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Abstract

A product Q = Py-P.  of m-by-m Householder matrices can be written

inthe form Q=1+ WY' where W and Y are each m-by-r. This is called
the WY representation of Q. It is of interest when implementing
Householder techniques in high-performance computing environments that
"like" matrik-matrix mulitiplication. In this note we describe a storage
efficient way to implement the WY representation. In particular, we
show how the matrix Q can be expressed in the form Q=1+ YTYT where
Y € RM*M and T ¢ R™*" with T upper triangular. Usually r << m and so this
‘compact” WY representation requires less storage. wWhen compared with
the recent block-reflector strategy proposed by Schreiber and Parlett the
new technique still has a storage advantage and involves a comparable
amount of work.

Introduction

Many important eigenvalue and least square methods rely on
Householder matrices, i.e., matrices of the form H=1 - 2wy T whereg v
has unit 2-norm. (The normalization of the Householder vector v is
unnecessary in practice but convenient for exposition.) Householder
matrices are orthogonal and can be used to zero selected portions of a
matrix, see Golub and Van Loan (1983). Important implementations are
discussed in the LINPACK or EISPACK manuals.

The QR factorization of an m-by-n matrix A is a good setting for
describing Householder matrix use. In this application Householder
matrices H,..H, are generated such that  H -HH/A = R is upper

triangular:
Algorithm 1 (Householder QR)

For k = Iin
Determine Householder H, such that if z= HkA(l:m,k:k)

then z(k+I:m) = 0.
A« H A

end k



The Householder update A <« H A is  "rich” in matrix-vector

multiplication. Unfortunately, many of the new supercomputing
architectures require code that is rich in matrix-matrix multiplication in
order to attain near-peak performance. This accounts for the current
interest in the level-3 BLAS and the increasingly vigorous search for
efficient block algorithms.

Along these lines there has been some recent work on "block”
Householder methods. Two such techniques are of interest to us. They are
the WY representation due to Bischof and Van Loan (1887) and the block
refiector method of Schreiber and Parlett (1987). Both of these
techniques can be used to solve what we shall refer to as probiem P:

P: Given B = {81] find an orthogonal Q so QB =¢C = [CI]
B, 0

Here, B.C ¢ R™" and B,C, ¢ R"™* . In the WY approach the solution to
problem P is represented in the form

(1) Q=1+wyT WY ¢ RMAT

where Y is lower trapezoidal, ie., Ui = 0 if i <j. The submatrix C, is

upper triangular. Q is a rank r correction to the identity and so can be
regarded as a generalization of a Householder matrix.

A different solution to problem P is obtained by the block reflector
approach. It has the form

(2) Q=1-6GT G e RTAM

and obviously can be regarded as a block Householder matrix. It requires



mr storage locations to represent Q in this fashion, about half of that
required by the WY representation. The block reflector solution to
problem P doesnot in general yield an upper triangular C,.

The point of this note is to show how to modify the WY representation
so that onily mr storage is necessary. In particular, we show how to
write the matrix Q in (1) as

(3) Q=1+YTYl

where Y e AT (jower trapezoidal) and T € R™*"  (upper triangular). wWe
refer to (3) as the compact w¥ representation of Q and we discuss its
use in the design of a block Householder QR procedure.

Block QR Procedures

Any of the above block Householder representations can be used to
impiement a block QR factorization procedure that is rich in matrix
multiplication. Suppose A € RM*N and that n = rN.

Algorithm 2 (Block Householder QR)

For k = &N
s « (k-1)r+!
Determirne block Householder Q such that if
Ql A(sim,s:s+r-1) = C then Cis zero below row r .
Alsmsn) « QTA(sm,sn)
end

Note that the update of B = A(s:m,s:n) is rich in matrix multiplication if
Q is represented as | + WYT or |- GGT or |+ YTYT, e,

Be (I+wWYNTB = B + Y(W'B)



In the case of the WY representation, the k-th W and Y are generated

from the Householder matrices Pj =1- ZVjVjT ., J = kr, that upper

trianqularize the submatrix A(s:m,s:s+r-1). The procedure is simple.

Algorithm 3 ( WY Generation)

For j=1Ir
Ifj=1
Wel-2viliYelv]
else
ze 20 wWYDvj i Welw z1iY e [Y v ]
endif
end

It follows that 1+ Wyl = PP and so A is reduced to upper triangular

form when Algorithm 2 is implemented with biock Householders in WY
form. Note that each Y is just the aggregation of the Househoider
vectors and so is lower trapezoidal. Thus, all the Y matrices fit into the
zeroed portion of A as Algorithm 2 proceeds. If the W-factors are saved
then a workspace of size

N
S (m-K&-Dr)r = mn-n?/2
K=1-

is required. This is a serious storage overhead although in many
applications it is not necessary to store all the W matrices.

These storage concerns do not arise if the block reflector approach is
taken. If we chose to write Q as | - GG' then the Schreiber-Parlett
procedure can be used to generate the G matrices in Algorithm 2 as
follows.



Algorithm 4 (G Generation)

- Compute Householders Py, P, such that P-P)A(sm,s:s+r-1) s
upper triangular

- Let [ Ui } be the first r columns of Py-P. with Uye AT

LY2

- Compute orthogonal Z € R™*" and symmetric nonnegative definite M ¢
RT" such that U, = ZM, the polar decomposition.

- Compute Cholesky factorization LT =1+M.

-set 6= | 4L
ULl T

A block reflector implementation of Algorithm 2 resuits in a block upper
triangular reduction of A. Subsequent computations are necessary to
obtain true triangular form. If all the G matrices are to be saved, then a
workspace of size Nr2 = nr is required. (There is no room in the A array
for the top r-by-r portions of each G.)

To sum up, the WY representation is simpler to compute but it
requires a much larger workspace if all the block Householder factors are
saved ( mn - n2/2 vs. nr).

The Compact WY Representation

The idea behind the compact WY representation is to esxploit a
connection between the W and Y matrices in (1). Here is the main result
that enables us to build up Y and T just as W and Y are constructed in
Algorithm 3.



Theorem 1. (Compact WY update)

Suppose Q =1+ YTYT € R™™ s orthogonal with Y ¢ M%) (m> | )

and T ¢ RIK] (upper triangular). Suppose P = 1 -2wwT is a Householder
matrix with v ¢ RT and v |, =1 .1If

Q, =QP
then

Q = 1+v,T,v,T

where Y, =[Yv e RM™U*D  ang
T, =

with p=-2 and z =-2TYTv.

Proof.

Note that

Loyl

0 p
=+ [Y v] {TYT+ZVT}

vy, T, T = 1+(vyvi[T 2 [YT
|
L

pv!

=1+ YTYT + yzvl + pva

This equals
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Q, = QP = (1+YTYD) (1-2wT) = 1+ yTYT - 2yTyTwyT - oy T

solongasweset p=-2 and z=-2YTlv . O

Returning to Algorithm 2, if Pj =] ~2vjva, j = tr, are the

Householder matrices that upper trianguiarize A(s:m,s:s+r-1) during the
k-th step then here is how T and Y are determined so PpePp =1+ YTy T

Algorithm S ( YT Generation)

For j=1r
if j=1 then
Y« [w]: T« [-2]
else
z « -2T Yy,

J
Y<—[YV]']

endif
end j

Remarks

we conclude with a number of remarks about the compact WY
representation and its use in block Householder schemes like Algorithm 2.
To begin with, if each triangular T matrix is saved then a workspace of
size Nr2/2 = nr/2 is required. As with WY, the Y matrices fit in the
zeroed portion of A and so no additional workspace is required for their



storage. Thus, compact WY is the most storage efficient of the three
representations discussed.

From the standpoint of actually generating the representation factors,
{w,Y} , {G}, or { T,Y}, the compact WY representation is also the most
efficient. This can be seen by comparing Algorithms 3, 4, and S.

we next compare the cost of the update B « QTB where Q is in one of
our three block Householder forms. If B e R™M*M2 and rank(Q - ) =r , then
simple flop counts revea! that the updates

(@) Be(+wyHiB B+ Y(w'B)

() Be(1-661)TB =B-6(c'B)

() Be(+YTYDTB = B+ (yTH(y B)

(@ Be@+vyTYDTB = B+ v(TT(YTB)

each require about the same amount of arithmetic: 2nin,r flops. (If Y's
trapezoidal structure is exploited then the flops thus saved offset those
needed for the T multiplications.) Of course, counting flops is a crude
predictor of performance. There is some penalty associated with the
compact WY form as it invoives three matrix-matrix operations instead
of just two. However, if r << n; or n,, as is often the case, then the
multiplications involving T are not significant. Note that there are two
possible strategies for compact WY updates, see (c) and (d) above. The
proper choice depends upon nm;, Ny, 1, and the under!lying architecture.

we mention that a QR factorization routine based on the compact WY
representation is part of the new level-3 BLAS LINPACK.

Last, but not least, the compact WY representation is stable. We delete
the proof as it closely follows the demonstration of stability given in
Bischof and Van Loan (1887) for the ordinary WY representation.
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