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Summary. The Conjugate Gradient method has always been successfully
used in solving the symmetric and positive definite systems obtained by
the finite element approximation of self-adjoint elliptic partial differential
equations. Taking into account recent results [13,19,20,22] which make it
possible to approximate the energy norm of the error during the conjugate
gradient iterative process, we adapt the stopping criterion introduced in [3].
Moreover, we show that the use of efficient preconditioners does not require
to change the energy norm used by the stopping criterion. Finally, we present
the results of several numerical tests that experimentally validate the effec-
tiveness of our stopping criterion.

Mathematics Subject Classification (2000): 65F10, 65N30, 65F50

1 Introduction

In this paper, we combine linear algebra techniques with finite element
techniques to obtain a reliable stopping criterion for the conjugate
gradient algorithm. The finite element method approximates the weak form
of an self adjoint, coercive elliptic partial differential equation defined within
a Hilbert space by a linear system of equations

Ax = b

where A ∈ R
N×N is symmetric and positive definite and b ∈ R

N . The
conjugate gradient method is a very effective iterative algorithm for solv-
ing these linear systems. In particular, using the conjugate gradient algo-
rithm, we will compute the information which is necessary to evaluate the
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energy norm of the difference between the solution of the continuous prob-
lem, and the approximate solution obtained when we stop the iterations by our
criterion. Owing to the close relationship between the conjugate gradient
method behaviour and the variational properties of finite element methods, we
will focus only on stopping criteria based on the energy norm: ||y||2A = yT Ay.
Moreover, our experiments give very good evidence that the usual stopping
criterion based on the Euclidean norm of the residual b − Ax can be totally
unsatisfactory and frequently misleading.

Recently, several authors have proposed rules that compute error bounds
for the conjugate gradient method [4,5,9,10,13,14,19–22]. Some of these
rules compute estimate of the error in Euclidean norm and others compute
estimates related to the energy norm. In their historical paper, Hestenes and
Stiefel [17] proposed a method for the estimate of the error energy norm that
use the values computed during the conjugate gradient method. Strakoš and
Tichy, [22], studied the relations between the estimates proposed in [17,13,
14,19–21] and they proved that the Hestenes-Stiefel estimate [17] is numer-
ically stable.

We shall first summarise the principal properties of the finite-element
method in Section 2. Then, in Section 3, we will use the recent results
of [3,13,19,20,22] to build reliable stopping criteria and to analyse their
properties. Finally, in Section 4, we will present the numerical experiments
we performed on a selected ill-conditioned test problem, and, in Section 5,
we will present our conclusions.

For the sake of simplicity, we will mainly focus on the 2D case. The
results can be easily extended to the 3D case. In the paper, we will use the
following notation.

Let � be a simply connected bounded polygonal domain in R
2, defined

by a closed curve �.
In the following, we will denote by D(�) the space of all infinitely

differentiable functions with compact support in � and by

Dαu = ∂ |α|u
∂α1x1∂α2x2

, α = (α1, α2) ∈ N
2 , |α| = α1 + α2 , x = (x1, x2).

Furthermore, we will denote byHs(�) [16] the space of all distributions
u defined in � that satisfy the following properties

– Dαu ∈ L2(�) for |α| ≤ m when s = m is a non-negative integer,
– u ∈ Hm(�) and

|u|s,� =
∑

|α|=m

∫ ∫

�×�

|Dαu(x)−Dαu(y)|2
|x − y|2+2σ

dxdy < +∞,

where m = �s� and σ = s − �s� when s ∈ R+ \ N.
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We define the Hilbert norm on Hs(�) by

||u||s,� =



∑

|α|≤m

∫

�

|Dαu(x)|2dx




1/2

,

in the first case, and, by

||u||s,� =


||u||2m,� +
∑

|α|=m

∫ ∫

�×�

|Dαu(x)−Dαu(y)|2
|x − y|2+2σ

dxdy




1/2

,

in the second case. Finally, we will denote byHs
0 (�) the closure of D(�) in

Hs(�), and by H−s(�) the dual space of Hs
0 (�).

2 An elementary finite element framework

Let

a(u, v) =
∫

�

K(x)∇u · ∇vdx, ∀u, v ∈ H 1
0 (�)(1)

be a continuous and coercive bilinear form:
∀u, v ∈ H 1

0 (�), ∃γ ∈ R+ and ∃M ∈ R+ such that

γ ||u||21,� ≤ a(u,u)(2)

a(u, v) ≤ M||u||1,�||v||1,� ,(3)

and L(v) = ∫
�
f vdx be a continuous linear functional, L(v) ∈ H−1(�).

Using the hypotheses stated above the problem
{

Find u ∈ H 1
0 (�) such that

a(u, v) = L(v), ∀v ∈ H 1
0 (�),

(4)

has a unique solution. A finite element approximation of problem (4) with
the use of continuous piecewise linear elements can be briefly described as
follows. Let Th be a family of triangulations of �, i.e. each Th is a set of
disjoint triangles {T } which covers� in such a way that no vertex of any trian-
gle lies in the interior of an edge of another triangle. Leth = maxT ∈Th diameter
(T ), we assume that Th is regular in the sense of [11, page 132], i.e. triangles
do not degenerate as h → 0. Moreover, we assume that each triangle cannot
have more than one edge lying on �.

Consider then the space:

Vh = {vh(x) : � → R, vh(x)|T is linear ∀T ∈ Th, vh|� = 0} .
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The space Vh is the piecewise linear space (we refer to [11] for a detailed
analysis), and Vh ⊂ H 1

0 (�). We will now describe the usual finite element
basis for Vh. Let

{
Pj
}
j=1,...,N be the set of internal vertices of Th (i.e. we

exclude the vertices lying on �). Then for all j , 1 ≤ j ≤ N , we define the
function φj ∈ Vh by

φj (Pi) =
{

1, i = j

0, i �= j

and then we extend it linearly on each triangle T . It is easy to show that{
φj
}
j=1,...,N is a basis for Vh; hence, dim Vh = N . Every vh ∈ Vh is a linear

combination of the functions belonging to the basis

vh(x) =
N∑

j=1

vjφj (x).

Therefore, the approximated problem that we want to solve, will be
{

Find uh ∈ Vh such that
a(uh, vh) = L(vh), ∀vh ∈ Vh,(5)

Hereafter, for the sake of simplicity, we assume that all the integrals are
computed exactly. The approximated problem (5) is equivalent to the
following system of linear equations:

Au = b(6)

where A and b are defined as follows

Aij = a(φi, φj ),

bi = L(φi).

If we use an iterative method, at each step k we will have a vector u(k) ∈ R
N ,

which in turn identifies a function u(k)h (x) = ∑N
i=1 u

(k)
i φi(x), u(k)h (x) ∈ Vh,

and a residual R(k)h ∈ V ′
h (V ′

h is the topological dual space of Vh) which is
defined by

R
(k)
h (vh) = a(u(k)h , vh)− L(vh), ∀vh ∈ Vh.

In [3], the authors propose a stopping criterion based on the evaluation of the
dual norm of R(k)h (vh):

‖R(k)h (vh)‖H−1,

which is appropriate when the bilinear form is non symmetric.
Here however, we want to take full advantage of the following relation:

vT Av = a(vh(x), vh(x)), ∀vh ∈ Vh(7)
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and of the fact that the bilinear form a(·, ·) induces on H 1
0 (�) the norm:

‖ · ‖a = (a(·, ·))1/2 equivalent to || · ||1,�. Since, [11, page 105],

‖u − uh‖a ≤ ‖u − vh‖a, ∀vh ∈ Vh
we have that

‖u − uh‖a ≤ ‖u −�hu‖a,(8)

‖uh‖a ≤ ‖u‖a + ‖u − uh‖a,(9)

where �hu ∈ Vh denotes a suitable interpolation of u [11].
Let u∗

h ∈ Vh be a function such that:

‖uh − u∗
h‖2
a = a(uh − u∗

h,uh − u∗
h) ≤ h2t a(uh,uh) = h2t‖uh‖2

a.(10)

Therefore, using (9), we can give the following estimate of the error ‖u−u∗
h‖a:

‖u − u∗
h‖a ≤ ‖u − uh‖a + ‖uh − u∗

h‖a
≤ ‖u − uh‖a + ht‖uh‖a
≤ ‖u − uh‖a + ht(‖u‖a + ‖u − uh‖a)
≤ ht‖u‖a + ‖u − uh‖a(1 + ht).

Finally, assuming that h < 1 and t > 0, we have

‖u − u∗
h‖a ≤ ht‖u‖a + 2 ‖u − uh‖a.(11)

In the following, the function u∗
h will be u(k)h the function identified by the last

iteration of the conjugate gradient method. The value of the parameter t is
related to the threshold we will use in our stopping criterion and will depend
on the regularity of the solution. In the present paper, we do not assume that
the domain � is convex. In particular, in some of our numerical tests � has
an L-shape. Therefore, the solution u ∈ Hs(�) ∩ H 1

0 (�), with 1 < s < 5
3

([16]). Under this regularity of u, it is possible to prove [6,7,12] that

‖u −�hu‖1,� ≤ Chs−1|u|s,�,(12)

withC independent from h and u. Therefore, from (2), (3),(11), (8), and (12),
we have that

‖u − u∗
h‖1,� ≤ 2C

√
M

γ
hs−1(ht−s+1‖u‖1,� + |u|s,�)

≤ C1

√
M

γ
hs−1‖u‖s,� ,

with C1 independent from h and u.
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Remark 1 Let us assume that K is a piecewise constant function and Th is
such that K|T = const, ∀T ∈ Th. It is possible to express the bilinear form
a(·, ·) as follows

a(u,u) =
∑

T ∈Th

KT |∇u|20,T , ∀u ∈ H 1
0 (�).(13)

Therefore, the error ‖u − uh‖a can be more precisely bounded as follows
[12]

‖u − uh‖2
a =

∑

T ∈Th

KT |∇(u − uh)|20,T(14)

≤ C0

∑

T ∈Th

KT h
2(s−1)
T |u|2s,T ,(15)

wherehT is the diameter of the triangle T andC0 is independent fromh and u.
Let hmin be the smallest diameter of a triangle: hmin = minT ∈Th diameter(T ).
If h−1 hmin ≥ c1h

p, c1 ≤ 1 independent from h and hmin, and p ≥ 0, we
have that

c
2(s−1)
1 h2(p+1)(s−1)

∑

T ∈Th

KT |u|2s,T

≤
∑

T ∈Th

KT h
2(s−1)
T |u|2s,T ≤ h2(s−1)

∑

T ∈Th

KT |u|2s,T .

In particular, if p > 0 we have a non uniform mesh. If we consider the expo-
nent t in (10) to be greater than (p + 1)(s − 1), we assume that c1 is not too
small (i.e. c1 > 0.25), and we are in favourable situation

‖u − uh‖2
a ≈

∑

T ∈Th

KT h
2(s−1)
T |u|2s,T ,

then we can reasonably expect that

‖u − uh‖a ≈ ‖u − u∗
h‖a.

3 The stopping criterion for the conjugate gradient method

When using an iterative method for solving the linear system (6), we normally
incorporate a stopping criterion based on the a-posteriori component-wise or
norm-wise backward error theory [2,18]. If we use the conjugate gradient
method, it is quite natural to have a stopping criterion which takes advantage
of the minimization property of this method. At each step k the conjugate
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gradient method minimizes the energy norm of the error δu(k) = u− u(k) (u
solution of (6)) on a Krylov space u(0) + Kk [15]:

min
u(k)∈ u(0)+Kk

δu(k)T Aδu(k).(16)

The space R
N with the norm

‖y‖A = (yT Ay)(1/2)

induces on its dual space the dual norm

‖f ‖A−1 = (f T A−1f )(1/2).

Let r(k) = b − Au(k) denote the residual at step k. Therefore, the value
‖δu(k)‖A will be equal to the dual norm of the residual ‖r(k)‖A−1 . Moreover,
from (7), we have that

‖u(k)‖A = ‖u(k)h (x)‖a ∀k.
Therefore, a stopping criterion such as the following:

IF ‖Au(k) − b‖A−1 ≤ η‖b‖A−1 THEN STOP,(17)

with η < 1 an a-priori threshold fixed by the user, will guarantee [3] that a
u(k) which satisfies it, is the solution of the perturbed linear system:

Au(k) = b − r(k),

‖r(k)‖A−1 ≤ η‖b‖A−1 .

Moreover, we have for uh = ∑N
j=1 ujφj , solution of (5), and u(k)h =

∑N
j=1 u

(k)
j φj that

‖uh − u(k)h ‖a = ‖u− u(k)‖A = ‖r(k)‖A−1 ≤ η‖b‖A−1 = η‖u‖A = η‖uh‖a.
The choice of η will depend on the properties of the problem that we want
to solve, and, in the practical cases, η can be frequently much larger than ε,
the roundoff unit of the computer finite precision arithmetic. From (10) and
(12), a reasonable choice for η would be:

η = hs−1 or η = h2.

Frequently, it is easier to have the area of each triangle for a given mesh
instead of h. This is indeed the case in some of our experiments. Therefore,
a practical choice could be:

η =
(

max
Tj∈Th

∫

Tj

1dx

)1/2

≈ h.
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First of all, we need to add, within the conjugate gradient algorithm,
some tool for estimating the value e(k)A = r(k)T A−1r(k) at each step k. This
can be achieved using Gauss quadrature rules as proposed in [13] or us-
ing the rule presented by Hestenes and Stiefel in their original paper [17].
In [13], the authors present three different quadrature families: Gauss, Gauss-
Lobatto and Gauss-Radau. The Gauss quadrature does not require any
a-priori knowledge of the smallest and the biggest eigenvalues and computes
a lower bound of e(k)A . The other two quadrature rules compute both a lower
and an upper bound using the extremes eigenvalues of A. In particular, the
Hestenes and Stiefel rule computes a lower bound ξk for e(k)A that is equal to the
bound computed by the Gauss rule proposed in [13]. Moreover, Strakoš and
Tichý [22] proved that the Hestenes and Stiefel rule is numerically stable when
finite precision arithmetic is used. Owing the better stability properties and
the independence of a-priori estimates of the spectrum, we choose the Hest-
enes and Stiefel rule. The Hestenes and Stiefel rule can be cheaply computed
using the quantities already computed during the conjugate gradient process.
The conjugate gradient iterates satisfy the following relations [15,20]:

u(k) = u(k−1) + αk−1p
(k−1), αk−1 = r(k−1)T r(k−1)

p(k−1)T Ap(k−1)
,

r(k) = r(k−1) − αk−1Ap
(k−1) ,

p(k) = r(k) + βk−1p
(k−1), βk−1 = r(k)T r(k)

r(k−1)T r(k−1)
,

where u(0) = 0 and r(0) = p(0) = b. The quantity αk−1 gives the step-size
on the direction p(k−1) during the conjugate gradient algorithm. Therefore,
in exact arithmetic, we have that the final value

u =
N∑

j=1

αjp
(j),

and taking into account that

p(j)T Ap(i) = 0, i �= j,

the energy norm of the error is

‖δu(k)‖2
A = e

(k)
A =

N∑

j=k+1

αjr
(j)T r(j).(18)

Under the assumption that e(k+d)A � e
(k)
A , where the integer d denotes a suit-

able delay, the Hestenes and Stiefel estimate ξk will be then computed by the
formula

ξk =
k+d∑

j=k+1

αjr
(j)T r(j).
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In [13] d = 10 is indicated as a successful compromise, and numerical exper-
iments support this conclusion ([13,1]). In Section 4, we will indicate that
the cheaper choice d = 5 can be reliable if the solution u of(4) is reasonably
regular, and we will experimentally compare several choices for the value
of d when the matrix A is very ill conditioned and the solution u is only
continuous. In this latter case, we must choose a larger value for d.

Finally, we must estimate bT A−1b. It follows from (16) that

r(k)T v = 0, ∀v ∈ Kk .

Therefore, we have

δu(k)
T
Aδu(k) = uT Au+ u(k)T Au(k) − u(k)T Au

= uT Au+ u(k)T Au(k) − 2bT u(k)

= uT Au− (u(0) + v(k))T r(k) − bT u(k)

= uT Au− u(0)T r(k) − bT u(k)

= uT Au− u(k)T r(0) − bT u(0) .

Then, it follows that

uT Au ≥ u(k)T r(0) + bT u(0),(19)

and the right-hand side will converge monotonically to ||u||2A. Taking into
account (19), we could replace ‖b‖A−1 with its lower bound at the step k of
the conjugate gradient method. Therefore, we can substitute (17) with:

IF ξk ≤ η2(u(k)T r(0) + bT u(0)) THEN STOP.(20)

Introducing a preconditioner, we want to speed up the convergence rate of
the conjugate gradient method but this will change the matrix and, therefore,
the energy norm. However, we still want to estimate e(k)A . Nonetheless, we
can prove that the energy norm of the preconditioned problem is equal to e(k)A .

Let us assume that we symmetrically precondition the linear system (6)
by the non singular matrix U . We obtain the equivalent system

U−T AU−1y = U−T b,(21)

where y = Uu. If we directly apply the conjugate gradient method to (21),
the iterates satisfy the following relations [15,20]:

y(k) = y(k−1) + αk−1p̂
(k−1), αk−1 = r̂ (k−1)T r̂ (k−1)

p̂(k−1)T U−T AU−1p̂(k−1)
,

r̂ (k) = r̂ (k−1) − αk−1U
−T AU−1p̂(k−1) ,

p̂(k) = r̂ (k) + βk−1p̂
(k−1), βk−1 = r̂ (k)T r̂ (k)

r̂ (k−1)T r̂ (k−1)
,
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where y(0) = 0 and r̂ (0) = p̂(0) = U−T b. Moreover, in exact arithmetic,
we have that r̂ (k) = U−T b − U−T AU−1y(k), and, therefore, defining u(k) =
U−1y(k), we have that

r̂ (k) = U−T (b − Au(k)) = U−T r(k).

Then, we have that

‖r̂ (k)‖2
(U−T AU−1)−1 = r̂ (k)T UA−1UT r̂(k) = ‖r‖2

A−1 .

Finally, if we define p(k) = U−1p̂(k), and M = UTU , we obtain the variant
of the preconditioned conjugate gradient algorithm, which incorporates the
proposed stopping criterion with a suitable choice of d described in Figure 1.

Remark 2 The value of the exponent t in formula (10) can be higher than the
one suggested by (12) which depends on the regularity of the solution. This
is the case when super-convergence in the nodes of the mesh occurs and we
know that the values in the mesh nodes are very accurate [23,8].

Preconditioned Conjugate Gradient Algorithm (PCG)
Given an initial guess u(0), compute r(0) = b − Au(0), and solve Mz(0) = r(0). Set
p(0) = z(0), β0 = 0, α−1 = 1, ρ0 = bT u(0), and ξ0 = ∞.

k = 0
while = ξk > η2(ρ0 + r(0)T u(k)) do

k = k + 1;
χk = r(k−1)T z(k−1) ;

αk−1 = r(k−1)T z(k−1)

p(k−1)T Ap(k−1)
;

ψk = αk−1χk ;
u(k) = u(k−1) + αk−1p

(k−1);
r(k) = r(k−1) − αk−1Ap

(k−1);
Solve Mz(k) = r(k);

βk = r(k)T z(k)

r(k−1)T z(k−1)
;

pk = zk + βkp
(k−1);

if = k > d then

ξk =
k∑

j=k−d+1

ψj ;

else
ξk = ξk−1;

endif
end while.

Fig. 1. Preconditioned Conjugate Gradient Algorithm (PCG)
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Remark 3 The conjugate gradient algorithm convergence rate can be
estimated by the Chebyshev polynomials [15], and we have that

‖u− u(k)‖A
‖u‖A ≤ 2

[√
κ(A)− 1√
κ(A)+ 1

]k
,

where κ(A) = ||A||2||A−1||2 is the condition number of A. Therefore, the
number k∗ needed to guarantee that

‖u− u(k
∗)‖A ≤ η‖u‖A,

can be estimated by

k∗ ≈ | log η|
√
κ(A)

2
,(22)

and, choosing η = h,

k∗ ≈ 1

2
| logh|

√
κ(A) ≈ 1

2

√
κ(A) logN .

Finally, we observe that, if K = 1 in �, κ(A) ≈ h−2. Therefore, for this
Poisson like equation, we can reach convergence when

k∗ ≈ 1

2
| logh|h−1 ≈ 1

2

√
N logN .

This bound is very pessimistic, and, in our experiments, we reach conver-
gence much before. Nonetheless, these bounds present a theoretical interest
when we look at 3D problems. The previous theory still holds without major
changes and we have:

k∗ ≈ 1

2
| logh|h−1 ≈ 1

2
N

1
3 logN .

This upper bound of the max number of steps needed to have convergence,
combined with the cost of a step of the conjugate gradient method, gives
an estimate of the global computational complexity which is asymptotically
better than the one for a direct solver.

Remark 4 The effect of rounding errors on the Gauss quadrature calculations
has been analysed in [14]. More precisely, in [14], it is proved that the total
accuracy of the Gauss quadrature, computed by a finite precision arithmetic
conjugate gradient algorithm, is related to the energy norm of the error of the
conjugate gradient process itself.

In [22], the authors proved that the Hestenes and Stiefel rule is mathemati-
cally equivalent to the Gauss quadrature and, moreover, that is
numerically stable. In our numerical experiments, we tested both these rules
and compute the relative error between them. The numerical tests show that
both the rules give the same results within an error of order machine precision
times κ(U−T AU−1).
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4 Numerical experiments

We generated two test problem classes using FEMLAB c© under Matlab c©.
The first test problem class is define on a L-shape domain � of R

2. The
second test problem class is defined on the cube [0, 1] × [0, 1] × [0, 1]. In
both the classes, we chose boundary condition zero and, in the conjugate
gradient algorithm, the staring point u(0) = 0. Finally, in all the figures, the
estimate of the energy norm stops d steps before the final iteration because
of the choice of our stopping criterion, and the values in the legends of the
figures are:

– ||Au(k) − b||2/||b||2, the value of the residual at step k is computed using
A;

– ||δu||A/||u||A = ||u− u(k)||A/||u||A energy norm of the algebraic error;
– ||δu||a/||u||a = ||u − u(k)h ||a/||u||a = (

a(u,u)− bT u(k)
)1/2

error in
energy between the solution of (4) and current solution at step k.

4.1 L-shape test problems

In Fig. 2, we plot the geometry of the domain �. In problem (4), we choose
the functional L(v) = ∫

�
10vdx, ∀v ∈ H 1

0 (�), and in the bilinear form (1),
the function K(x) ∈ L∞(�) takes different values in each subdomain. In the
first test problem within this class we have:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ω

Ω
3
 

Ω
1
 Ω

2
 

Γ 

Fig. 2. Geometry of the domain �
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K(x) =






1 x ∈ � \ {�1 ∪�2 ∪�3},
10−6 x ∈ �1,

10−4 x ∈ �2,

10−2 x ∈ �3.

For the second problem, we have:

K(x) =






1 x ∈ � \ {�1 ∪�2 ∪�3},
106 x ∈ �1,

104 x ∈ �2,

102 x ∈ �3.

Using FEMLAB c©, we generated a mesh where the largest triangle has
an area of 3.44305 × 10−5, and we refined the mesh around the corner
(minimum triangle area 7.90545 × 10−7), therefore, the resulting linear
system (6) has 59807 triangles, 30190 nodes, and 29619 degrees of freedom.

In the preconditioned conjugate gradient algorithm, we chose η2 =
3.44305 × 10−5 which is the max area of the triangles. Moreover, we used
three kinds of preconditioners: the classical Jacobi diagonal matrix, M =
diag(A), the incomplete Cholesky decomposition of A with zero fill-in
[15,20], and the incomplete Cholesky decomposition of A with drop tol-
erance 10−2 [15,20]. Using the incomplete Cholesky decompositions, we
computed the upper triangular matrix U such that M = UTU . In Table 1,
we report on the values of the condition numbers κ(A) and κ(M−1A) for
both problems, and for the Jacobi and incomplete Cholesky with zero fill-in.
The condition numbers of the preconditioned matricesM−1A for the second
problem are still very high, and only the incomplete Cholesky preconditioner
with drop tolerance 10−2 is an effective choice. Unfortunately, we could
not compute the condition number of the preconditioned matrix for lack of
memory.

Finally, we assume that the solution u computed by a direct solver applied
to (6) is exact, and we assume that the energy norm of the solution on the
finer mesh with ≈ 500000 degree of freedom is a good approximation of the
energy norm of u solution of the continuous problem (4) for both Problem 1

Table 1. Estimates for κ(M−1A)

M Problem 1 Problem 2

I 3.6 108 1.8 1010

Jacobi 2.4 104 1.5 109

Inc. Cholesky(0) 7.2 103 4.3 108



M. Arioli

and Problem 2. Therefore, by this approximate value E(u), we estimated the
error at step k:

||δu||a
||u||a =

(
1 − a(u(k)h ,u(k)h )

E(u)

)1/2

≈ ||u(k)h (x)− u(x)||a/||u(x)||a.

In the experiments, u(k) is the computed value at iteration k of the conjugate
gradient algorithm.

We compare the behaviour of

‖u− u(k)‖A
‖u‖A = ||Au(k) − b||A−1

||b||A−1
,

with the corresponding estimate ξk/(bT u(0) + r(0)T u(k)), and the value of
‖Au(k)−b‖2/‖b‖2. Moreover, we plot the values at each step k of ||δu||a/||u||a .

The stopping criteria normally used are based on the values of ‖Au(k) −
b‖2/‖b‖2 [2]. In the practice, the conjugate gradient algorithm is stopped
when ‖Au(k) − b‖2/‖b‖2 ≤ √

ε.

4.1.1 Problem 1. In Fig. 3 and Fig. 4, respectively for the Jacobi and the
incomplete Cholesky decomposition preconditioners and for d = 5, we
present the history of convergence for Problem 1. During the initial
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Fig. 3. Behaviour of the norms of the residual for the Jacobi preconditioner in Problem 1
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Fig. 4. Behaviour of the norms of the residual for the incomplete Cholesky preconditioner
in Problem 1

iterations of the conjugate gradient algorithm, the ratio between ||u(k)||A and
||u||A is relatively large, as can be seen from Fig. 5 relatively to the Jacobi
preconditioner. Nevertheless, the ratio value quickly stabilises itself close to
1. We obtained similar plots for the incomplete Cholesky preconditioner.

4.1.2 Problem 2. Problem 2 is harder to solve. Both Jacobi and Incom-
plete Cholesky without fill-in failed for small values of d. In Fig. 6, we plot
the estimates relative to several values of d for the Jacobi preconditioner.
Only when d ≥ 90, the oscillations were smaller than η and, then, the algo-
rithm stopped with an accurate solution. In Fig. 7 and Fig. 8, we present the
convergence history for the cases relative to the incomplete Cholesky with
drop tolerance 10−2 and d = 10 and d = 20 respectively. In these cases,
the good preconditioner allows to choose a small value for d. Nonetheless,
the convergence is not particularly fast and we can see in Fig. 9 that the
ratio between the lower bound (19) and ||u||2A stagnates. Finally, in Fig. 10,
we forced the large value of d = 160 when using the incomplete Cholesky
preconditioner with drop tolerance 10−2. We point out that in this case the
‖Au(k) − b‖2/‖b‖2 does not go under the value

√
ε. Therefore, in this case,

the criterion based on the Euclidean norm of the residual gives a misleading
information about the iterative process.
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4.2 Three dimensional test problems

The second test problems class has been built on the unitary cube choosing
K(x) = 1 in problem (4). The function f has been computed analytically
from the exact solution:

u(x) = −(x2 − x)(y2 − y)(z2 − z)+ 1000

(5π)2
sin (5πx) sin (5πy) sin (5πz).

For this Problem 3, we generated by FEMLAB c© a mesh of 190656
Tetrahedrons with 36365 nodes and 32226 degrees of freedom. The
volume of the largest element is amax = 2.72601×10−5 and the volume of the
smallest element is 5.69×10−7. We have chosen η2 = (amax)

2/3 = 9×10−4.
In Fig. 11 and Fig. 12, respectively for Jacobi and the incomplete Cholesky
with zero fill-in, we present the convergence history for d = 5. Even if the
solution is highly oscillatory, the convergence is very fast and the final solu-
tion is close to the exact solution of (6) computed by a direct solver. The
final error ||u− u(k)||2/||u||2 is 1.4 × 10−2 for the Jacobi preconditioner and
7 × 10−3 for the incomplete Cholesky preconditioner.

4.3 Error upper bounds and practical choices of d

Up to now, we have mainly focused on the lower bound estimate provided
by the Hestenes and Stiefel algorithm. Nonetheless, there are two algorithms
that provide upper bounds of the energy norm of the error and that deserve
further discussion.

The upper bound based on the Gauss-Radau integration formula intro-
duced by Golub and Meurant [13] and utilised in the preconditioned conju-
gate gradient algorithm by Meurant [21], requires the knowledge of a lower
bound of the smallest eigenvalue λmin of the preconditioned matrix M−1A.
In our experiments this was a serious drawback: we were able to compute an
estimate of λmin only for the Jacobi preconditioner cases. Moreover, the
cost for computing of the estimate has be quite high. We point out that
loose approximations produce very conservative upper bounds that can be of
some use only when the convergence has been already obtained. Usually, we
noticed in our experiments that a stopping criterion based on the Gauss-
Radau approximation would have request a number of steps significantly
greater than the stopping criterion based on the Hestenes and Stiefel lower
bound approximation.

An other upper bound that can be used in estimating the energy norm
of the error is the one computed by the anti-Gauss algorithm [9,10]. The
anti-Gauss approach does not need any estimate of λmin: this is a very
attractive property, however, the method does not always produce a bound.
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The algorithm computes the upper bound by means of the difference between
the (1, 1) entries of the inverses of two tridiagonal matrices Tk and T̆k of size
k. In [9,10], it is proved that

‖δu‖2
A = ‖b‖2

M−1

[
(T̆ −1
k )11 − (T −1

k )11

]
.

The tridiagonal matrix Tk is the matrix of the Lanczos method and it can
be easily computed during the conjugate gradient algorithm. Let ωi and γi ,
i = 1, . . . , k, be respectively the diagonal and the super(sub)-diagonal entries
of Tk. Then, their values can be computed by means of the values of αi and
βi (see Figure 1) as

ωi = 1

αi−1
+ βi−1

αi−2
, γi =

√
βi

αi−1
.

The tridiagonal matrix T̆k is obtained by the tridiagonal matrix T by a
correction of rank one and a symmetric scaling:

T̆k = D(Tk − ωk

2
eke

T
k )D,

where D = diag(1, . . . , 1,
√

2) is a diagonal matrix of size k and ek is the
k-th column of the k × k identity matrix. Because De1 = e1, by using the
Sherman-Morrison formula, we can deduce the following recursive formula
for the anti-Gauss estimate ξk of ‖δuk‖2

A at step k,

ζ1 = µ1 = 1

ω1
,

ζk = 1

ωk − γ 2
k−1ζk−1

, µk = −γk−1ζkµk−1 ,

ξ̆k = ‖b‖2
M−1

µ2
kωk

2 − ωkζk
.

The matrix T̆k is symmetric but there is not guaranty that it will be posi-
tive definite, and that the (1,1) entry of the inverse will be either positive or
bigger than (T −1

k )11. In our experiments this phenomenon appeared
frequently making the overall estimate process very fragile. For test prob-
lem 2 when using Jacobi preconditioner, the value of ξ̆k was negative in
36% of the iterations. In Figure 13, we compare the results of the anti-Gauss
strategy with the Gauss-Radau and the Hestenes and Stiefel ones, when the
choice d = 150 is made, for the test problem 2 with the Jacobi precondition-
er. In plotting the anti-Gauss estimate, we eliminated the points with negative
values for ξ̆k. We point out that the anti-Gauss formula would have arrested
the conjugate gradient method at the wrong iteration and does not give the
desired upper bound until the convergence is already reached.
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In Figure 6, it is show how can be difficult to identify a delay parameter
d for the Hestenes-Stiefel estimate that would be reliable. The oscillatory
behaviour of the estimates is very strong when despite the precondidioner
the convergence is poor and the graph of energy norm of the error versus
iterates stagnates. An a priori correct choice of d can be as difficult as the
determination of a lower bound of λmin for the Gauss-Radau method. Taking
into account that ‖δuk‖A decreases monotonically, a possible heuristic for a
dynamic choice of d can rely on comparison of the two consecutive values
ξk and ξk+1. Every time ξk+1 > τξk , where τ > is a threshold parameter, we
increase the value of d by a fixed amount id. In Figure 14, we report the result
of a such strategy when τ = 1.01 and id = 20. This crude strategy increased
the value of d from the initial value d = 10 upto a final value d = 110
and the stopping criterion halted the conjugate gradient method at the correct
iteration. We reserve to investigate more on this and other heuristics in the
future.

5 Conclusions

In this paper, we try to bridge the finite element method with the linear
algebra aspects of the cojugate gradient method. The aim was to estract use-
ful information regarding the accuracy of the computed function from which
we would approximate the true solution of the original partial differential
equation.

We gave evidence that the proposed stopping criteria (17) and (20) are
cheap and capable of stopping the conjugate gradient method when the func-
tion u∗

h(x) is a reasonable approximation of u(x).
Finally, because of the independence of the energy norm from the choice

of the preconditioner, the stopping criterion (20) would be the appropriate
measurement tool for evaluating preconditioner performance in accelerating
the convergence of the conjugate gradient method.
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