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A strategy for analysis of (molecular ) equilibrium simulations:
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We propose an approach for summarizing the output of long simulations of complex systems,
affording a rapid overview and interpretation. First, multidimensional scaling techniques are used in
conjunction with dimension reduction methods to obtain a low-dimensional representation of the
configuration space explored by the system. A nonparametric estimate of the density of states in this
subspace is then obtained using kernel methods. The free energy surface is calculated from that
density, and the configurations produced in the simulation are then clustered according to the
topography of that surface, such that all configurations belonging to one local free energy minimum
form one class. This topographical cluster analysis is performed using basin spanning trees which
we introduce as subgraphs of Delaunay triangulations. Free energy surfaces obtained in dimensions
lower than four can be visualized directly using iso-contours and -surfaces. Basin spanning trees
also afford a glimpse of higher-dimensional topographies. The procedure is illustrated using
molecular dynamics simulations on the reversible folding of peptide analoga. Finally, we emphasize
the intimate relation of density estimation techniques to modern enhanced sampling algorithms.
© 2001 American Institute of Physic§DOI: 10.1063/1.1330216

I. INTRODUCTION analysis in rough and conceptual terms. Details are provided
i o ) ) . in Sec. Il. A generic algorithm implementation of the ana-
_ With the rapid increase in computational power, S'mUIa'Iytic strategy is sketched, giving a range of alternative
tions of complex systems have reached unprecedenteq,yices at many stages of the procedure. In our view, where
lengths, and the time-honored approach to a first analysis Qfi\sices are given the optimum approach is not yet clear and
the resultant configurations, namely visual inspection, hag,erits further investigation. Our special concern is to make
become tedious if not infeasible. In this paper, we wish e \where arbitrary decisions are required, and we have
sketch a strategy for exploratory data analysis of simulationg,jye|ed these points as “choosing” or “choice” throughout.
where populations are Boltzmann distributed according to 15 make things more specific, we trace one of the many
some energy, loss, or cost function. The aim is to aid the,ossiple paths through this combinational tree of choices in
investigator in quickly gaining an overview of the contentsgec || and illustrate the analysis methodology using previ-
of the simulation and turning data into information. ously published raw data in Sec. IV.
A. Organization of this paper Most building blocks of the propposed analytic strategy

can already be found scattered in the literature. This previous

Even though the s_trategy is more general, we wil m_ak%vork is more aptly summarized after some terminology has
use of concepts, terminology, and data from molecular smuz

) ; . een introduced and so we defer citations and comparison to
lations asan gxample. Eor Instance, we wil r'efer to the sgt 9ec. V before concluding with a discussion in Sec. VI.
all configurations resulting from the simulation as a trajec-
tory, irrespective of whether the underlying sampling algo-
rithm is of the stochastic typésuch as Monte Car)oor the
dynamic type(i.e., integrating some equation of motjon In an equilibrated thermodynamic system, the Gibbs free
One of our aims is to introduce terminology from and build energy difference between two statds, is given, up to a
a bridge to the statistical and data mining disciplines, so théactor, by the natural logarithm of the ratio of their occupan-
corresponding references will be to practical text bookscies,K:
rather than the original sources. Also, established technical AG=—RTINK
terms from those fields are typeset in boldface to emphasize '
that they are not our wording. with R the ideal gas constant arfdthe temperature of the

The remainder of this section describes the proposedystem. These occupancies are, in turn, given by an integral

B. Conceptual part
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over their densities in configuration space. That is, from thehree dimensions, direct visualizati¢step 8 of the free en-

densities, the Gibbs free energy surface is known which deergy surface becomes meaningful. Otherwise, a glimpse of

termines all thermodynamic observables. Using additionathe density estimate in dimensions greater than three can still

models, more chemical properties of the system can be ddse conveyed by showing one graph per cluster with its to-

rived. For instance, the different preferred conformationspology characterizing the relative position of cluster mem-

correspond to free energy minima, and transition rates besers as well as the overall cluster shape.

tween these can be calculated from a kinetic model employ- More schematic diagrams, finally, can illustrate the ob-

ing the free energy of transition states. served transition probabilities between clusters and help in-
A trajectory is a discretized path through configurationterpret the dynamics of the system.

space with every frame or configuration corresponding to a

single point. A choice has to be made as to which degrees @. Overview: Concise description

freedom of the system are considered relevatgp 1; num-

bers refer to the enumeration given in the following segtion

and how the system should be represerittep 2.
After proper downsampling of the trajectofgtep 3, (1) Choice of relevant degrees of freedom

thus removing redundancies, the dissimilarity between all re¢2) Choice of representation

maining configurations can be evaluated. The resultant dig3) Choice of resampling rate

similarity matrix (which depends, of course, on the choice of (4) Choice of measure of dissimilarity between two configu-

the dissimilarity measure, step dan then be used to embed rations

every configuration as a single point in configuration spacé5) Choice of method for embedding configurations in a

such that the distances between the points match the dissimi- low-dimensional representation of configuration space

larities previously calculated. (6) Kernel density estimation in that configuration space
The interactions in a complex system typically confine it~ with choice of kernel bandwidth

to a tiny fraction of the full high-dimensional configuration (7) Choice of cluster analysis

space In the case of a molecular system, the nominal di-(8) Visualization of:

mensionality is three times the number of atoms minus some (&) Free energy surface

degrees of freedom for rotation, translation, and possible (b) Clusters, cluster members

constraints. The effective dimensionality, however, is much  (c) Basin spanning trees

lower due to the specific physics and chemistry of a mol-  (d) Schematic diagrams

ecule; for instance, two atoms involved in an unconstrained9) Interpretation

chemical bond cannot move independently but will always

stay at a distance roughly corresponding to the equilibriumi. TECHNICAL CONSIDERATIONS

bond Ieng_th. As_a consequence, _the_pomts can _be emb(_addg\q Step 1: Choice of relevant degrees of freedom

in a low-dimensional subspace with little loss of information

(step 3. Only the degrees of freedom directly related to the prop-
Based on the distribution of points in this low- erties of interest should be included in the analysis to prevent

dimensional subspace, a continuous estimate of the densign obfuscation of the relevant information.

can be obtainedstep §. A density estimation with no as-

sumptions as to the underlying distribution is called nonparaB. Step 2: Choice of representation

Lna(Tlt; IC;NQIT aupnpdrg?;govgh'zgr:;gsen':fef?:rie?&% mlgtrEZTatl-. The repre;entati_on is most straightforward in the space
4 . . ... in which the simulation has been performed, e.g., Cartesian

(typically, these are unimodal symmetric smooth positive

functi ith unit areg h dat int and .~ ~or dihedral angle space. In cases where particles can ex-
unctions with unit areaon each data point and summing change positions without altering the properties of interest,
over all kernels to obtain &ernel estimate of the density.

The choi f 2 functional f f the Kk It 1o b one should choose a representation taking into account this
€ choice ot a functional form o Ine kerne’ trns out 1o eindistinguishability. An example is the ordered list of eigen-
of minor importance compared to ilmndwidth (step 6.

. values of an interparticle distance matrix, which is invariant
Of course, the resultant density and free energy surfac

finder rotation or permutatich.
can only be as good as the sampling throughout the simula- P

tion, both in terms of the regions that are explored at all andC Step 3 Choi ‘ i
their relative populations. Good statistics concerning the lat-" tep 3: Choice of resampling rate
ter can only be expected if multiple transitions over barriers  The density estimation that follows assumes the data
have been observed. points it is based on to hadependently identically distrib-

A clustering(also calledunsupervised classificatioror  uted. For simulations of finite length, this means that the
numerical taxonomy) may be performed on the configura- redundancy introduced by the small time integration step
tions. A traditional approach is to cluster by maximizing size in dynamic algorithm&equired to keep the integration
intra-cluster similarity and inter-cluster dissimilarity; we pro- error low) or the small step size in stochastic algorithms
pose instead to base membership on the topography of tHeequired to keep the acceptance ratio highould be elimi-
estimated free energy surfatsep 7. nated. A hint to a necessary, but not sufficient, condition is

If a significant part of the information lies in just two or given by the following consideration: iK independently

We propose the following strategy or course of analysis
(see next section for details
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identically distributed point{x;}; i=1..K are drawn one rotation and translation if the properties of interest are invari-
after the other from a probability distribution with the index ant thereunder and the representation is in the laboratory
specifying the temporal order, then the probability for theframe may be eliminated.

spatially nearest neighbor of a poixt; k=2..K—1 to be A more general approach, allowing for the use of differ-
eitherx, 1 or x,_ is only 2/(K—1). In an actual trajectory, ent dissimilarity measures, makes use of the set of all dis-
the probability for the spatially nearest neighbor to also be &imilarities between all configurations to embed each one as
temporal nearest neighbor is much higher, leading to a dera point in configuration space. We suggest usingtric

sity estimate that is essentially a “tube” through configura- multidimensional scaling® which involves the diagonaliza-
tion space. As a consequence, the resampling rate from thion of a centered squared dissimilarity mati&* If B is
trajectory should be so low as to eliminate these redundarpositive semi-definite, the points can be embedded in a Eu-
cies. Ideally, the resampling rate should be a function of thelidean space so as to satisfy perfectly the supplied distances
density, i.e., lower in low-density regions. In practice, this(note that a mere satisfaction of the triangle inequality is
would require an iterative procedure and a constant resanbnly a necessary, not a sufficient conditiyn The normal-

pling rate is chosen. ized eigenvectors oB are the principal components of the
system and the corresponding eigenvalues indicate the vari-

D. Step 4: Choice of measure of dissimilarity between ance along these principal components. The coordinates ob-

two configurations tained for the points described by the dissimilarity matrix are

unigue up to translation and inversion.Bfis not positive
imilarity bet " i tions and i Th ¢ of semi-definite, the parts pertaining to the negative eigenvalues
simiianty between two configurations andJ. 1he Set of ooy he discarded or a constant can be added to all off-
dissimilarities between all configurations obtained from the 13

traiect holds inf i bout their relationshio whi hdlagonal elements d8.

rjectory holds information about their refationship whic The maximum dimensionality of the resulting cloud of

;/ye megljt tolfexr|]o I0|It(.j 'tl)'he d|SS|m(;Iar|||t3(;_be.tvv.(|ae|3[.a Cohnf'%grs(;points is equal to the number of points described by the
lon and Itself snould be zero and all dissimiianties shou issimilarity matrix minus one. If the eigenvectors Bfare

greater than or equal to zero. The procedure is also S'mpl'f'egrdered by the magnitude of their eigenvalues and the effec-

:;trne (rjrzseseirsnLJIraenz)ybIes Ssyr?nmae(;rcljict,icl).r?iih: (tshanlf ;[geindésilg;ilt- ittive dimensionality of the configuration space is low, then
y ys, ' 9 q Y: Yhe bulk of the information or variance is contained in the

meets the formal requirements fomaetric, but this repre- first few dimensions. The choice of the precise number of

sents a much more stringent criterion. dimensions for further analysis is arbitrary, but should be

Metrics for molecular conformations include: . . ! o
(1) the atom-positional root mean square distancemodest, as we argue in the following and in step 7: while

(RMSD) (for proof of metric properties, cf. Ref)5A diffi- restriction to a lower-dimensional subspace will deteriorate

: P . the conservation of the provided dissimilarities, it also cir-
culty is that global dissimilarity can completely obscure high . . ; .
A o - cumvents problems associated with thase of dimension-
local similarityy also, atom-positional RMSD is not very

sensitive to greater changes in geometry ality. This is a term covering many of the features to which
. . s our low-dimensional geometric intuition and spatial percep-

2) the dihedral angle differencgroof: in Ramachan- . . i
2 9 o %on are unaccustomed. Noteworthy in the context of density

periodicity, the dihedral angle distance becomes a Euclideaﬁsnmat'on(S‘teP 6 is the vast volume of high-dimensional

distance, which is a metric; cf. Ref).7The problem is that a spaces, quickly making a cloud of points highly spaitse

change of a single dihedral in the middle of an elongatecgJII?V\gnghexa;mpletshare tal;en fr]?m Re1;. 16,-c?apter A.Za:nd
system can cause drastic changes in overall shépdereas el. 5, chapter Jt the number ot sample poInts required to
the effects on molecular shape of two changes in two dihe‘:’ICh'ewJ a constant bias and variance rises dramaticatly

drals can approximately cancel, even though a greater dig(_east exponentially with the dimensionality. Furthermore,
similarity is predicted in the latter cade most of the probability mass quickly becomes concentrated

(3) the distance matrix errdfor proof of metric proper- in the tails, even of distributions with very light tails. As an
ties, cf. Ref. 10 which measures the dissimilarity between example, in one dimension almost 90% of the probability

two intramolecular distance matrices. This measure leads 8255 of_the n_ormal deonsny IS conf|ned_|t_¢s1.6, Whereas
low-dimensional configuration space representatiorisyit in ten dimensions, 99% of the probability mass liesxdt

becomes problematic when the system can change itg 1.6!

handedne<? because a distance matrix cannot convey  V/hatever the particular choice of dimension, one may
chirality. either simply project all points onto the first few dimensions

or project onto a low-dimensional linear subspace maximiz-
. ] ing someprojection index, i.e., some measure of the “in-
E. Step 5: Choice of method for embedding terestingness” of a certain linear projectigihis technique
g?r;g%l]ﬂireg:rc;?izrl]nsa low-dimensional representation goes under the name pfojection pursuit 7).
9 pace Alternatively, and if the subspace sampled predomi-
The most straightforward way of embedding a point innantly by the system is not approximately linear, the points
configuration space is by simply concatenating all coordi-may be mapped to a low-dimensional nonlinear subspace
nates characterizing the system in the selected representatitmat allows for a more faithful rendering of the supplied dis-
into a single vector. Redundant degrees of freedsach as  similarities. In this case, aonlinear mapping or nonmetric

We would like a single scalaf;; summing up the dis-
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multidimensional scaling*®* may be performedusing either  matrix predicting the optimal bandwidth for a restricted class
the original dissimilarities or the distances resulting fromof underlying distributions, e.g., from peptidic systems.
multidimensional scaling optimizing criteria such as There is no universally valid method of determining the
Kruskal's sTRESS® (also called Sammon’s mapping efdr  optimal bandwidth, just as there is no universally valid cutoff
These preserve the supplied dissimilarities much more faithin cluster analysis. Extrinsic knowledge oretadata? i.e.,
fully, albeit at the cost of the axes losing their simple inter-information not contained in the supplied numerical data it-
pretability: in a linear mapping, a small displacement in theself, has its rightful place in a meaningful and result-oriented
subspace corresponds to an atomic displacement vector ahalysis of real-world data. Two entirely unrelated experi-
the entire system, and that correspondence is the sanmeents may accidentally give rise to the same data set, but the
throughout the subspace; in a nonlinear mapping, this corresontext of the investigations may require entirely different
spondence is only local. density estimates based on the same data.

F. Step 6: Kernel density estimation G. Step 7: Choice of cluster analysis

The histogram used to be the only widespread nonpara-  yyhile most clustering criteria optimize some geometric
metric density estimator before the 1950’s when kemnel estimeasure of intracluster compactness and inter-cluster separa-
mators were first introduced. Owing to its practical impor-ton (for a concise overview of methods, cf. Ref.)28ve
tance in many technical and scientific areas and spurred Qyopose clustering by membership of local density maxima
density estimation has become a scientific industry, develyish to identify “islands of stability” in configuration space
oped mostly at the interface of statistics and computer SCigjithout a priori assumptions about their shape, for instance,
ence. Note that this step has not been entitled “Choicjasing in favor of spherical distributiong@s in centroid

of...”: On the one hand, asymptotically all nonparametricdustering, e.g., Ref. 2%r dense chain@s in single-linkage
methods are kernel methodRef. 3, p. 125 on the other  ¢jystering, e.g., Ref.)5

hand, kernel estimatoralso called Rosenblatt or Parzen es-  For the sake of argument, consider for a moment the

timator9 even in the narrow sense are the most appropriatggopogramhy of a mountainous region and admit that we wish
tool for the proposed analysis in our view. _ to cluster by membership to local minima. We define the
The kernels are usually smooth, symmetric, and unimoyoyndaries of membership as the union of all watersheds or
dal and are density functions themselves., they are posi-  rigges, with the catchment regions or basins corresponding to
tive everywhere and integrate to unityalthough even this  he set of all members of a particular local minimum.
restriction can be relaxed in attempts of reducing bias result-  \when based on previously embedded data points, the
ing from oversmoothing. Their support can be finite or infi- yernel density estimate provides us with a continuous free
nite. We reiterate that the ch_oice_of a functional form of thegnergy surface; however, the description of the watersheds or
kernel turns out to be of minor importance.g., Ref. 16,  cjyster boundaries rapidly becomes untractable in higher di-
Chap. 3.2.2 or Ref. 20, Chap. 2.2¢ompared to its band- mensions. Moreover, a continuous description is not neces-
width, also denoted window width or smoothing parametersary pecause we only wish to cluster the data that is actually
The bandwidth can be the same for all data points or it caRyajlable, i.e., discrete points. Accordingly, a discrete de-
be greater in the tails of the distributi¢nsingvariable or  g¢ription of the basins is sufficient. We propose constructing
adaptive kernel estimates, i.e., in badly sampled low- gisjoint directed graphs assuming the shape of trees, one for

density regions. ~each basin or catchment region, encompassing all data points
Different strategies have been proposed for data driveqithin that basin.
bandwidth selection: Each tree root should be centered on the data point at

I . . . which the free energy is lowest. If all vertices were directly
subjective(manual, interactivechoice based on the ap connected to the root, the resultant graph would exhibit a

pearance of the density or its derivatites A .

. lidati d bootst thod _primitive topology(comparable to a sea urchiand not con-
various cross-vajiaation and bootstrap methods Maxiy,q, iy ch information regarding the arrangement of the data
mizing likelihood or minimizing the integrated square

error (see Refs. 16, 20 points, let alone the topography. With regard to visualization,
o we desire something more similar torainimal spanning
e so-called plug-in methods based on formulas that ar

. > Sree (reminiscent, maybe, of iyyIndeed, we want the topol-
asymptotically exact for infinitely large samplésee . . i
Refs. 16, 20, ogy to satisfy the graph theoretical definition otrae and

we will in the following call it “basin spanning tree.” We
The subjective methods yield, by definition, nonreproducibleconstruct these trees as followarguing now in terms of the
choices. The cross-validation methods usually have difficultyglensity rather than the free energy, thus clustering by mem-
with distributions featuring heavy tails, resulting in over- bership to local maxima rather than minima
smoothed density estimates; the plug-in methods require an * FOR EACHdata point, find all Delaunag® neighbors;

estimate of the true underlying density or its derivatives and -FOR EACH Delaunay Edgeij
may have problems with multimodalitythe presence of check whether the density estimate along that edge
many local maximaor nonnormality. An intermediate strat- attains values below the density estimate at ppint

egy may be to parametrize a functional of the dissimilarity if so, discard that edge;
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lation. The bold line indicates the maximum density path
between the two maxima, cf. step 8. In this demonstration,
the basin spanning trees only serve to cluster the points and
indicate membership. When derived in higher dimensions,
they can offer an impression of the higher-dimensional den-
sity estimate, cf. step 8. The bottom part gives an alternative
rendering of the continuous density estimate along with its
basin spanning trees.

A fuzzy clustering does not assign objects unequivo-
cally to one or another cluster, but assigns fractional mem-
berships. This often yields a more natural description; in our
case, if there are two nearby density maxima connected by a
relatively high saddle point, it is not obvious why a point on
one side of the saddle should belong entirely to one cluster,
while another point lying at a very short distance on the other
side of the saddle should belong entirely to the other cluster.
Such points should, to some extent, belong to both density
maxima. In the present analysis, fuzzy membership of every
point to some cluster can be obtained by first approximating
the density estimate as rixture density (i.e., a sum of
parametric component densities weighted by mixing
parameter®) and then examining which component contrib-
utes how much to the total density at each data point. The
parameters can be estimated by meanmakimum likeli-
hood or extensions such gxpectation maximization

In our strategy, obtaining density estimates from one
data set with different kernel bandwidths is related to hierar-
chical cluster analysi§:?® Furthermore, there are intimate
links between the density estimation and clustering proposed
here andblind source identification andregularization.?®

FIG. 1. lllustration of the construction of basin spanning trees. The top IeftH' Steps 8, 9: Visualization and interpretation

shows an analytical probability density function, the middle left displays If the first two or three dimensions of Configuration

900 points which have been sampled from it and their Delaunay triangula- h of th I . inaful
tion; the top right shows a density estimate generated from these points ampace Cz_irry much o € overall variance, a meanlng_u rep-
the middle right gives the adjoint basin spanning trees, along with the maxifeésentation of the free energy surface can be obtained by
mum density patlibold line; see text for definitionsThe bottom part ren- plotting iso-contours or iso-surfaces of the free energy, ob-
ders the density estimate and its basin spanning trees in three dimensiorhsjlined from the negative Iogarithm of the density estimate
This example also illustrates that already in two dimensions, a large numbe¢|)f h . ffer f he di "
of samples is required to accurately estimate a rather simple density. Give course, these r_eprgsentatlor}s sufter from the |stort|_ons
a constant number of sample points, the quality of the density estimate thataused by the projection and will generally not be quantita-
can be obtained from it deteriorates dramatically with growing dimension-tive, \We stress again that the free energy surface can only be
ality. as good as the sampling in the simulation.
Properties of interest, such as the presence of H-bonds or
amount of solvent-accessible surface, can be mapped onto
-IF there are any remaining edges, calculate the denthe density.
sity gradient by dividing the density difference by Also, if conformational states can be defined using con-
the distance between the embedded points; let thénuous boundaries, then their entropies can be calculated

edge offering the maximum gradient become a newthrough [ p log p dr, wherep is the continuous density esti-

edge of the basin spanning tree; mate with the integration going over the configuration space
ELSE point i becomes the root of a basin spanningof a state.
tree. Convergence of a simulation can be monitored by rees-

The principle is illustrated graphically in Fig. 1: the top timating free energy differences using ever longer portions of
left part shows an arbitrary bimodal probability density func-the trajectory.
tion which is the sum of three spherical Guassians with unit  If the effective dimensionality is substantially greater
standard deviation but different weights. The middle left partthan three, the outcome of the cluster analysis can be used to
displays 900 points which have been sampled from the probenhance the amount of information conveyed by a visualiza-
ability density as vertices of their Delaunay triangulation.tion; for instance, the basin spanning trees can be plotted
The top right part shows a density estimate from these 90With the locations of the vertices mapped down to three di-
points and the middle right illustrates the two basin spanningnensions. Overlapping basin spanning trees can still visually
trees which are disjoint subgraphs of the Delaunay triangueonvey a distinctness of clusters that a simple projection
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does not reveal. Conceptually, this is equivalent to contour- We used trajectories from previously published studies
ing of the density arising from different clusters separatelyon a 8-heptapeptid& (200 ns at 298 K and 340 K, 50 ns at
and plotting all contours together, giving rise to intersecting350 K and 360 K, all in methanpland an aminoxy acid
contour lines. Additionally and by construction, the basintrimer’? (70 ns at 293 K and 340 K in chloroform and 25 ns
spanning trees allow gaining, by means of their topologyat 300 K and 340 K in water

some appreciation of the topography of the higher- We eliminated the degrees of freedom of all atoms
dimensional density estimate. This provides, along with the

quest for a good density estimate, another motivation for a * from the solvent

careful and modest choice of dimensionality for analysis: < from the first and last residues in tieheptapeptide
Unless the number of data points is vast, every point be- « from the protective groups in the aminoxy acid trimer
comes a Delaunay neighbor of most others in higher dimen- . that are not directly covalently connected to the molecu-
sions. This is not only computationally unfavorable, but also lar backbone.

makes for a primitive topology of the resulting basin span-
ning trees, such that they cannot reveal much about the relg]in
tive arrangement of cluster members and about the topogra-
phy of the high-dimensional free energy surface.

Summing up, acute angles in the basin spanning tree c
indicate a localintra-clustey effective dimensionality higher
than the one visualizetbut not higher than the one used in
the density estimaje Overlapping basin spanning trees can
indicate a global (interclustey effective dimensionality
higher than the one visualized.

As a more schematic representation, the cluster cente
(i.e., the basin spanning tree roptan be drawn as spheres
with their volume representing the populatiofise number
of members of one clustgr cylinders connecting these
spheres can then represent the transition probakigisyin
Ref. 8, obtained either directly from the trajectory or from
the overlap of clusters, which can be calculated as an integr%

over all space of the prod_uct of mixture components in aEpanechnikov kerndthe tip of a paraboloid, thus with finite
mixture density approximating the density estimate. suppor 16 \was used for density estimation, and the band-

A subjective choice of th_e k'ernel bandvyidth may e, iqih was chosen as three times the median of the nearest-
guided by the resultant clustering; a good choice should lea\ﬁeighbor distancefthis dependence on the number of con-

to_(;ithrodbust fslt'm;tte sutir;t_that mlnorl variations fm _the_f_bant igurations N is not proportional to the correct asymptote
Wi o not lead to splitting or coalescence of significanty1/o +4)\-1/(p+4) (Ref. 16, p. 85 for dimensionalityD].

clusters. A graphical technique based on this idea has beeﬂwe Delaunay graph was used for a range search, i.e., to find

'””S”".’“ed n Ref._28. . . for every point all others that lie within a distance given by
Given all basin spanning trees, a minimum energy pathy . | o nal bandwidth

between two adjacent clusters can be found by identifying

thpse two leaves between the two corresponding basin SPaR3culated at all mesh points of a two- or three-dimensional
ning trees that are Delaunay neighbors and feature the hig rid. (To accelerate repeated calculations with different
est minimum density along their shared Delaunay edgebandwidths a list structure was used once again.

From that edge, representing the transition between the two Three-d’imensional iso-surfaces were computed using
clusters, the path can be followed to the respective CIUSte[Solyr.SS Visualizations were performed withR or
centers. This strategy will not find favorable paths that in'Geomvievvg.G

volve passages through other clusters. This discretized mini- For clustering, basin spanning trees as defined previ-

mum energy p"?‘t.“ will encompass only_ configurations th_aBust were approximated by discarding all Delaunay edges
were actually visited during the simulation. These may, InIonger than the kernel bandwidth and assuming that all re-
turn, be used to visualize the nature of the transition. Th‘?naining edges are valid candidates, with the winner maxi-
minimum freg energy path can deviate stron'gly. _from amizing the density gradient. We have also implemented the
straight Ime if the two clusters involved are significantly strict and much more computing-intensive definitioasults
nonspherical. not shown, but have found the approximation to yield the
desired topology.

A Cartesian representation was chosen with a resam-
g rate of 10 ps.
We used atom-positional RMSD between 500 to 1000
configurations sampled evenly from ofe more, in the case

the joint embedding of different simulations as in Fig. 4
molecular simulation trajectory to perform a metric multidi-
mensional scaling. Distances from all configurations relative
to the ones used in multidimensional scaling were employed
to embed these additional points according to Ref. 33 into a
space of a dimensionality accounting for 95% of the total
(griance. The points were then projected down to a low di-
mension(two or three, without attempting to relax the dis-
tortions thus introduced. The resulting distance matrix was
too large to store in memory, so its elements were recom-
puted when required.

Delaunay triangulation was performed using qfitiDe-
unay neighbors were stored in a list structure. The

For visualization purposes, the estimated density was

Ill. CHOICE OF METHODS

This section describes our selections in the combinatos

. . . IV. RESULTS

rial tree of choices. We have usually implemented and ap-

plied the most straightforward choice. Figure 2 gives the cumulative sum of the eigenvalues
All analyses were performed wifR* /0 and molecular  from metric multidimensional scaling for two different sys-

superposition was handled by Fortran and Perl programs. tems: theB-heptapeptide represents a benign case where the
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overall variance; the negative eigenvalues, corresponding tc °

imaginary coordinates, amount to 4% of the sum of all posi-

tive eigenvalues. g
The data on the aminoxy acid trimer show the worst case % dh
we have encountered: the twthree principal components SO R N— —tt
carry only 43%(56%) of the overall variance and the nega- e R R
tive eigenvalues amount to 11% of the sum of all positive
elgenvalues thus maklng metric multidimensional scallngf'G 3. Distribution of points along the first principal components for the
nfavorable case of the aminoxy acid trimer in water at 340 K.
less suitable. For the same worst case, the distribution along
the first 15 dimensions is illustrated in Fig. 3. The increasing
normality with higher dimension forms the theoretical basis
of the essential dynamics methd(d. rendered transparently. The sizes of all these basin spanning
Due to space limitations, we show results only ontrees are given in Fig. 6.
the aminoxy acid trimer in the following, thus selecting the Figure 7 shows which clusters are visited over time by
more difficult case to show the robustness of the strategy fothe aminoxy acid in chloroform at 293 K, and Fig. 8 illus-
analysis. trates the structures corresponding to different cluster cen-
The top of Fig. 4 shows iso-surfaces of the estimateders, along with some members.
configuration space densities for the aminoxy acid trimer in ~ Figure 9 shows the density estimate along the two first
chloroform at 293 K(dark) and 340 K(light). Much of the  principal components. The viewpoint is chosen differently
density lies close to part of the surface of a cylinder. Fromfrom the one before, but the three principal mountain ranges
this figure, it is also apparent that two simulations in thecorrespond, in descending altitude, to clusters no. 1, 8, and
same solvent and at different temperatures explore largely5 and their surroundings. Floating above the density esti-
the same parts of configuration space with the exception afhate, the basin spanning trees derived in three dimensions
the space around cluster numbers 15(c&9Fig. 5 which is  are shown, with the colors coding the three-dimensional den-
apparently disfavored entropically at higher temperaturessity estimate. The trees are seen to overlap heavily when
Change of solvent, on the other hand, drastically changes th@ojected down to two dimensions. The projection to low
ensemble generated in the simulation, illustrated by the aldimensionality can only produce interpoint distances shorter
most orthogonal density estimates in the lower part of Fig. 4than or equal to those in the higher dimension. The clustering
The viewpoint was chosen arbitrarily to enhance the spatialadius used on the same data in Ref. 32 was 0.07 nm.
impression and has been retained throughout. In our implementation making use of Gower's
This figure also illustrates the indifferentiatiirof the ~ embeddind® and of neighborhood and range lists, the com-
atom-positional RMSD, leading to an artificial sphericity of putational complexity is bounded, for dimensionalidy> 2,
the points produced by the embedding. by the Delaunay triangulation; an optimal algorithm for it is
Figure 5 displays the location of all cluster centers orO(NP’?) in the worst case. In practice, this estimate is too
basin spanning tree roots relative to the density estimate fquessimistic® and construction of the range lists is the most
the aminoxy acid trimer in chloroform at 293 Kormal time-consuming part. The computational cost for the ex-
type) and for selected cluster centers in water at 34@#ld-  amples supplied was of the order of several hours on a PC as
face. The former are all inside the isosurface which has beerompared to weeks for the simulations on similar machines.
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FIG. 5. For the aminoxy acid trimer in chloroform at 293 K, location of the
first 20 cluster centers relative to the iso-contour previously shen-
dered transparentlyThe bold figures show the locations of the cluster cen-
ters three and four from the simulation in water at 340 K, indicating regions
that are only sampled well in the water simulations.

An early reference to hierarchical configurational clus-
tering and local principal components analysis is due to
Murray-Rust and Rafter§ Multidimensional scaling and hi-
erarchical clustering were employed by Troyer and Cdlien.
Hierarchical clustering of conformations and an approxima-
tive visualization thereof assuming normality was performed
by Caveset al#’ Embedding of clusters in 2D using a non-
linear mapping and schematic representation of transition

. N : ) _probabilities has already been demonstrated in a paper by
FIG. 4. Top: three-dimensional iso-contours for density estimate of configuy

8 . .
rations embedded in configuration space by metric multidimensional scalin%%‘rpen etal” Clustering _by basins on the free energy sur-
for an aminoxy acid trimer in chloroform at 293 iark and at 340 K face has also been envisaged, but not performed, by these
(light). The two simulations explore similar regions of configuration space.authors as well as by Braeit al*®

Bottom: iso-contours for the aminoxy acid trimer in chloroform at 340 K A basin volume estimation using the convex hull of clus-
(light) and in water at 340 Kdark. The different solvent leads to a com- . . .
pletely different distribution in configuration space. ters should be more precise than one based on ellipsoids as
used in Ref. 49.

Becker and Karplus have indirectly characterized and
Hisualized an energy surface through a disconnectivity graph

carrying topographical informatich;see also Levy and

Ris an interpreter and a compiled executable would shorte
execution time significantly.

500 1 500
[

V. RELATION TO PREVIOUS WORK

5

number of members / vertices

Multidimensional scaling techniques and/or clustering
have been used for the analysis of molecular simulations in &
series of investigations. :

The earliest attempt at reaching a low-dimensional rep-
resentation of configuration space that we could trace is by
Diamond® and Levitt**2 The embedding of additional con-
figurations relative to some reference structures has beet
demonstrated by Abagyan and Argbs. . .

Hierarchical clustering was used by Shenkin and '®7 0 5 10 15 20

44 . . cluster rank number

McDonald® and Roomaret al#* Two clustering algorithms
were compared and single linkage found to be inappropriate 05 = - Zoo
by Torda and van GunsterérClustering based on convex cluster rank number
molecular hulls was shown by Liet al*® The data used in . . . . .

. FIG. 6. Sizes of all clusters or basin spanning trees for the aminoxy acid
the pr?sem study have alréezady been analyzed with @ nonhimer in chioroform at 293 K. Clusters rank number 217 and higher are
erarchical cluster analys?’ : singletons.
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cluster rank number

FIG. 7. Top: membership of each configuration to different clusters; clusters
are ordered according to size and first visit. Clusters rank number 217 and
higher are singletons. Bottom: detailed membership to largest 50 clusters
over time.

Becker®® Guoet al>! have plotted free energy surfaces with

respect to the radius of gyration, number of native contacts
and number of hydrogen bonds. Other plots of energy
surface®®>2 were constructed by smoothing over enthalpic
energies of individual configurations. This is problematic be-
cause single force-field terms correlate badly with free en-

. ; ; ; -IG. 8. For the aminoxy acid trimer in chloroform at 293 K, cluster center
ergy; see figures in Refs. 52, 53. The nonequivalence of CIué.;nd the nine configurations mapped closest to it for cluster ritoflleft),

tering by molecular Sim“a_-rity or by the topography of an ¢jyster no. 9(top right, cluster no. 15middle left; entire cluster no. 15
energy surface has been illustrated by BecRer. (middle righd. For the aminoxy acid trimer in water at 340 K, cluster center

Alternative approaches to the visualization of distortionsand the nine configurations mapped closest to it for cluster ndog8om

i ; ; : ; - left) and cluster no. 4bottom righ}. Only the atoms used in the superpo-
arising from a mapping into a low dimension are given bysition and atom-positional RMSD calculation are shown; the spread in the

Bienfait and GaSte|ger"5- clusters shows both their density and the shortcomings of the mapping to a
low dimension. The two distinct conformations visible in the middle right
figure are not resolved into two separate clusters with the current choice of
dissimilarity measure, dimensionality, and kernel bandwidth.

VI. DISCUSSION

We have made an attempt at a description of an analytic
strategy that is both general and consistent. Our generic d&e scrutinized, preventing his or her being overwhelmed by
scription should encompass a large variety of particular apthe sheer amount of data.
proaches and allow for them to be conveniently defined by = We believe that making the detour of estimating a con-
specifying the choices in Sec. | C. Within the proposed stratfiguration space density is a more well-defined approach to
egy, we have in many steps opted for the simplest choicehe visualization of free energy surfaces than those previ-
This has led to a procedure the robustness of which we haveusly pursued.
illustrated by showing results on the case with the highest We also argue that this detour may be an asset in cluster
intrinsic dimensionality we have encountered. The merit ofanalysis: Clustering by the topography of the free energy
alternative techniques, many of which are mentioned in Sewurface hagespecially in the limit of long simulations, al-

II, should be evaluated in a systematic fashion. lowing for density estimates with both low bias and low
We hold that multidimensional scaling techniques invariance the potential of revealing similar but distinct con-
conjunction with cluster analysis can help in quickly gainingformational states that are separated by a high but narrow
an overview of the data produced in a long simulation of afree energy barrier. These states would, due to their geo-
complex system in equilibrium and enhance its intuitive un-metrical similarity, be lumped together by centroid clustering

derstanding. For instance, Fig. 5 suggests that there are thraad related methods using a fixed cutoff.

distinct regions of configurational space which are sampled Proper choice of dimensionality for the analysis is indis-
and that looking at only 3 out of the first 15 clusters maypensable for a good density estimate and profitable visualiza-
suffice to gain a first impression of the system’s behaviortion of density estimates in more than three dimensions. It is,
The utility of multidimensional scaling then lies in telling the however, the choice of kernel bandwidth that is of para-
investigator which few clusters out of a large number shouldnount importance: The topography of the free energy sur-
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The reader can now anticipate where enhanced sampling
methods may go in the future: Instead (sfibjectively de-
ciding when a basin has been sampled sufficiently and then
adding a repulsive potenti&lor refining the density estimate
after each of a series of rufSwe propose using aanline
density estimation based on a data-driven bandwidth selec-
tion method thatontinuouslyupdates and refines the density
estimate as the simulation proceeds. A configurational linear
subspace should be chosen by the system itself, and the ker-
nel density estimate obtained therein should then be taken
into account alongside with the potential function in every
step of the simulation. To reduce computational cost and
memory requirements, the kernel density estin{éte sum
of thousands of kernelgan be replaced by a mixture density
(the sum of only a few components; see Sec. Il G; Stejn7
the further course of the simulation, that mixture density can

be used in addition to the increasing number of kernels as a
FIG. 9. Two-dimensional projection of the configuration space density es

timate for the aminoxy acid trimer in chloroform at 293 K. Floating above repUISIVe pOtentlal until an updated mixture denSIty replaces

are all basin spanning trees derived from a three-dimensional density esﬁ:—he newly accumulated kernels, anq SO O.n-
mate and clustering with the color coding for the three-dimensional density ~ Ultimately, the converged density estimate should com-

estimate. The overlap of the basin spanning trees gives an impression of trtﬁete|y flatten out those regions of the free energy surface
projection error. which are accessible to the system at the given temperature.
Driving the system away from where it has already spent

face depends on it, with greater bandwidths provoking cannUCh t?me arguably introduces Ie§ s bias than gttracting it to
lescence of individual mountains or modes of the densit)yvher_e it has not been before, as is the case with all kinds of
estimate. It is through this parameter that priohemical reaction pa_th methods. .
knowledge can enter the analysis. Ultimately, the bandwidth We believe that enhanced sampling ”_‘ethOd_S Sh.OUId take
should always be specified by the human expert, as a fungQVantage GiNthe Smore adva_nced density estimation tech-
tion of the class of systems under study and the question@Iques that have become available.
posed to it.

There are two basic types of enhanced sampling algopACKNOWLEDGMENTS
rithms: those driving the systento an undersampled
region—often requiring manual intervention and detailed
prior knowledge—and those driving the systenvay from
oversampled regions.
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latter approach, where well explored regions of configuration
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namics (e.g., conformational floodin¥, local elevation j_’? ";/'“:aa\)//ef‘;’rslé‘:?d V&Jlﬂwi{ii;tegy’ ’\j-ol'\"g'i-o f{gghg?:if(’ 1(3335)-
SearCﬁg)' We argue that m?‘ny of these m_ethOd_S imp“Citly SM. E Karpen, D. .] Tobias,, a.nd C L. érooks I, Bioch.emisﬁ’& 412
perform a(coars¢ configuration space density estimation. In (1993,
multidimensional adaptive umbrella sampli#for instance, ~ °A. E. Torda and W. F. van Gunsteren, J. Comput. ChEBn1331(1994.
the histogram is chosen as a nonparametric density estimatﬁﬂ - ';Ig:ée;n‘?j“g '\é'::rh %'Oé‘:]infﬁg;ﬁgi%% (1999
and a smooth density is obtained by fitting the histogramar £ ~onen and M. J.)/iz. 'Stembérg’ J. Mol. Bit&g 321'(1980_
with a set of basis functions which have to be selected manu3T. F. Cox and M. A. A. CoxMultidimensional Scaling. Monographs on
ally. This two-step procedure is mathematically less well- Statistics and Applied ProbabilityfChapman & Hall, London, 1995

. . . 14 . ) _ 2 N2
behaved than a kernel density estimate with a kernel that isOne _element of B is given by [Blis=1/2(~ it 1n%e-) 51c
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scaling—which its most important dimensions are. points, leading to similar distortions for all points, or to use a representa-
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