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A strategy for analysis of „molecular … equilibrium simulations:
Configuration space density estimation, clustering, and visualization
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We propose an approach for summarizing the output of long simulations of complex systems,
affording a rapid overview and interpretation. First, multidimensional scaling techniques are used in
conjunction with dimension reduction methods to obtain a low-dimensional representation of the
configuration space explored by the system. A nonparametric estimate of the density of states in this
subspace is then obtained using kernel methods. The free energy surface is calculated from that
density, and the configurations produced in the simulation are then clustered according to the
topography of that surface, such that all configurations belonging to one local free energy minimum
form one class. This topographical cluster analysis is performed using basin spanning trees which
we introduce as subgraphs of Delaunay triangulations. Free energy surfaces obtained in dimensions
lower than four can be visualized directly using iso-contours and -surfaces. Basin spanning trees
also afford a glimpse of higher-dimensional topographies. The procedure is illustrated using
molecular dynamics simulations on the reversible folding of peptide analoga. Finally, we emphasize
the intimate relation of density estimation techniques to modern enhanced sampling algorithms.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1330216#
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I. INTRODUCTION

With the rapid increase in computational power, simu
tions of complex systems have reached unprecede
lengths, and the time-honored approach to a first analys
the resultant configurations, namely visual inspection,
become tedious if not infeasible. In this paper, we wish
sketch a strategy for exploratory data analysis of simulati
where populations are Boltzmann distributed according
some energy, loss, or cost function. The aim is to aid
investigator in quickly gaining an overview of the conten
of the simulation and turning data into information.

A. Organization of this paper

Even though the strategy is more general, we will ma
use of concepts, terminology, and data from molecular sim
lations as an example. For instance, we will refer to the se
all configurations resulting from the simulation as a traje
tory, irrespective of whether the underlying sampling alg
rithm is of the stochastic type~such as Monte Carlo! or the
dynamic type~i.e., integrating some equation of motion!.
One of our aims is to introduce terminology from and bu
a bridge to the statistical and data mining disciplines, so
corresponding references will be to practical text boo
rather than the original sources. Also, established techn
terms from those fields are typeset in boldface to empha
that they are not our wording.

The remainder of this section describes the propo
2070021-9606/2001/114(5)/2079/11/$18.00

Konstanzer Online-Publi
URL: http://nbn-resolving.de/urn:
-
ed
of
s

o
s
o
e

e
-

of
-
-

e
s
al
ze

d

analysis in rough and conceptual terms. Details are provi
in Sec. II. A generic algorithm implementation of the an
lytic strategy is sketched, giving a range of alternati
choices at many stages of the procedure. In our view, wh
choices are given the optimum approach is not yet clear
merits further investigation. Our special concern is to ma
clear where arbitrary decisions are required, and we h
labeled these points as ‘‘choosing’’ or ‘‘choice’’ throughou

To make things more specific, we trace one of the ma
possible paths through this combinational tree of choices
Sec. III and illustrate the analysis methodology using pre
ously published raw data in Sec. IV.

Most building blocks of the propposed analytic strate
can already be found scattered in the literature. This previ
work is more aptly summarized after some terminology h
been introduced and so we defer citations and compariso
Sec. V before concluding with a discussion in Sec. VI.

B. Conceptual part

In an equilibrated thermodynamic system, the Gibbs f
energy difference between two states,DG, is given, up to a
factor, by the natural logarithm of the ratio of their occupa
cies,K:

DG52RT ln K,

with R the ideal gas constant andT the temperature of the
system. These occupancies are, in turn, given by an inte
9 © 2001 American Institute of Physics
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over their densities in configuration space. That is, from
densities, the Gibbs free energy surface is known which
termines all thermodynamic observables. Using additio
models, more chemical properties of the system can be
rived. For instance, the different preferred conformatio
correspond to free energy minima, and transition rates
tween these can be calculated from a kinetic model emp
ing the free energy of transition states.1,2

A trajectory is a discretized path through configurati
space with every frame or configuration corresponding t
single point. A choice has to be made as to which degree
freedom of the system are considered relevant~step 1; num-
bers refer to the enumeration given in the following sectio!
and how the system should be represented~step 2!.

After proper downsampling of the trajectory~step 3!,
thus removing redundancies, the dissimilarity between all
maining configurations can be evaluated. The resultant
similarity matrix ~which depends, of course, on the choice
the dissimilarity measure, step 4! can then be used to embe
every configuration as a single point in configuration sp
such that the distances between the points match the dis
larities previously calculated.

The interactions in a complex system typically confine
to a tiny fraction of the full high-dimensional configuratio
space.3 In the case of a molecular system, the nominal
mensionality is three times the number of atoms minus so
degrees of freedom for rotation, translation, and poss
constraints. The effective dimensionality, however, is mu
lower due to the specific physics and chemistry of a m
ecule; for instance, two atoms involved in an unconstrain
chemical bond cannot move independently but will alwa
stay at a distance roughly corresponding to the equilibri
bond length. As a consequence, the points can be embe
in a low-dimensional subspace with little loss of informati
~step 5!.

Based on the distribution of points in this low
dimensional subspace, a continuous estimate of the de
can be obtained~step 6!. A density estimation with no as
sumptions as to the underlying distribution is called nonpa
metric. An approach which is well-defined and mathema
cally well understood consists of centering akernel
~typically, these are unimodal symmetric smooth posit
functions with unit area! on each data point and summin
over all kernels to obtain akernel estimate of the density.
The choice of a functional form of the kernel turns out to
of minor importance compared to itsbandwidth ~step 6!.

Of course, the resultant density and free energy surf
can only be as good as the sampling throughout the sim
tion, both in terms of the regions that are explored at all a
their relative populations. Good statistics concerning the
ter can only be expected if multiple transitions over barri
have been observed.

A clustering~also calledunsupervised classificationor
numerical taxonomy! may be performed on the configura
tions. A traditional approach is to cluster by maximizin
intra-cluster similarity and inter-cluster dissimilarity; we pr
pose instead to base membership on the topography o
estimated free energy surface~step 7!.

If a significant part of the information lies in just two o
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three dimensions, direct visualization~step 8! of the free en-
ergy surface becomes meaningful. Otherwise, a glimpse
the density estimate in dimensions greater than three can
be conveyed by showing one graph per cluster with its
pology characterizing the relative position of cluster me
bers as well as the overall cluster shape.

More schematic diagrams, finally, can illustrate the o
served transition probabilities between clusters and help
terpret the dynamics of the system.

C. Overview: Concise description

We propose the following strategy or course of analy
~see next section for details!:

~1! Choice of relevant degrees of freedom
~2! Choice of representation
~3! Choice of resampling rate
~4! Choice of measure of dissimilarity between two config

rations
~5! Choice of method for embedding configurations in

low-dimensional representation of configuration spac
~6! Kernel density estimation in that configuration spa

with choice of kernel bandwidth
~7! Choice of cluster analysis
~8! Visualization of:

~a! Free energy surface
~b! Clusters, cluster members
~c! Basin spanning trees
~d! Schematic diagrams

~9! Interpretation

II. TECHNICAL CONSIDERATIONS

A. Step 1: Choice of relevant degrees of freedom

Only the degrees of freedom directly related to the pro
erties of interest should be included in the analysis to prev
an obfuscation of the relevant information.

B. Step 2: Choice of representation

The representation is most straightforward in the sp
in which the simulation has been performed, e.g., Cartes
or dihedral angle space. In cases where particles can
change positions without altering the properties of intere
one should choose a representation taking into account
indistinguishability. An example is the ordered list of eige
values of an interparticle distance matrix, which is invaria
under rotation or permutation.4

C. Step 3: Choice of resampling rate

The density estimation that follows assumes the d
points it is based on to beindependently identically distrib-
uted. For simulations of finite length, this means that t
redundancy introduced by the small time integration s
size in dynamic algorithms~required to keep the integratio
error low! or the small step size in stochastic algorithm
~required to keep the acceptance ratio high! should be elimi-
nated. A hint to a necessary, but not sufficient, condition
given by the following consideration: ifK independently
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identically distributed points$xi%; i 51...K are drawn one
after the other from a probability distribution with the inde
specifying the temporal order, then the probability for t
spatially nearest neighbor of a pointxk ; k52...K21 to be
eitherxk11 or xk21 is only 2/(K21). In an actual trajectory
the probability for the spatially nearest neighbor to also b
temporal nearest neighbor is much higher, leading to a d
sity estimate that is essentially a ‘‘tube’’ through configur
tion space. As a consequence, the resampling rate from
trajectory should be so low as to eliminate these redund
cies. Ideally, the resampling rate should be a function of
density, i.e., lower in low-density regions. In practice, th
would require an iterative procedure and a constant res
pling rate is chosen.

D. Step 4: Choice of measure of dissimilarity between
two configurations

We would like a single scalard i j summing up the dis-
similarity between two configurationsi and j. The set of
dissimilarities between all configurations obtained from
trajectory holds information about their relationship whi
we mean to exploit. The dissimilarity between a configu
tion and itself should be zero and all dissimilarities should
greater than or equal to zero. The procedure is also simpl
if the dissimilarity is symmetric, i.e.,d i j 5d j i . If the dissimi-
larity measure obeys, in addition, the triangle inequality
meets the formal requirements for ametric, but this repre-
sents a much more stringent criterion.

Metrics for molecular conformations include:
~1! the atom-positional root mean square distan

~RMSD! ~for proof of metric properties, cf. Ref. 5!. A diffi-
culty is that global dissimilarity can completely obscure hi
local similarity;6 also, atom-positional RMSD is not ver
sensitive to greater changes in geometry.

~2! the dihedral angle difference~proof: in Ramachan-
dran type plots with suitably chosen phases taking care of
periodicity, the dihedral angle distance becomes a Euclid
distance, which is a metric; cf. Ref. 7!. The problem is that a
change of a single dihedral in the middle of an elonga
system can cause drastic changes in overall shape,6,8 whereas
the effects on molecular shape of two changes in two d
drals can approximately cancel, even though a greater
similarity is predicted in the latter case.9

~3! the distance matrix error~for proof of metric proper-
ties, cf. Ref. 10! which measures the dissimilarity betwee
two intramolecular distance matrices. This measure lead
low-dimensional configuration space representations,11 but
becomes problematic when the system can change
handedness12 because a distance matrix cannot conv
chirality.

E. Step 5: Choice of method for embedding
configurations in a low-dimensional representation
of configuration space

The most straightforward way of embedding a point
configuration space is by simply concatenating all coor
nates characterizing the system in the selected represent
into a single vector. Redundant degrees of freedom~such as
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rotation and translation if the properties of interest are inva
ant thereunder and the representation is in the labora
frame! may be eliminated.

A more general approach, allowing for the use of diffe
ent dissimilarity measures, makes use of the set of all
similarities between all configurations to embed each one
a point in configuration space. We suggest usingmetric
multidimensional scaling,13 which involves the diagonaliza
tion of a centered squared dissimilarity matrix,B.14 If B is
positive semi-definite, the points can be embedded in a
clidean space so as to satisfy perfectly the supplied dista
~note that a mere satisfaction of the triangle inequality
only a necessary, not a sufficient condition15!. The normal-
ized eigenvectors ofB are the principal components of th
system and the corresponding eigenvalues indicate the
ance along these principal components. The coordinates
tained for the points described by the dissimilarity matrix a
unique up to translation and inversion. IfB is not positive
semi-definite, the parts pertaining to the negative eigenva
can be discarded or a constant can be added to all
diagonal elements ofB.13

The maximum dimensionality of the resulting cloud
points is equal to the number of points described by
dissimilarity matrix minus one. If the eigenvectors ofB are
ordered by the magnitude of their eigenvalues and the ef
tive dimensionality of the configuration space is low, th
the bulk of the information or variance is contained in t
first few dimensions. The choice of the precise number
dimensions for further analysis is arbitrary, but should
modest, as we argue in the following and in step 7: wh
restriction to a lower-dimensional subspace will deterior
the conservation of the provided dissimilarities, it also c
cumvents problems associated with thecurse of dimension-
ality . This is a term covering many of the features to whi
our low-dimensional geometric intuition and spatial perce
tion are unaccustomed. Noteworthy in the context of den
estimation~step 6! is the vast volume of high-dimensiona
spaces, quickly making a cloud of points highly sparse~the
following examples are taken from Ref. 16, chapter 4.5 a
Ref. 3, chapter 7!: the number of sample points required
achieve a constant bias and variance rises dramatically~at
least exponentially! with the dimensionality. Furthermore
most of the probability mass quickly becomes concentra
in the tails, even of distributions with very light tails. As a
example, in one dimension almost 90% of the probabi
mass of the normal density is confined touxu<1.6, whereas
in ten dimensions, 99% of the probability mass lies atuxu
.1.6!

Whatever the particular choice of dimension, one m
either simply project all points onto the first few dimensio
or project onto a low-dimensional linear subspace maxim
ing someprojection index, i.e., some measure of the ‘‘in
terestingness’’ of a certain linear projection~this technique
goes under the name ofprojection pursuit 17!.

Alternatively, and if the subspace sampled predom
nantly by the system is not approximately linear, the poi
may be mapped to a low-dimensional nonlinear subsp
that allows for a more faithful rendering of the supplied d
similarities. In this case, anonlinear mapping or nonmetric
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multidimensional scaling13 may be performed~using either
the original dissimilarities or the distances resulting fro
multidimensional scaling!, optimizing criteria such as
Kruskal’s STRESS18 ~also called Sammon’s mapping error19!.
These preserve the supplied dissimilarities much more fa
fully, albeit at the cost of the axes losing their simple inte
pretability: in a linear mapping, a small displacement in t
subspace corresponds to an atomic displacement vecto
the entire system, and that correspondence is the s
throughout the subspace; in a nonlinear mapping, this co
spondence is only local.

F. Step 6: Kernel density estimation

The histogram used to be the only widespread nonp
metric density estimator before the 1950’s when kernel e
mators were first introduced. Owing to its practical impo
tance in many technical and scientific areas and spurred
the computational revolution, in the last decades the field
density estimation has become a scientific industry, de
oped mostly at the interface of statistics and computer
ence. Note that this step has not been entitled ‘‘Cho
of...’’: On the one hand, asymptotically all nonparamet
methods are kernel methods~Ref. 3, p. 125!; on the other
hand, kernel estimators~also called Rosenblatt or Parzen e
timators! even in the narrow sense are the most appropr
tool for the proposed analysis in our view.

The kernels are usually smooth, symmetric, and unim
dal and are density functions themselves~i.e., they are posi-
tive everywhere and integrate to unity!, although even this
restriction can be relaxed in attempts of reducing bias res
ing from oversmoothing. Their support can be finite or in
nite. We reiterate that the choice of a functional form of t
kernel turns out to be of minor importance~e.g., Ref. 16,
Chap. 3.2.2 or Ref. 20, Chap. 2.7! compared to its band
width, also denoted window width or smoothing parame
The bandwidth can be the same for all data points or it
be greater in the tails of the distribution~using variable or
adaptive kernel estimates!, i.e., in badly sampled low-
density regions.

Different strategies have been proposed for data dri
bandwidth selection:

• subjective~manual, interactive! choice based on the ap
pearance of the density or its derivatives21

• various cross-validation and bootstrap methods ma
mizing likelihood or minimizing the integrated squa
error ~see Refs. 16, 20!

• so-called plug-in methods based on formulas that
asymptotically exact for infinitely large samples~see
Refs. 16, 20!.

The subjective methods yield, by definition, nonreproduci
choices. The cross-validation methods usually have difficu
with distributions featuring heavy tails, resulting in ove
smoothed density estimates; the plug-in methods require
estimate of the true underlying density or its derivatives a
may have problems with multimodality~the presence o
many local maxima! or nonnormality. An intermediate stra
egy may be to parametrize a functional of the dissimilar
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matrix predicting the optimal bandwidth for a restricted cla
of underlying distributions, e.g., from peptidic systems.

There is no universally valid method of determining t
optimal bandwidth, just as there is no universally valid cut
in cluster analysis. Extrinsic knowledge ormetadata,22 i.e.,
information not contained in the supplied numerical data
self, has its rightful place in a meaningful and result-orien
analysis of real-world data. Two entirely unrelated expe
ments may accidentally give rise to the same data set, bu
context of the investigations may require entirely differe
density estimates based on the same data.

G. Step 7: Choice of cluster analysis

While most clustering criteria optimize some geomet
measure of intracluster compactness and inter-cluster sep
tion ~for a concise overview of methods, cf. Ref. 23!, we
propose clustering by membership of local density maxi
or, equivalently, free energy minima. This is because
wish to identify ‘‘islands of stability’’ in configuration space
without a priori assumptions about their shape, for instan
biasing in favor of spherical distributions~as in centroid
clustering, e.g., Ref. 24! or dense chains~as in single-linkage
clustering, e.g., Ref. 5!.

For the sake of argument, consider for a moment
topography of a mountainous region and admit that we w
to cluster by membership to local minima. We define t
boundaries of membership as the union of all watershed
ridges, with the catchment regions or basins correspondin
the set of all members of a particular local minimum.

When based on previously embedded data points,
kernel density estimate provides us with a continuous f
energy surface; however, the description of the watershed
cluster boundaries rapidly becomes untractable in higher
mensions. Moreover, a continuous description is not nec
sary because we only wish to cluster the data that is actu
available, i.e., discrete points. Accordingly, a discrete
scription of the basins is sufficient. We propose construct
disjoint directed graphs assuming the shape of trees, one
each basin or catchment region, encompassing all data p
within that basin.

Each tree root should be centered on the data poin
which the free energy is lowest. If all vertices were direc
connected to the root, the resultant graph would exhib
primitive topology~comparable to a sea urchin! and not con-
vey much information regarding the arrangement of the d
points, let alone the topography. With regard to visualizati
we desire something more similar to aminimal spanning
tree ~reminiscent, maybe, of ivy!. Indeed, we want the topol
ogy to satisfy the graph theoretical definition of atree and
we will in the following call it ‘‘basin spanning tree.’’ We
construct these trees as follows~arguing now in terms of the
density rather than the free energy, thus clustering by m
bership to local maxima rather than minima!:

• FOR EACHdata pointi, find all Delaunay25 neighborsi j

-FOR EACH Delaunay edgeei j

check whether the density estimate along that e
attains values below the density estimate at poini;
if so, discard that edge;
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-IF there are any remaining edges, calculate the d
sity gradient by dividing the density difference b
the distance between the embedded points; let
edge offering the maximum gradient become a n
edge of the basin spanning tree;
ELSE point i becomes the root of a basin spanni
tree.

The principle is illustrated graphically in Fig. 1: the to
left part shows an arbitrary bimodal probability density fun
tion which is the sum of three spherical Guassians with u
standard deviation but different weights. The middle left p
displays 900 points which have been sampled from the p
ability density as vertices of their Delaunay triangulatio
The top right part shows a density estimate from these
points and the middle right illustrates the two basin spann
trees which are disjoint subgraphs of the Delaunay trian

FIG. 1. Illustration of the construction of basin spanning trees. The top
shows an analytical probability density function, the middle left displa
900 points which have been sampled from it and their Delaunay triang
tion; the top right shows a density estimate generated from these points
the middle right gives the adjoint basin spanning trees, along with the m
mum density path~bold line; see text for definitions!. The bottom part ren-
ders the density estimate and its basin spanning trees in three dimen
This example also illustrates that already in two dimensions, a large num
of samples is required to accurately estimate a rather simple density. G
a constant number of sample points, the quality of the density estimate
can be obtained from it deteriorates dramatically with growing dimens
ality.
n-

e

-
it
t
b-
.
0
g
-

lation. The bold line indicates the maximum density pa
between the two maxima, cf. step 8. In this demonstrati
the basin spanning trees only serve to cluster the points
indicate membership. When derived in higher dimensio
they can offer an impression of the higher-dimensional d
sity estimate, cf. step 8. The bottom part gives an alterna
rendering of the continuous density estimate along with
basin spanning trees.

A fuzzy clustering does not assign objects unequiv
cally to one or another cluster, but assigns fractional me
berships. This often yields a more natural description; in
case, if there are two nearby density maxima connected
relatively high saddle point, it is not obvious why a point o
one side of the saddle should belong entirely to one clus
while another point lying at a very short distance on the ot
side of the saddle should belong entirely to the other clus
Such points should, to some extent, belong to both den
maxima. In the present analysis, fuzzy membership of ev
point to some cluster can be obtained by first approximat
the density estimate as amixture density ~i.e., a sum of
parametric component densities weighted by mixi
parameters26! and then examining which component contri
utes how much to the total density at each data point. T
parameters can be estimated by means ofmaximum likeli-
hood or extensions such asexpectation maximization.

In our strategy, obtaining density estimates from o
data set with different kernel bandwidths is related to hier
chical cluster analysis.27,28 Furthermore, there are intimat
links between the density estimation and clustering propo
here andblind source identification and regularization.29

H. Steps 8, 9: Visualization and interpretation

If the first two or three dimensions of configuratio
space carry much of the overall variance, a meaningful r
resentation of the free energy surface can be obtained
plotting iso-contours or iso-surfaces of the free energy,
tained from the negative logarithm of the density estima
Of course, these representations suffer from the distorti
caused by the projection and will generally not be quant
tive. We stress again that the free energy surface can onl
as good as the sampling in the simulation.

Properties of interest, such as the presence of H-bond
amount of solvent-accessible surface, can be mapped
the density.

Also, if conformational states can be defined using co
tinuous boundaries, then their entropies can be calcula
through*p log p dt, wherep is the continuous density est
mate with the integration going over the configuration spa
of a state.

Convergence of a simulation can be monitored by re
timating free energy differences using ever longer portions
the trajectory.

If the effective dimensionality is substantially great
than three, the outcome of the cluster analysis can be use
enhance the amount of information conveyed by a visual
tion; for instance, the basin spanning trees can be plo
with the locations of the vertices mapped down to three
mensions. Overlapping basin spanning trees can still visu
convey a distinctness of clusters that a simple project
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does not reveal. Conceptually, this is equivalent to conto
ing of the density arising from different clusters separat
and plotting all contours together, giving rise to intersect
contour lines. Additionally and by construction, the bas
spanning trees allow gaining, by means of their topolo
some appreciation of the topography of the high
dimensional density estimate. This provides, along with
quest for a good density estimate, another motivation fo
careful and modest choice of dimensionality for analys
Unless the number of data points is vast, every point
comes a Delaunay neighbor of most others in higher dim
sions. This is not only computationally unfavorable, but a
makes for a primitive topology of the resulting basin spa
ning trees, such that they cannot reveal much about the
tive arrangement of cluster members and about the topo
phy of the high-dimensional free energy surface.

Summing up, acute angles in the basin spanning tree
indicate a local~intra-cluster! effective dimensionality highe
than the one visualized~but not higher than the one used
the density estimate!. Overlapping basin spanning trees c
indicate a global ~intercluster! effective dimensionality
higher than the one visualized.

As a more schematic representation, the cluster cen
~i.e., the basin spanning tree roots! can be drawn as sphere
with their volume representing the populations~the number
of members of one cluster!; cylinders connecting thes
spheres can then represent the transition probability~as in
Ref. 8!, obtained either directly from the trajectory or fro
the overlap of clusters, which can be calculated as an inte
over all space of the product of mixture components in
mixture density approximating the density estimate.

A subjective choice of the kernel bandwidth may
guided by the resultant clustering; a good choice should l
to a robust estimate such that minor variations in the ba
width do not lead to splitting or coalescence of significa
clusters. A graphical technique based on this idea has b
illustrated in Ref. 28.

Given all basin spanning trees, a minimum energy p
between two adjacent clusters can be found by identify
those two leaves between the two corresponding basin s
ning trees that are Delaunay neighbors and feature the h
est minimum density along their shared Delaunay ed
From that edge, representing the transition between the
clusters, the path can be followed to the respective clu
centers. This strategy will not find favorable paths that
volve passages through other clusters. This discretized m
mum energy path will encompass only configurations t
were actually visited during the simulation. These may,
turn, be used to visualize the nature of the transition. T
minimum free energy path can deviate strongly from
straight line if the two clusters involved are significant
nonspherical.

III. CHOICE OF METHODS

This section describes our selections in the combina
rial tree of choices. We have usually implemented and
plied the most straightforward choice.

All analyses were performed withR.30 I/O and molecular
superposition was handled by Fortran and Perl programs
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We used trajectories from previously published stud
on ab-heptapeptide31 ~200 ns at 298 K and 340 K, 50 ns a
350 K and 360 K, all in methanol! and an aminoxy acid
trimer32 ~70 ns at 293 K and 340 K in chloroform and 25 n
at 300 K and 340 K in water!.

We eliminated the degrees of freedom of all atoms

• from the solvent

• from the first and last residues in theb-heptapeptide

• from the protective groups in the aminoxy acid trime

• that are not directly covalently connected to the mole
lar backbone.

A Cartesian representation was chosen with a res
pling rate of 10 ps.

We used atom-positional RMSD between 500 to 10
configurations sampled evenly from one~or more, in the case
of the joint embedding of different simulations as in Fig.!
molecular simulation trajectory to perform a metric multid
mensional scaling. Distances from all configurations relat
to the ones used in multidimensional scaling were emplo
to embed these additional points according to Ref. 33 int
space of a dimensionality accounting for 95% of the to
variance. The points were then projected down to a low
mension~two or three!, without attempting to relax the dis
tortions thus introduced. The resulting distance matrix w
too large to store in memory, so its elements were reco
puted when required.

Delaunay triangulation was performed using qhull.34 De-
launay neighbors were stored in a list structure. T
Epanechnikov kernel~the tip of a paraboloid, thus with finite
support!16 was used for density estimation, and the ban
width was chosen as three times the median of the nea
neighbor distances@this dependence on the number of co
figurations N is not proportional to the correct asympto
D1/(D14)N21/(D14) ~Ref. 16, p. 85! for dimensionalityD#.
The Delaunay graph was used for a range search, i.e., to
for every point all others that lie within a distance given
the kernel bandwidth.

For visualization purposes, the estimated density w
calculated at all mesh points of a two- or three-dimensio
grid. ~To accelerate repeated calculations with differe
bandwidths, a list structure was used once again.!

Three-dimensional iso-surfaces were computed us
polyr.35 Visualizations were performed withR or
Geomview.36

For clustering, basin spanning trees as defined pr
ously were approximated by discarding all Delaunay ed
longer than the kernel bandwidth and assuming that all
maining edges are valid candidates, with the winner ma
mizing the density gradient. We have also implemented
strict and much more computing-intensive definition~results
not shown!, but have found the approximation to yield th
desired topology.

IV. RESULTS

Figure 2 gives the cumulative sum of the eigenvalu
from metric multidimensional scaling for two different sy
tems: theb-heptapeptide represents a benign case where
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two ~three! principal components carry 66%~74%! of the
overall variance; the negative eigenvalues, correspondin
imaginary coordinates, amount to 4% of the sum of all po
tive eigenvalues.

The data on the aminoxy acid trimer show the worst c
we have encountered: the two~three! principal components
carry only 43%~56%! of the overall variance and the neg
tive eigenvalues amount to 11% of the sum of all posit
eigenvalues, thus making metric multidimensional scal
less suitable. For the same worst case, the distribution a
the first 15 dimensions is illustrated in Fig. 3. The increas
normality with higher dimension forms the theoretical ba
of the essential dynamics method.37

Due to space limitations, we show results only
the aminoxy acid trimer in the following, thus selecting t
more difficult case to show the robustness of the strategy
analysis.

The top of Fig. 4 shows iso-surfaces of the estima
configuration space densities for the aminoxy acid trime
chloroform at 293 K~dark! and 340 K~light!. Much of the
density lies close to part of the surface of a cylinder. Fr
this figure, it is also apparent that two simulations in t
same solvent and at different temperatures explore lar
the same parts of configuration space with the exception
the space around cluster numbers 15, 19~cf. Fig. 5! which is
apparently disfavored entropically at higher temperatu
Change of solvent, on the other hand, drastically changes
ensemble generated in the simulation, illustrated by the
most orthogonal density estimates in the lower part of Fig
The viewpoint was chosen arbitrarily to enhance the spa
impression and has been retained throughout.

This figure also illustrates the indifferentiation38 of the
atom-positional RMSD, leading to an artificial sphericity
the points produced by the embedding.

Figure 5 displays the location of all cluster centers
basin spanning tree roots relative to the density estimate
the aminoxy acid trimer in chloroform at 293 K~normal
type! and for selected cluster centers in water at 340 K~bold-
face!. The former are all inside the isosurface which has b

FIG. 2. Eigenvalues from metric multidimensional scaling based on ba
bone atom-positional RMSD dissimilarity matrices for two oligoami
simulations, illustrating a benign and an unfavorable case.
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rendered transparently. The sizes of all these basin span
trees are given in Fig. 6.

Figure 7 shows which clusters are visited over time
the aminoxy acid in chloroform at 293 K, and Fig. 8 illu
trates the structures corresponding to different cluster c
ters, along with some members.

Figure 9 shows the density estimate along the two fi
principal components. The viewpoint is chosen differen
from the one before, but the three principal mountain ran
correspond, in descending altitude, to clusters no. 1, 8,
15 and their surroundings. Floating above the density e
mate, the basin spanning trees derived in three dimens
are shown, with the colors coding the three-dimensional d
sity estimate. The trees are seen to overlap heavily w
projected down to two dimensions. The projection to lo
dimensionality can only produce interpoint distances sho
than or equal to those in the higher dimension. The cluste
radius used on the same data in Ref. 32 was 0.07 nm.

In our implementation making use of Gower
embedding33 and of neighborhood and range lists, the co
putational complexity is bounded, for dimensionalityD.2,
by the Delaunay triangulation; an optimal algorithm for it
O(ND/2) in the worst case. In practice, this estimate is t
pessimistic39 and construction of the range lists is the mo
time-consuming part. The computational cost for the e
amples supplied was of the order of several hours on a P
compared to weeks for the simulations on similar machin

k-

FIG. 3. Distribution of points along the first principal components for t
unfavorable case of the aminoxy acid trimer in water at 340 K.
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R is an interpreter and a compiled executable would sho
execution time significantly.

V. RELATION TO PREVIOUS WORK

Multidimensional scaling techniques and/or clusteri
have been used for the analysis of molecular simulations
series of investigations.

The earliest attempt at reaching a low-dimensional r
resentation of configuration space that we could trace is
Diamond40 and Levitt.41,42The embedding of additional con
figurations relative to some reference structures has b
demonstrated by Abagyan and Argos.43

Hierarchical clustering was used by Shenkin a
McDonald5 and Roomanet al.44 Two clustering algorithms
were compared and single linkage found to be inappropr
by Torda and van Gunsteren.9 Clustering based on conve
molecular hulls was shown by Linet al.45 The data used in
the present study have already been analyzed with a no
erarchical cluster analysis.31,32

FIG. 4. Top: three-dimensional iso-contours for density estimate of confi
rations embedded in configuration space by metric multidimensional sca
for an aminoxy acid trimer in chloroform at 293 K~dark! and at 340 K
~light!. The two simulations explore similar regions of configuration spa
Bottom: iso-contours for the aminoxy acid trimer in chloroform at 340
~light! and in water at 340 K~dark!. The different solvent leads to a com
pletely different distribution in configuration space.
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An early reference to hierarchical configurational clu
tering and local principal components analysis is due
Murray-Rust and Raftery.6 Multidimensional scaling and hi-
erarchical clustering were employed by Troyer and Cohe46

Hierarchical clustering of conformations and an approxim
tive visualization thereof assuming normality was perform
by Caveset al.47 Embedding of clusters in 2D using a non
linear mapping and schematic representation of transi
probabilities has already been demonstrated in a pape
Karpenet al.8 Clustering by basins on the free energy su
face has also been envisaged, but not performed, by t
authors as well as by Braviet al.48

A basin volume estimation using the convex hull of clu
ters should be more precise than one based on ellipsoid
used in Ref. 49.

Becker and Karplus have indirectly characterized a
visualized an energy surface through a disconnectivity gr
carrying topographical information;2 see also Levy and

-
g

.

FIG. 5. For the aminoxy acid trimer in chloroform at 293 K, location of t
first 20 cluster centers relative to the iso-contour previously shown~ren-
dered transparently!. The bold figures show the locations of the cluster ce
ters three and four from the simulation in water at 340 K, indicating regi
that are only sampled well in the water simulations.

FIG. 6. Sizes of all clusters or basin spanning trees for the aminoxy
trimer in chloroform at 293 K. Clusters rank number 217 and higher
singletons.
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Becker.50 Guoet al.51 have plotted free energy surfaces wi
respect to the radius of gyration, number of native conta
and number of hydrogen bonds. Other plots of ene
surfaces49,52 were constructed by smoothing over enthalp
energies of individual configurations. This is problematic b
cause single force-field terms correlate badly with free
ergy; see figures in Refs. 52, 53. The nonequivalence of c
tering by molecular similarity or by the topography of a
energy surface has been illustrated by Becker.54

Alternative approaches to the visualization of distortio
arising from a mapping into a low dimension are given
Bienfait and Gasteiger.55

VI. DISCUSSION

We have made an attempt at a description of an ana
strategy that is both general and consistent. Our generic
scription should encompass a large variety of particular
proaches and allow for them to be conveniently defined
specifying the choices in Sec. I C. Within the proposed st
egy, we have in many steps opted for the simplest cho
This has led to a procedure the robustness of which we h
illustrated by showing results on the case with the high
intrinsic dimensionality we have encountered. The merit
alternative techniques, many of which are mentioned in S
II, should be evaluated in a systematic fashion.

We hold that multidimensional scaling techniques
conjunction with cluster analysis can help in quickly gaini
an overview of the data produced in a long simulation o
complex system in equilibrium and enhance its intuitive u
derstanding. For instance, Fig. 5 suggests that there are
distinct regions of configurational space which are samp
and that looking at only 3 out of the first 15 clusters m
suffice to gain a first impression of the system’s behav
The utility of multidimensional scaling then lies in telling th
investigator which few clusters out of a large number sho

FIG. 7. Top: membership of each configuration to different clusters; clus
are ordered according to size and first visit. Clusters rank number 217
higher are singletons. Bottom: detailed membership to largest 50 clu
over time.
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be scrutinized, preventing his or her being overwhelmed
the sheer amount of data.

We believe that making the detour of estimating a co
figuration space density is a more well-defined approach
the visualization of free energy surfaces than those pr
ously pursued.

We also argue that this detour may be an asset in clu
analysis: Clustering by the topography of the free ene
surface has~especially in the limit of long simulations, al
lowing for density estimates with both low bias and lo
variance! the potential of revealing similar but distinct con
formational states that are separated by a high but nar
free energy barrier. These states would, due to their g
metrical similarity, be lumped together by centroid clusteri
and related methods using a fixed cutoff.

Proper choice of dimensionality for the analysis is ind
pensable for a good density estimate and profitable visua
tion of density estimates in more than three dimensions. I
however, the choice of kernel bandwidth that is of pa
mount importance: The topography of the free energy s

rs
nd
rs

FIG. 8. For the aminoxy acid trimer in chloroform at 293 K, cluster cen
and the nine configurations mapped closest to it for cluster no. 1~top left!,
cluster no. 9~top right!, cluster no. 15~middle left!; entire cluster no. 15
~middle right!. For the aminoxy acid trimer in water at 340 K, cluster cen
and the nine configurations mapped closest to it for cluster no. 3~bottom
left! and cluster no. 4~bottom right!. Only the atoms used in the superpo
sition and atom-positional RMSD calculation are shown; the spread in
clusters shows both their density and the shortcomings of the mapping
low dimension. The two distinct conformations visible in the middle rig
figure are not resolved into two separate clusters with the current choic
dissimilarity measure, dimensionality, and kernel bandwidth.
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face depends on it, with greater bandwidths provoking c
lescence of individual mountains or modes of the den
estimate. It is through this parameter that prior~chemical!
knowledge can enter the analysis. Ultimately, the bandw
should always be specified by the human expert, as a fu
tion of the class of systems under study and the quest
posed to it.

There are two basic types of enhanced sampling a
rithms: those driving the systemto an undersampled
region—often requiring manual intervention and detai
prior knowledge—and those driving the systemaway from
oversampled regions.

Our perspective on analysis reveals intimate links to
latter approach, where well explored regions of configurat
space are typically made less favorable by adding some
of repulsive potential, thus encouraging transitions over b
riers to previously unexplored regions. This idea has b
exploited in global optimization methods such as combi
torial optimization ~e.g., tabu search56!, evolutionary algo-
rithms ~niching techniques, e.g., Ref. 57! and molecular dy-
namics ~e.g., conformational flooding,58 local elevation
search59!. We argue that many of these methods implici
perform a~coarse! configuration space density estimation.
multidimensional adaptive umbrella sampling,60 for instance,
the histogram is chosen as a nonparametric density estim
and a smooth density is obtained by fitting the histogr
with a set of basis functions which have to be selected ma
ally. This two-step procedure is mathematically less we
behaved than a kernel density estimate with a kernel tha
smooth everywhere.

Furthermore, the preselection of axes that are use
span the low-dimensional configuration space~e.g., radius of
gyration and proximity to native fold61! may facilitate inter-
pretation, but lead to mapping errors that are greater tha
one lets the system decide—as in multidimensio
scaling—which its most important dimensions are.

FIG. 9. Two-dimensional projection of the configuration space density
timate for the aminoxy acid trimer in chloroform at 293 K. Floating abo
are all basin spanning trees derived from a three-dimensional density
mate and clustering with the color coding for the three-dimensional den
estimate. The overlap of the basin spanning trees gives an impression
projection error.
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The reader can now anticipate where enhanced samp
methods may go in the future: Instead of~subjectively! de-
ciding when a basin has been sampled sufficiently and t
adding a repulsive potential58 or refining the density estimat
after each of a series of runs,60 we propose using anonline
density estimation based on a data-driven bandwidth se
tion method thatcontinuouslyupdates and refines the densi
estimate as the simulation proceeds. A configurational lin
subspace should be chosen by the system itself, and the
nel density estimate obtained therein should then be ta
into account alongside with the potential function in eve
step of the simulation. To reduce computational cost a
memory requirements, the kernel density estimate~the sum
of thousands of kernels! can be replaced by a mixture densi
~the sum of only a few components; see Sec. II G; Step 7!. In
the further course of the simulation, that mixture density c
be used in addition to the increasing number of kernels a
repulsive potential until an updated mixture density repla
the newly accumulated kernels, and so on.

Ultimately, the converged density estimate should co
pletely flatten out those regions of the free energy surf
which are accessible to the system at the given tempera
Driving the system away from where it has already sp
much time arguably introduces less bias than attracting i
where it has not been before, as is the case with all kind
reaction path methods.

We believe that enhanced sampling methods should
advantage of the more advanced density estimation te
niques that have become available.
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