-70

ent regions of Populus Euphratica leaves were used as source of stomata images. For image71

processing, a object-oriented classification method was used with parameters such as scale, com-72

pactness and shape. This approach presented high accuracy when compared to human-based73

count, showing advantages over the traditional method to extract the stoma information [13].74

Aiming the constant growth and development of stomata image processing studies, [14]75

published the Live Images of Plant Stomata LIPS database. In other work, [15] presented76

a semi-automatic stomata region detection using ImageJ software[16] and a Clustering-Aided77

Rapid Training Agent-based algorithm[17].78

In an approach based solely on morphological operations[18], the authors developed a79

pipeline to count stomata. Initially, Gaussian low-pass filter was employed to preprocess the80

image and remove noise. In this sequence, reconstruction operations (e.g., opening and closing)81

were applied in order to highlight stomata regions. These pores were counted based on back-82

ground intensity differences. As result, they presented a simplest approach to count stomata83

with mean precision of 94.3%.84

In 2014, [19] presented a supervised method for stomata detection based on the measure85

of morphological and structural features. For this task, 24 microscope images were obtained86

and filtered by normalization together with a Gaussian filter. The stoma images were manually87

segmented and the width and height parameters extracted. The stomata detection procedure88

based on stomata morphological constraints achieved results close to a manual counting ap-89

proach. With a similar procedure, a patent of stomata measurement using Gaussian filtering90

and morphological operations was registered [20].91

Recently, Duarte et. al.[21] proposed a method to automatically count stomata in micro-92

scope images. Initially, the images were converted from RGB to CieLAB in order to select the93

best channel for analysis. The stomata detection was performed by Wavelet Spot Detection and94

morphological operations, and the watershed algorithm was used resulting in 90.6% of accuracy95

compared to non-automatic counting.96

In the same year, [8] proposed an automated stomata detection and pore measurement for97

grapevines. This approach used a Cascade Object Detection (COD) algorithm with two main98

steps. First, the COD classifiers were trained using stoma and non-stoma images. Second, a99

slide window over the microscope images was used to identify stomata inside it. After its detec-100

tion, the pore measurement step was performed using binary segmentation and skeletonization101

with ellipse fitting, estimating pore measurements for incomplete stoma. As a result the method102

proposed reached 91.6% of precision.103

3. Proposed System104

This section introduces the proposed stomata classification and detection system.105

3.1. Overview106

The proposed stomata classification and detection system is composed of two different pro-107

cess: (1) Stomata region classification; and (2) Stomata region detection.108
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Figure 1: An overview of the stomata classification and detection system.

In the stomata classification process, the first step is to manually collect and label a subset109

of stomata and non-stomata regions from the microscope images dataset, creating two disjoint110

sets of subimages (train and test). These sets of subimages are subjected to an image descriptor111

that codes the visual properties of these subimages into feature vectors (Ftrain and Ftest). Next,112

the feature vectors Ftrain are used as input for a learning method, creating a learned model for113

stomata classification task. Finally, each feature vector Ftest is classified by this learned model.114

In the classification process, different image descriptors and learning methods are evaluated115

through a k-fold crossvalidation protocol and the best model is adopted to detect stomata116

regions on next process of proposed system.117

In the stomata detection process, a sliding window is used on each microscope image from118

entire dataset, creating a set of regions of interest (ROI), which are subjected to an image119

descriptor resulting in the feature vectors (FROI) and finally, FROI are classified by the best120

model, i.e., a tuple (learning method + image descriptor) found in the classification process.121

3.2. Stomata Classification Process122

The first step for identifying stomata structures is the manual selection of a set of subimages123

containing stomata or other plant structures, labeled as non-stomata. Due to the differences124

between stomata size in distinct microscope images, we adopted a region/window of dimension125

151×258 pixels, which was enough to include all of stomata regions in the available microscope126

images from dataset. Thus, a total of 1000 subimages of each class (stomata and non-stomata)127

have been selected to compose the new dataset.128

Once the dataset has been created, the next step is to extract visual properties from the129

subimages using image descriptors. In this work, we evaluated eleven different image descrip-130

tors, DAISY, HOG, GIST, Haralick, LBP, and six deep learning-based descriptor (DenseNet121,131

InceptionResNetV2, InceptionV3, ModbileNet, NasNet and VGG16).132

3.2.1. DAISY133

DAISY descriptor relies on gradient orientation histograms. For an input image, orientation134

maps are calculated based on quantized directions. Each location (u, v) in a given map with135

a specific direction is equal to the image gradient norm (if its value is bigger than zero, else136

it is equal to zero). H orientation maps and several processes of convolution (using Gaussian137

kernels) are used to obtain convolved orientation maps. DAISY descriptor is the vector of values138

from these convolved maps located on concentric circles centered on a location, and where the139

amount of Gaussian smoothing is proportional to the radius of the circles [22].140
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3.2.2. Histogram of Oriented Gradients (HOG)141

Feature descriptor based on the creation of histograms with gradient orientation using its142

magnitude in localized portions of an image [23]. Local shape information is well described by143

the distribution of gradients in different orientations [24].144

3.2.3. GIST145

This descriptor has its focus on the shape of the scene itself, on the relationship between the146

outlines of the surfaces and their properties, ignoring the local objects in the scene and their147

relationships [25]. This approach does not require any form of segmentation and is based on a148

set of perceptual dimensions (naturalness, openness, roughness, expansion, ruggedness) [24].149

3.2.4. Haralick Texture Features150

As a first step, a gray-level co-occurrence matrix (GLCM) is constructed by considering the151

relation of each voxel with its neighborhood. Using different statistical measures (e.g., entropy,152

energy, variance, and correlation), texture properties are coded from the image into feature153

vectors [26].154

3.2.5. Local Binary Patterns (LBP)155

Computing a local representation of texture based on the comparison of each pixel with its156

neighborhood, a comparison threshold is defined and an output image is built with the binary157

to decimal values conversion and an histogram can be created [27].158

3.2.6. Deep Convolutional Neural Network (DCNN)159

A typical convolutional network is a fully-connected network where each hidden activation160

is computed by multiplying the entire input V by weights W in a given layer [28]. In this161

technique, a connection between traditional optimization-based schemes and a neural network162

architecture is used, where a separable structure is introduced as a reliable support for robust163

deconvolution against artifacts [29]. Once we do not have available a large scale of image to164

train a deep learning architecture from scratch, a good alternative is to use the transfer learn-165

ing approach [30]. This approach uses deep learning architectures pre-trained with ImageNet166

dataset [31], adding other layers according to target application and then, the last layer can be167

used as a feature extraction function (image descriptor). In this work, we adopted six different168

architectures, DenseNet121 [32], InceptionResNetV2 [33], InceptionV3 [34], ModbileNet [35],169

NasNet [36] and VGG16 [37].170

In this work, we used three different machine learning methods, Support Vector Machine [38]171

(SVM), Multilayer Perceptron [39] (MLP) and Adaboost [40] to evaluate the overall effec-172

tiveness results and to find the best learned model, i.e., a tuple (learning method + image173

descriptor) that will be adopted to label the new stomata regions on the next process.174

Figure 2 shows the steps of the stomata classification process proposed in this work.175

3.3. Stomata Detection Process176

The methodology for detecting stomata regions is divided into the following steps as can be177

seen in image 4:178

3.3.1. Dataset179

A dataset with stoma and non-stoma subimages (see Figure 3) is created through a manual180

selection task from microscope images.181
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Figure 2: In-depth explanation of the stomata classification process.

3.3.2. Feature extraction182

As the best descriptor has been found on the stomata classification process, the features183

of the created dataset are generated and stored into a table with the labels of each category184

(stoma or non-stoma).185

3.3.3. Creation of the learned model186

The descriptors were evaluated using three different learning methods, support vector ma-187

chine (SVM), multi layer perceptron (MLP), and Adaboost. Based on the best effectiveness188

results achieved by learned model (a tuple composed of descriptor + learning method), the189

most appropriate learned model is selected to label the subimage in next step.190

3.3.4. Sliding window iteration191

Using a window of 151×258 pixels, an iteration over the microscope images is performed and192

for each generated subimage a label (stoma or non-stoma) is obtained using the best learned193

model. Due to the possible separation of stoma structures, the windows were created with a194

stride of 100 pixels in columns and rows.195

3.3.5. Selection of positive regions196

Based on the previous classification, an auxiliary matrix is filled in order to enable the197

posterior identification of stoma regions. Pixels with positive occurrence of stoma are separated198

from the rest of the image and the stoma regions can be analyzed.199
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Figure 3: Examples of stoma (a) and non-stoma (b) subimages/regions, which were manually selected and
labeled in this work.

Figure 4: In-depth explanation of the stomata identification process.

4. Experimental Setup200

This section describes, in details, the dataset creation process, the technologies, and evalu-201

ation protocol used in this work.202

4.1. Image Dataset203

For optical microscope investigation, it has been necessary to separate the epidermis from204

the rest of the leaf itself in order to get a clear view of the cell walls and the shape of the205

stomata [41]. Herein cyanoacrylate glue was applied to the microscope slide in order to obtain206
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an impression of the sheet surface to be captured using a camera attached to a microscope.207

Leaves were sampled from 20 Zea mays cultivars (maize) granted by Nidera Sementes company208

(Uberlndia-MG) producing a total of 200 microscope images with different dimensions such as209

2565×3583, 2675×3737, and 2748×3840.210

The selected plant species were treated with colchicine [42] in order to change their ploidy211

and cell morphology for further studies. Due to the plant ploidy specificity, different images212

might have different stomata sizes and width. Besides, as previously mentioned, stomata dif-213

ferentiation is a process that occurs together with the development of plant organs and herein214

plants with different ages were used and a clear distinction of the images and plant morpholo-215

gies can be visualized in Figure 5. In these microscope images, different types of noise might216

be observed due to many factors which can be seen in Figure 6.217

In the experiments, the dataset with 200 microscope images was submitted to the 5-fold218

crossvalidation protocol, i.e., four parts of the dataset compose the training set (160 images)219

and one part belongs to the test set (40 images). This process is repeated five times. There-220

fore, in the stomata classification task, for each microscope image, 5 stoma and 5 non-stoma221

regions/subimages has been manually select to compose training and test sets in an overall of222

2000 subimages.223

In the stomata detection task, respecting the separation of the disjoint sets of the 5-fold224

crossvalidation protocol, each training set created in the stomata classification task is main-225

tained with 1600 subimages. However, the test sets are generated by a sliding window iteration.226

Hence, for each one of the 40 microscope images existing in each test set, between 876 and 963227

regions/subimages are selected by a sliding window iteration resulting in approximately 44, 000228

subimages per test set in a overall of 217, 866 subimages for the five runs.229

4.2. Programming Environment and Libraries230

All the approaches presented in this paper were run on a personal computer with 2.7GHz231

Intel Core i7-7500U 2.7GHz Intel Core i7-7500U with 16GB of RAM and NVIDIA GeForce232

940MX 4GB graphic card. In the same way, the programming language was Python2 with233

the following libraries: scikit-learn [43], pyleargist, scikit-image[44], opencv [45], keras[46] and234

tensorflow[47]. A greater part of the libraries were used in order to call image descriptors and235

deep learning methods.236

4.3. Evaluation Protocol237

In order to check the accuracy of the created system for classifying and identifying stomata238

regions, it was used a k-fold cross validation with k = 5. The classified images represent the239

test set and the subimages used to create the learned model were extracted from the training240

set. A manual count was performed for each image and we evaluated the results using the241

quantity of identified stomata in selected regions and the total of positive (True Positive) and242

false classifications (False Positive) using all the generated windows, including the overlapped243

region results.244

5. Results and Discussion245

This section shows all experiments performed to validate the proposed system.246

5.1. Stomata Classification Task247

In this first experiment, we performed a comparative analysis among five image descriptors248

(HOG, GIST, DAISY, LBP, and Haralick) and three learning methods (Adaboost, MLP, and249
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Figure 5: Fifteen different microscope images of Maize Cultivars used in this work.

Figure 6: Different types of noise present in the microscopic images. (a) the usage of cyanoacrylate glue can
generate air bubbles; (b) leaves residuals might be captured by the microscope; (c) the leaves might bend and
generate grooves in the image; (d) degradated stomata due to biological factors; and (e) low image quality due
to equipment limitations.

SVM) for stomata classification task. All of effectiveness results are measured in mean accuracy250

of the 5-fold crossvalidation protocol.251

As we can observe, in Table 1, the best results have achieved by descriptors purely based on252

gradient (HOG and DAISY). HOG descriptor with MLP (HOG+MLP) and DAISY descriptor253

with Adaboost (DAISY+Adaboost) achieved 96.0% of mean accuracy. In a general comparison254

among all image descriptors, HOG descriptor achieved the best effectivess results with mean255

accuracy of 94.7% and this can be justified due to the specific shape of the stoma when compared256

to other parts of the images. Therefore, this fact can show us that shape is the visual property257

more indicate for the target application. Although GIST is a shape descriptor, perhaps its way258
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of dealing with visual properties globally (holistic) may explain its poor performance in such259

images.260

Table 1: Mean Accuracy of the classifiers based on image descriptor features for stomata classification task.

Learning Method HOG GIST DAISY LBP Haralick

Adaboost 93.0 79.0 96.0 88.0 87.0
MLP 96.0 81.0 92.0 85.0 80.0
Linear SVM 95.0 81.0 80.0 89.0 86.0

Mean 94.7 80.3 89.3 87.3 84.3

As the ideal scenario is that all regions are correctly classified in the stomata detection261

task, another more powerful description approach called deep learning have been performed to262

improve the effectiveness results achieved by image descriptors.263

Table 2 shows effectiveness results of six different deep learning architectures (DenseNet121264

– DenseNet, InceptionResNetV2 – IResNet, InceptionV3 – Inception, MobileNet, NasNet, and265

VGG16) using three learning methods (Adaboost, MLP, and SVM).266

Table 2: Mean Accuracy of the classifiers based on deep learning features for stomata classification task.

Classifier DenseNet IResNet Inception MobileNet NasNet VGG16

AdaBoost 95.0 96.0 90.0 96.0 91.0 99.0

MLP 98.0 94.0 88.0 98.0 95.0 100.0

Linear SVM 80.0 94.0 91.0 98.0 95.0 100.0

Epochs 10 13 6 7 16 6
Mean 91.0 94.7 89.7 97.3 93.7 99.7

As we can observe, the classifiers based on deep learning features outperformed ones based on267

image descriptors except for HOG descriptor. In this experiment, the classifiers using VGG16268

features achieved the best results with 100% of mean accuracy in almost all three learning269

techniques performed in this work for stomata classification task.270

5.2. Stomata Detection Task271

In this experiment, the classifier based on VGG16 features with the support vector machine272

technique has been adopted for stomata detection task.273

Using the sliding window approach for producing possible stoma regions, we have generated274

between 876 and 963 regions/subimages for each microscope image (overall of 217, 866 subim-275

ages) and a 5-fold crossvalidation protocol has been adopted. Each one of these subimages has276

been labeled using the classifier using support vector machine technique and features generated277

by VGG16 architecture (SVM+VGG16).278

Table 3 summarizes the effectiveness results of the classifier SVM+VGG16. The amount of279

detected stoma regions are compatible with the manual counting, which shows a good perfor-280

mance of the proposed system. All the 5-fold presented similar effectiveness results with 97.1%281

of detected stoma regions, i.e., 11388 stomata of the 11734 stomata existing in the dataset.282

It is important to comment that the achieved results are better than ones described by [8],283

which has had an overall of 91.6% of detected regions in the their application.284

Once the stomata region candidates have been detected in a microscope image (see Figure 7-285

(a)), an auxiliary matrix is created through stomata region occurrence (see Figure 7-(b)), a286
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Table 3: Effectiveness results of the classifier (SVM+VGG16) for sliding window classification.

Fold
# Stoma Manual # Detected Stoma Total of # True # False

Counting Regions Regions Positives Positives

1 2244 2189 (97.5%) 43524 5094 107 (0.02%)
2 2374 2300 (96.9%) 43458 5307 159 (0.03%)
3 2428 2316 (95.4%) 43524 5506 153 (0.03%)
4 2279 2213 (97.1%) 43680 5596 60 (0.01%)
5 2409 2370 (98.4%) 43680 5463 49 (0.01%)

Mean − 2277.6 (97.1%) − 5393.2 105.6 (0.02%)
Overall 11734 11388 217866 − −

merge between microscope image and auxiliary matrix is performed (see Figure 7-(c)), and287

finally, all of stomata are identified in the microscope image (see Figure 7-(d)).288

(a) Original microscope image. (b) Auxiliary matrix as heatmap.

(c) Stomata detection process. (d) Stomata detection result.

Figure 7: Pos-processing of a microscope image.

As it has been observed in the Table 3, the stomata detection task is not perfect, thus289

we have analyzed the quality of the effectiveness results. Figure 8 shows the hit and miss290

classification results achieved by our proposed system.291

It is important to observe that regions/subimages with low quality have been also correctly292

classified as containing a stoma as shown in Figure 8-(a). This fact corroborates the usage293

of the VGG16 features for stomata detection task. Miss classification can be visualized in294

Figure 8-(b). Most of these regions/subimages represent plant structures similar to stomata.295
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Figure 8: Examples of the stomata classification results. (a) True positive subimages; and (b) False positive
subimages.

6. Conclusion296

Leaves microscope images contain relevant information about plant morphology and might297

be used for studying specific characteristics of metabolic pathways and different biological298

processes. A vegetative structure that has received more attention is called stoma (in the299

plural, stomata), which are small pores on the surfaces of aerial parts of most higher plants300

(e.g., leaves, stems and parts of angiosperm flowers and fruits). Stomata are responsible by301

many functionality such as (1) exchange of water vapour and CO2 between the interior of the302

leaf and the atmosphere; (2) photosynthesis; (3) transpiration stream; (4) nutrition; and (5)303

metabolism of land plants. Therefore, the understanding of the stomata is of great importance304

in the exploration of the evolution and behavior of plants.305

In this work, we proposed a stomata classification and identification system in microscope306

images of maize cultivars. Herein we have evaluated different extraction techniques (image307

descriptor and deep learning) and learning methods (Adaboost, MLP, and SVM) for the task308

of correctly classifying stomata regions. In this experiments, our approach has achieved mean309

accuracy of 96% using HOG+MLP and mean accuracy of 100% with VGG16 features using310

support vector machine (VGG16+SVM).311

In the stomata detection task with a sliding window approach for generating all possible312

regions/subimages from the microscope images, our system has detected 97.1% of the stomata313

regions existing in the 200 microscope image of the dataset. This fact could show us that our314

system using deep learning features might be an appropriate solution for target application.315

As future work, we intend to develop a computational toolkit to support the specialists on316

biology area in their research.317
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