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Abstract. The single facility location model with Euclidean distances and its 

multi-facility and t distance generalizations are considered. With present 
p 

algorithms a user is unable to decide how close to optimal any given feasible 

solution is. This article describes a procedure for calculating a lower bound 

on the optimal objective function when a proposed solution is given. 

Location problems concern themselves with finding the best location for 

new facilities (one or more warehouses for example) with respect to a number of 

existing facilities (retailers to be supplied from the warehouses). In contin-

uous location problems the cost elements are the transportation costs between 

the new facility and each of the existing facilities. The transportation costs 

are usually assumed to be proportional to some measure of the distance between 

the facilities, with the constant of proportionality incorporating the annual 

volume transported and the transportation cost per unit volume per unit distance. 

A practical application of a continuous location model involved the location of 

two new machines in an existing plant layout [11]. 

This article proposes a rational stopping criterion for use with iterative 

algorithms used to solve continuous facility location problems. The method is 

developed for both single and multi-facility location problems with 

generalized i distance measures. In practice, the advantages of computing a 
p 

lower bound on the optimal cost of a location problem is the computer time 
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savings that may be achieved and the confidence gained by the user that his 

solution is as close to optimality as he desires while using an iterative 

solution procedure. Computation time savings are achieved by knowing exactly 

when to stop the iterative procedure rather than carrying on needless calcu-

lations attempting to satisfy an arbitrary stopping rule. Computational 

savings may be especially significant when very large numbers of individual 

location problems must be solved during a single computer run. This occurs, 

for example, when one utilizes a location-allocation algorithm to solve ware-

house and plant location problems [8]. 

The single·-facility location problem is to 

minimize W(x) = 

where 

n 
l w. d(x,a.). 

j=l J J 
(1) 

n is the number of existing facilities, w. converts the distance 
J 

between the new facility and existing facility j into cost, 

x = (x
1

,x
2

) is the location of the new facility on the plane, 

aj 
= (a

j1
,a

j2
) is the location of existing facility j, and 

d(x,a.) is the Euclidean distance between the new facility 
J 

and existing facility j. 

It is generally conceded that the first iterative procedure for solving 

(1) was proposed by Weiszfeld [15]. The stopping rule given here is not res-

tricted to be used only with Weiszfeld's procedure. However, since the 

Weiszfeld procedure is so well known, we shall use it and a new generalized 

version of it to demonstrate the method. 

At the k
th 

iteration of Weiszfeld's procedure, a point � 
generated as follows: 

( 
k k

) 
. 

x1
,x

2 
is 



k+l 
x 1 

= 

- 3 -
n w-. a .. 
l J ]1 . 1 

d (x. , a.) 
J= k J 

I r 
j=l 

w. 

d(x ,a ) 
, for i=l 2 

k j 
' . 

The convergence properties of the sequence (2) have been discussed by 

Weiszfeld [15], Katz [4,5], Kuhn [6] and Ostresh [14], among others. From a 

(2) 

practical computing aspect, however, the important issue of a useable stopping 

criterion has been ignored. It has generally been the practice to stop the 

sequence when an iteration produces an improvement in the objective function 

which is less than a pre-specified value, or when the partial derivatives of 

W(x) become "small". However, these types of criteria are arbitrary and give 

no assurance that the present solution is close to optimal, either in decision 

or value space. In this article, we develop a computational procedure which 

enables the user to compute at each step of (2) and a generalized version of 

(2) a lower bound on the optimal objective function value. The iterative pro-

cedure given by (2) can then be automatically terminated when the difference 

between the current solution value and the lower bound is within a prespecified 

tolerance set by the user. 

pevelopment of the Stopping Criterion 

The points of interest for the sequence generated by (2) do not include 

the a., j=l,, . . •  n. These points are generally tested for optimality using the 
J - < 

following criterion given by Kuhn [7]. 

W(x} is minimum at (_a
rl

'a
r2

) if and only if 

�(I wj(arl-ajl)) 2 . 1 d(a ,a.) 
J= r J 

:j.r +Ct f.r 

w j (ar2-aj 2)) 2
J 

1/ 2 

d (a , a ) r j 
< w . (3) r 
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The a. are tested using (3) before the computation of the sequence (2) is 
J 

started, since it is only in the event that none of the a: are optimal that 
J 

we are interested in generating the sequence. For our purposes, we ignore 

the a . and assume that none of them will become part of the sequence generated 
J 

by ( 2) • 

Note that W(x) is a convex function, and except for the points 

a,, j=l, . . .  ,n, W(x) is differentiable. Thus 
J 

W(y) 2 :'.: w (x) + VW (x) ' (y-x) for all x, y e: E , (4) 

where VW(x) is the gradient of W(x) and the prime denotes transpose. Let n 

be the convex hull generated by the fixed points 

let 

cr(x) = max {d(x,y)}. 
ye:Q 

a.' J 
j=l , • • .  ,n, and for x e: E2, 

Since the maximum of a convex function defined on a compact convex set occurs 
at an extreme point, it follows that 

cr(x) 

Proposition 

max 
j=l, .. . ,n 

{d(x,a. )} 
J 

( 5) 

For the single facility location problem, let xk be the solution 

point given by the Weiszfeld procedure at the kth iteration. Then a bound on 

the improvement in the objective function value in succeeding iterations is 

given by o(xk) 1 l vw(xk) 1 1 . 

Proof 

The optimum solution x* for the single facility location problem 
00 

is in Q, and the Weiszfeld procedure generates the sequence {xk}k=l such that 

xk + x*. Let ye:n such that y � xk. Then y = xk + or, where a >  o, and r 

is the unit directional vector from xk to y. 
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Since W(x) is convex, 

W (y) � W (x
k

) + VW(xk
) 1 (y-�) 

= W(xk) + crVW(xk) 'r 

> W(xk) + crVW("k) '(­

' 

= W(xk) - o l ! vw(xk) II 

VW (xk
) \ 

11vw cxk
) II} 

� w (xk) - a (xk) Hvw (xk) 1 1 
Since the above inequality holds for all yEn, 

W(xk) - W(x*) :: cr (xk) 11 vw(xk) II . 
This result suggests the following stopping criterion for the 

Weiszfeld procedure. At iteration k, let xk be the current solution point 

given by the Weiszfeld procedure, with current objective function value 

w (xk) .  Compute cr (xk) and 11 vw (xk) IJ . Then, if 

a 'xk) I I vw ( xk) J l 
W(xk) x 100% � a%, stop and accept � as an adequate solution for 

problem (1), where a > 0 is a prespecified tolerance. 

Extension to the Multi-Facility 9., Dis-tance Problem 
p . 

The multi-facility 9., distance location problem is to 
p 

m 
minimize WM (x) = l p i=l 

+ 

n 
l w .. . 1 lJ.J J= � ] l/p 

xil - ajl lp + ! xi2 - aj2 1 p 

� ] VP 
. l w2ir �xil - xrl Ip + lxi2 - xr2 Ip 
i<r 

(6) 
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m is the number of new Iacilities, 

n is the number of existing facilities, 

w1 .. is the parameter which converts the distance between new l] . 
facility i and existing facility j into cost, 

w2. is the parameter which converts the distance between the ir 
ith and rth new facilities into cost (ifr) , and 

x. = (x. 1, x.2) are the location coordinates of new facility i, l l l 

a. = (a. 1, a.2) are the location coordinates of existing facility j, and 
J J J 

p is the £ distance parameter. p (Note the notational difference 

between x., i=l, 2, in this section as compared to that used l 
in discussing the single facility model. ) 

We shall now illustrate how one could generalize the stopping 

rule to any iterative algorithm used to solve problem (6) . Define QSE2m as 

Q = {x = (x11, x12, . • .  , xml'xm2) I (xil'xi2) E Q, i=l, . • .  , m}. For any 

2m = -x £ E , let cr(x} = max {d(x,y) jy£Q}. Since for any ysQ, 

d ( x, y) = II x-y I j = 

m 

I 
i=l 

m 
[d(x. , y .) ]2) 112 < ( l (a(x.) ) 2) 1/2 

l l - i=l l 

m 

Therefore, 

cr (x) < I 
i=l 

(a(x.>>2>112 
l . Let xk ( k k k ) b  . = x11, . . .  , xml'xm2 ea point generated 

by any iterative procedure at the kth iteration and let WM (x) = min WM (x) . p p 
Using a result by Juel [3], the optimal solution x is in Q, and we have, 

by analogous argument to the single facility case 

WMP (�} - WMP (x) :'.: a (xk) llVWMP (xk) 11 . 
The first order derivatives of WM (x) are not defined at the p 

existing facility locations [9] . In an effort to overcome this problem, 
Wesolowsky and Love [16] and Eyster, White and Wierwille [l] proposed the 

the following hyperbolic approximating function to replace WM (x): 
p 

(7) 



and 

m 
WM h(x) = l p i=l 

+ 
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n 
l wl .. [((x,l-a. 1)2 + e:)p/2 + ((x. -a. )2 + e:)p/2]1/p 

j=l l.J ]. J l.2 J2 

. l w2ir
[((xil-a 1)2 + e:)p/2 + ((x. -x )2 + e:)p/2]1/p 

i�r r i2 r2 1 

·(P,) 

where e: > 0. The function WMph(x) is strictly convex and is differentiable 
to any order everywhere. It can easily be shown that WMph(x) is uniformly 

convergent to WM (x) as e: + O since p 

max (WM (x)-WM (x)) = 21/p l/ 2 �� 
ph p e: l 

i=l 

n 
I w .. + 

j=l ll.J 
\ l w2ir J i<r / 

(9) 

By setting 3WM h(x)/3x to zero, the iterative sequence given by (2) p rs 
generalizes to the multi-facility case for r=l,2, . • .  ,m� and s=l,2 as: 

where 

m 
A = l 

i=l 

n 
B = l 

j=l 

m 
c = l 

i=l 

n 
D = l 

j=l 

xk+l = (A+B)/(C+D), rs 

k w2 .x. rl. l.S 

(10) 

k k 2 p/2 { [(xrl-xil) +e:] + [ ( k - k ) 2 + ] p/2} (p-1) /p [ ( k - k ) 2 ] ( 2-p) /2 ' 
X 2 x.2 e: X X, +e: r i rs is 

{ k 2 p/2 [(xrl-ajl) +e:] + 

wlriais 
[( k _ )2+]p/2}(p-l)/p [( k - )2 ](2-p)/2 ' 

x 2 a.2 e: x a. +e: r J rs JS 

w2ri 
{ [( k - k )2+ ]p/2 + [( k 

-
k )2+ ]p/2}(p-l)/p [( k - k )2 ] (2-p)/2 ' x 1 x.1 e: x 2 x.2 e: x x. +e: r 1 r i rs is 

{ k 2 P/2 [(x -a. ) +e:]- + rl J l  

wlr' 
[( k - )2+ ]p/2}(p-l)/p [( k - )2 ] (2-p)/2 x 2 a.2 e: x a. +e: r J rs JS 

OstreshI13] has proved that for p=2 this generalized Weiszfeld sequence is 
strictly decreasing and Morris[l2] has given a convergence proof for ·l<p�2. 
In numerical tests run by the authors and others, the sequence has always 
come within any specified tolerance to an optimum solution [10]. 
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Let x* be the optimal solution of WMph(x} and xk be the point 

generated by '(10) at the kth iteration. Then 

WMph(xk} - WM
P

(x} = 

< 

< 

+ 

WM
ph(xk} - WMph(x*) + WMph(x*} - WM

P
(x} 

WMph(xk} - WMph(x*} + WMph(x} - WM
P

(x} 

cr (xk} II iJWMph (xk} I I 
m n 

21/p e: 1/2 < E E w . . + E 
i=l j=l liJ i<r w2ir} 

· 

Hence, by rearranging (11) a lower bound for WM (x} can be p 
obtained at each iteration of the generalized Weiszfeld procedure (10) . 

--· 

Computational Exper_ience 

(11} 

The stopping criterion has been tested on several single and 

multi-facility test problems. The added computational cost is slight since 

the criterion uses values which have been computed in the course of the 
Weiszfeld procedure anyway. In all examples that the authors have run, the 

total cost function was strictly decreasing as is proved theoretically by 

Weiszfeld Tl5J� Katz I4,5], and Morris [12]. The following example has 5 

existing facilities and 3 new facilities. 

j I 1 f 2 I 3 I 4 I (6: 7) l a. I ( 2' 3} ( 4' 2) ( 5' 4} ( 3' 5) J 

Table 1 

Existing Facility Locations 
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� 1 I 2 3 4 . 5 

wli j 

I 
1 1 1 10 1 6 ! 

2 4 l 1 1 1 1 
' 

3 1 I 1 1 1 1 

Table 2 
New-to-Existing Facility Weights 

w2ir 

'N. 1 2 I 3 

1 1 
I 

1 --

l 2 -- -- I 1 I ' 

Table 3 

Weights Between New Facilities 

-6 With p = 1.8, and e = 10 , the following table contains computational results 

for the problem using the generalized Weiszfeld procedure. The initial solution 

points taken were: 

(xll'xl2) = (x2l'x22) = (x3l'x32) = (O, O). 

After 20 iterations the objective function has come within .87% of the optimal 

solution; after 40 iterations it is within .127% of the optimal solution.· 

Multi-facility problems are usually much slower to converge than single 

facility problems on average (based on our experiences with running about 20 

multi-facility problems and about 50 single facility problems). A single fa-

cility problem will usually converge to within .1% of the optimal solution in 

less than 5 iterations. There are, of course, exceptions. R. 1. Francis has 
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noted that if one cluster of fixed facilities is near the origin and another 

fixed facility or cluster of fixed facilities is relatively far away from the 

origin, given certain weight structures convergence may be very slow [2]. In 

cases of this type the stopping criterion is especially useful. 
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