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ABSTRACT

Monitoring of induced seismicity is gaining importance in a broad range of industrial

operations from hydrocarbon reservoirs to mining to geothermal fields. Such passive

seismic monitoring mainly aims at identifying fractures, which is of special interest

for safety and productivity reasons. By analysing shear-wave splitting it is possible to

determine the anisotropy of the rock, which may be caused by sedimentary layering

and/or aligned fractures, which in turn offers insight into the state of stress in the

reservoir. We present a workflow strategy for automatic and effective processing of

passive microseismic data sets, which are ever increasing in size. The automation

provides an objective quality control of the shear-wave splitting measurements and is

based on characteristic differences between the two independent eigenvalue and cross-

correlation splitting techniques. These differences are summarized in a quality index

for each measurement, allowing identification of an appropriate quality threshold.

Measurements above this threshold are considered to be of good quality and are

used in further interpretation. We suggest an automated inversion scheme using rock

physics theory to test for best correlation of the data with various combinations

of fracture density, its strike and the background anisotropy. This fully automatic

workflow is then tested on a synthetic and a real microseismic data set.

Key words: Fracture-induced anisotropy, Seismic anisotropy, Shear wave splitting,

Reservoir characterisation.

INTRODUCTIO N

Identifying seismically active zones in rock is of interest for

a wide array of applications. Seismic activity is caused by

rock failure, which, for example in mines, reduces the stability

and thus the safety of excavations. In hydrocarbon reservoirs

(grain-scale) cracks and (meso-scale) fracturing can connect

the pores of the reservoir rock, creating anisotropic perme-

ability, which influences extraction efficiency. To prevent un-

wanted leakage, CO2 storage projects require that cracks do

not propagate into the overburden. In geothermal projects,

fractures increase not only permeability but also the effective
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contact surface, which eases the heat transport from rock to

the transfer fluid. In all these cases it is therefore desirable

to have a detailed knowledge of crack and fracture geome-

try, which in turn allows optimization of drilling strategies.

Finally, on a more regional scale, these fractures and cracks

can form (macro-scale) faults, which increase the hazard in

volcanic and seismically active regions.

Naturally, it is desirable to identify and study these active

zones in situ. Seismic methods offer arguably the best ap-

proach. Locating seismic events (i.e., ruptures) offers a rough

guide on where these weak zones are. A more complete pic-

ture can be achieved by identifying aligned fractures through

the observation of seismic anisotropy. Aligned fractures and

cracks render the rock anisotropic (Crampin 1984) and the

method of shear-wave splitting is perhaps the most direct
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indicator of anisotropy (Ando, Ishikawa and Wada 1980;

Crampin 1984; Silver and Chan 1991; Savage 1999)

Recently, Crampin and Peacock (2008) compiled a re-

view of microseismic shear-wave splitting on a crustal scale.

Teanby, Kendall and van der Baan (2004a) used shear-wave

splitting to image fracture networks in the North Sea Valhall

Field, whilst Al-Harrasi, Wuestefeld and Kendall (2009) and

Al-Anboori et al. (2005) were able to characterize the different

fracture networks pervading the cap-rock and reservoir of an

oilfield in Oman. Holmes, Crampin and Young (2000) used

a controlled source shear-wave experiment to image fractures

in highly stressed granite and Elkibbi and Rial (2005) used

splitting measurements recorded on surface seismometers to

characterize the fracturing at The Geysers geothermal field in

California.

These studies use manual or semi-automatic processing of

the data. With ever increasing station number and record-

ing period, the data sets become too large for effective manual

processing. In this paper, we present a strategy on how to auto-

matically determine the anisotropic structure of the rock mass

from these passive microseismic data sets. We first point out

some considerations regarding preprocessing and then present

an automated shear-wave splitting procedure that includes an

automated quality assessment. Given sufficient ray coverage,

we show that the best measurements can then be used in an

automated inversion to determine the anisotropic system. This

workflow is tested on a synthetic data set and demonstrated

on a real passive seismic data set recorded in a producing

oilfield.

CAUSES OF A N I SOT R OPY

Seismic anisotropy is the directional variation of seismic wave

speed and occurs at many different scales, ranging from geo-

logic formations (kilometres) to single-crystal (micrometres).

This broad range of spatial scales complicates the imaging

efforts of band-limited data. The signal generated by earth-

quakes has a dominant period that is too long to be sensitive

to only the single-crystal anisotropy. Furthermore, the Fresnel

zones associated with these dominant periods can sometimes

be wider than the characteristic scale of the type of anisotropy.

Seismic waves therefore experience an average of the different

anisotropies, or ‘bulk’ anisotropy.

In contrast, seismic isotropy is usually a result of a ran-

domly cracked rock and random crystal or grain orientations.

An increasing number of observations support the idea that

isotropy is the exception rather than the norm and the rocks

generally have to be treated as being anisotropic. In general,

the anisotropy encountered in rocks is triclinic with 21 inde-

pendent elastic parameters but can be approximated in many

situations as having hexagonal symmetry, which can be fully

described by five independent elastic parameters.

For simplicity, most geological processes are assumed to

result in purely hexagonal anisotropy, which can mainly have

four causes:

1 Fractures: a medium with a preferential orientation

of meso-scale fractures renders the bulk rock seismically

anisotropic (e.g., Hudson 1981; Crampin 1984; Liu et al.

1993; Kendall 1994; Thomsen 1995; Chapman 2003; Kendall

et al. 2006). These fractures can be fluid or gas-filled and are

generally assumed to be penny shaped (Hudson 1981). The

orientation of aligned fractures can be controlled by both the

present and past regional stress field. In fractured and cracked

rock, the strength of seismic anisotropy is proportional to the

crack density (number of cracks of a given radius per unit

volume) within the rock body traversed by the seismic wave.

The crack density ρc varies with the cube of the crack radius,

a and is expressed by:

ρc = Na3/V, (1)

where N is the number of cracks with radius a within a rock

volume V (O’Connell and Budiansky 1974; Hudson 1981;

Crampin 1984). Assuming a Poisson’s ratio of ν = 0.25 and

penny shaped cracks, the crack density is approximately one

hundredth of the observed percentage shear-wave anisotropy:

ρc = A/100 (Crampin 1984).

Fluids within the pores, cracks and fractures can have a

significant influence on observed anisotropy. This depends on

the extend to which pore fluid pressure can equilibrate with

the dynamic pressures changes caused by a transient wave

and thus rendering the anisotropy frequency dependent (e.g.,

Zatsepin and Crampin 1997; Guest, van der Kolk and Potters

1998; Pointer, Liu and Hudson 2000; Maultzsch et al. 2003;

Chapman 2003; Galvin, Gurevich and Sayers 2007)

2 Grain-scale fabrics: the presence of aligned compliant dis-

continuities such as (micro-) cracks between individual sedi-

mentary grains can render a rock anisotropic (e.g., Hall et al.

2008). Both the magnitude and alignment of such anisotropy

may be modulated by short-term variations of the local stress

field, which may be induced by production. (e.g., Vega et al.

2006; Verdon et al. 2008).

3 Mineral alignment: alignment of mineral grains can be in-

duced by a constant deformation direction at relatively high

temperatures. This is most likely to occur under conditions

found in the lower crust and upper mantle (Hess 1964;

Nicolas and Christensen 1987). In sedimentary rocks, the
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anisotropy tends to be dominated by clay and mica, which due

to their platy nature align horizontally and generate hexagonal

anisotropy (e.g., Kaarsberg 1968; Valcke et al. 2006; Kendall

et al. 2007). Other common minerals, such as olivine, quartz

or plagioclase, are strictly orthorhombic but have a strong

hexagonal component (Mainprice and Silver 1993; Valcke

et al. 2006), showing a fabric related to deposition or flow

direction.

4 Layering: alternating layers of otherwise isotropic material

renders the rock anisotropic at a wavelength greater than the

characteristic thickness of the layers (Backus 1962). This is

of particular interest in hydrocarbon reservoirs as they are

mostly located in sedimentary environments. The strength of

anisotropy is proportional to the velocity difference of the

layers and their relative thickness.

In geology, rarely only one of these four causes is re-

sponsible for the observed anisotropy. A more realistic as-

sumption is a superposition of these mechanisms, which will

result in orthorhombic or higher symmetry systems. An or-

thorhombic symmetry has three different, mutually perpen-

dicular symmetry axes of seismic velocities. Hexagonal sym-

metry in contrast has a plane of isotropic velocities. It has

become standard in literature to classify hexagonal anisotropy

by the orientation of its axis of isotropy, that is, TTI, HTI

and VTI for respectively tilted, horizontal and vertical trans-

verse isotropy (Fig. 1). Shear waves travelling parallel to this

axis of symmetry are not split. VTI media may also be re-

ferred to as having azimuthal isotropy, polar isotropy or radial

anisotropy.

When sounding an anisotropic rock at various angles,

the variation in fast shear-wave polarizations and delay

times reveals the anisotropic symmetry axes and strength of

anisotropy (Fig. 2). This in turn allows the deduction of rock

physics parameters such as the fracture and crack orientation

and densities. Verdon, Kendall and Wuestefeld (2009) showed

that certain combinations of anisotropy systems and illumi-

nation directions are better suited to invert for rock physics

parameters than others.

SHEAR-WAVE SPL I T T I N G

It is well described in literature that a shear wave passing

through an anisotropic medium is split into two mutually

orthogonal waves (e.g., Crampin 1984; Savage 1999). The

two waves are polarized along the anisotropic symmetry axes

and are separated by a delay time proportional to the strength

of anisotropy. This is described by the two splitting parameters

Φ and dt. The strength of anisotropy is generally reported

Figure 1 Shear-wave splitting in two common hexagonal anisotropic

symmetry systems, HTI and VTI. Shear-wave splitting occurs for char-

acteristic ray directions. Specific combination of symmetry axis and

initial polarization will cause null splitting results.

in per cent (shear-wave) velocity variation by the common

approximation:

A = VSmeandt100/r, (2)

where r is the source-receiver-distance, VSmean is the mean

S-wave velocity and dt is the delay in arrival time between

waves polarized along the fast and slow symmetry axes.

In the literature a number of nomenclatures for Φ, the ‘po-

larization orientation of the fast shear-wave’ have been pro-

posed, all meaning more or less the same but are sometimes an

oversimplification. Strictly, the use of ‘fast direction’ is wrong

in that a direction is a vector with 360◦ periodicity. Although

‘fast orientation’ or ‘fast axis’ accounts correctly for the 180◦

periodicity in data, this nomenclature remains ambiguous on

whether P- or S-velocities are analysed. Furthermore, no dis-

tinction is possible between the fast orientation in the ray

frame and geographical coordinates, which is strictly only

identical for vertical wave propagation. We therefore suggest

using ‘fast S-wave polarization’ (Φ) if in the ray frame and
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Figure 2 Synthetic upper hemisphere plots for respectively HTI, VTI anisotropy and a combination of both. Shading indicates relative strength

of shear-wave velocity anisotropy (in per cent). Black bars represent the fast S-wave polarization.

Figure 3 Coordinate systems and associated angles used in shear-wave splitting. a) Wave coordinates and orientation of fast polarization in

the ray plane and projection to geographical coordinates (modified after Vecsey et al. 2007). We assume the right-handed coordinate system

East-North-Up, L-SH-SV and L-T-Q. See Table 1 for nomenclature. Schematic map view (b) and cross-section (c) define the geometric angles.

‘strike of fast S-wave polarization’ (ϕp) in geographical coor-

dinates, as illustrated in Fig. 3. Note that these orientations

do not always coincide with the actual fast symmetry axis of

the medium (Fig. 2). In Table 1 we summarize the symbols

and conventions used in this paper. The main angles involved

in these definitions can then easily be calculated as

baz = α′ = atan2(Elong − Slong, Elat − Slat)

az = α = 180 + α′

D =
√

(Elong − Slong)2 + (Elat − Slat)
2

inc = β = arctan

(

D

EDepth − SDepth

)

= arctan

(

D

SElevation − EElevation

)

dip = θ = 90 − β, (3)
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Table 1 List of symbols used in this paper

Symbol Description Unit

α Azimuth ◦

α′ Backazimuth ◦

β Inclination ◦

δ Thomsen’s parameter

ε Thomsen’s parameter

γ Thomsen’s parameter

λ Eigenvalues

ν Poisson’s Ratio

� Separation between backazimuth and initial polarisation of S-Wave ◦

ρc Crack density

δc Crack Dip ◦

ϕc Crack Strike ◦

δp Dip of Fast polarisation plane ◦

ϕp Strike of Fast polarisation plane ◦

Φ Fast polarisation in SV-SH plane ◦

dt Delay time between fast- and slow wave sec

 Normalised separation of Cross-correlation and Eigenvalue fast axis orientation

� Ratio of Cross-correlation and Eigenvalue delay times

Ŵ Quality threshold

Q Quality of the measurement

A Percentage Anisotropy %

D Epicentral distance m

a Aspect ratio of a crack

r Straight line source-receiver distance m

HTI Horizontally Transverse Isotropy: Hexagonal anisotropy with horizontal axis of symmetry

VTI Vertically Transverse Isotropy: Hexagonal anisotropy with vertical axis of symmetry

E-N-Z Seismogram components in geographical (East-North-Vertical) coordinates

L-T-Q Seismogram components in natural coordinates, (Ray-parallel, Transverse in S-plane and

parallel to S-wave polarisation)

L-SH-SV Seismogram components in ray coordinates (Ray-parallel, horizontal and vertical transverse

components in S-plane). SV is in the sagittal plane and not necessarily strictly vertical.

where az and baz refer to azimuth and backazimuth, inc is

the inclination of the wave from vertical and dip is the dip of

the wave from horizontal. E and S describe event and station

coordinates, respectively and D is the (Cartesian) hypocen-

tral distance. Note that the inclination β is always defined

as positive from vertical up towards the azimuth α, or due

to symmetry positive from vertical down towards the back-

azimuth α′. The two-argument function atan2 calculates the

arc-tangent of the two parameters similar to calculating the

arc-tangent except that the signs of both arguments are used

to determine the quadrant. This results in 360◦ periodicity

for the atan2 function instead of 180◦ periodicity for the

arc-tangent.

Two complementary types of techniques exist for estimat-

ing the splitting parameters Φ and dt. The first type (multi-

event technique) simultaneously analyses a set of records com-

ing from differing azimuths. Vinnik et al. (1989) proposed to

stack the transverse components with weights depending on

azimuths. However, this method lacks a means of constrain-

ing measurement errors. Chevrot (2000) projected the ampli-

tudes of the transverse components (Fig. 3) to the amplitudes

of the time derivatives of radial components to obtain the

so-called splitting vector. The phase and amplitude of

the best fitting curve gives the fast S-wave polarization

and delay time, respectively. These multi-event techniques

are generally applied in some teleseismic studies (Vin-

nik 1989; Dricker et al. 1999; Long and van der Hilst

2005).

More versatile is the second type of technique, which deter-

mines the anisotropy parameters on a per-raypath basis (Ando

et al. 1980; Fukao 1984; Silver and Chan 1991; Menke and

Levin 2003). A grid search is performed for the splitting pa-

rameters that best remove the effect of splitting. Different

measures for ‘best removal’ exist.
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The first is the cross-correlation technique (XC hereafter),

which rotates the seismograms in test coordinate systems and

searches for the orientation where the cross-correlation coef-

ficient is maximum and thus returning the splitting parameter

estimates ΦXC and dtXC (e.g., Ando et al. 1980). This tech-

nique can be visualized as maximizing the similarity in the

non-normalized pulse shapes of the two corrected seismogram

components.

The second technique searches for the most singular covari-

ance matrix of rotated and time-shifted seismograms based

on its eigenvalues λ1 and λ2 (EV hereafter; Fukao 1984).

Silver and Chan (1991) emphasized the similarity of a va-

riety of such measures such as maximizing λ1 or λ1/λ2 and

minimizing λ2 or λ2/λ1. We found that minimizing λ2/λ1 gives

the most robust results for the splitting parameter estimates

ΦEV and dtEV.

Wuestefeld and Bokelmann (2007) identified characteristic

differences between the two techniques (XC and EV) close to

‘null’ directions. Such null measurements occur either if the

wave propagates through an isotropic medium or if the initial

S-wave polarization direction coincides with the projection

of an anisotropic symmetry axis. In these cases the incoming

shear-wave is not split (Fig. 1). For initial polarizations de-

viating from the null directions the results of both methods

should be similar. The difference between the two techniques

depends on the signal-to-noise ratio (S/N) and the deviation

from a null direction.

The confidence in the splitting result can be increased by

stacking multiple error surfaces. Stacking can be done with the

normalized error surfaces (Wolfe and Silver 1998), error sur-

faces weighted by signal-to-noise ratio (Restivo and Helffrich

1999) or directly adding individual error surfaces (Wuestefeld

2007), since the variation of peak-to-peak amplitude of the

error surface topography between individual measurements

acts as a form of weighting. Teanby et al. (2004a) stacked the

results form neighbouring stations in a vertical borehole array

setup.

AUTOMATION APPROACHES

There are various aspects and pitfalls associated with shear-

wave splitting analysis, such as cycle skipping, correlated noise

and window selection (Vecsey et al. 2007). Thus far, most

splitting measurement workflows include manual steps, such

as visual quality control of wave forms and/or diagnostic plots

(Teanby et al. 2004b; Gao, Hao and Crampin 2006; Evans,

Kendall and Willemann 2006; Wuestefeld et al. 2008). With

ever increasing sizes of data sets, this is becoming impractical.

Furthermore, the increase in data volume provides a more

detailed sounding of the region of interest and thus, instead

of simple statistical analysis of splitting parameters, allows

for a systematic inversion for plausible anisotropy systems

and hence a variety of rock physics parameters (Verdon et al.

2009).

Here, we present an automated approach for evaluation of

shear-wave splitting measurements that is based on using both

the EV and XC method to estimate the splitting parameters.

The XC method systematically fails close to null directions,

which is a result of the absence of S-energy on the transverse

component close to nulls. Correlation can only be found if the

test-rotations of the grid search ‘copy’ energy from the initial

polarization component to the transverse component. Thus

the correlation is maximum for a test rotation of 45◦ and ob-

viously results in zero timelag between the two components

(see Wuestefeld and Bokelmann (2007) for a detailed discus-

sion). We here modify the automated null detection technique

proposed by Wuestefeld and Bokelmann (2007) to give a nu-

merical value for quality. First, we calculate the delay time

ratio � = dtXC/dtEV and the normalized differences in fast

S-wave polarization estimate  = (ΦEV − ΦXC)/45◦. Thus

ideal ‘good’ measurements are characterized by identical de-

lay times and identical fast polarization estimates (i.e., � =
1,  = 0) in both methods. In contrast, for ideal ‘null’ mea-

surements the XC method shows no delay time (dtXC = 0)

whilst the fast polarizations differ by 45◦ (i.e., � = 0,  = 1).

The quality, QW , of an individual measurement is determined

from the distance, dnull and dgood, to these extreme points

(Fig. 4):

dnull =
√

�2 + ( − 1)2
√

2

dgood =
√

(� − 1)2 + 2
√

2

Q =

{

−(1 − dnull ) for dnull < dgood

(1 − dgood) for dnull ≥ dgood.

(4)

Distances greater than one are set fixed to 1, so they result in a

quality of QW = 0. Thus, the quality ranges from +1 (good) to

0 (poor) to −1 (good null). Figure 4 illustrates this calculation

for the example of a synthetic data set that is later discussed

in detail. The positions of the individual measurements in the

quality plane are shown as black dots.

This automated quality control is incorporated into the

multi-window cluster analysis described by Teanby et al.

(2004b). They point out that the splitting parameters can vary

with the choice of the S-window and propose an automatic

analysis of the splitting parameters for many (usually between
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Figure 4 The automatic quality detection of a measurement is based on characteristic differences between the XC and EV splitting technique.

Depending on the distance from any of the two extreme points we are thus able to assign a quality. Note that most measurements align along

the extreme points. Outliers are due to poor signal-to-noise ratio or uncertainties in ray coordinate rotations as a consequence of poor P-particle

motion.

100–250) S-wave windows. In order to determine the ‘best’

splitting measurement, one possibility is to use stacking pro-

cedures (Wolfe and Silver 1998; Restivo and Helffrich 1999;

Teanby et al. 2004a; Wuestefeld 2007). Null measurements

(Q < 0) should probably be excluded to prevent contamina-

tion, since experience shows that error surfaces of nulls have

generally a steeper topography (greater peak-to-peak ampli-

tude) than non-nulls. The final splitting parameter will be

determined from the minimum in the stacked error surface,

which may however show a complex topography. Alterna-

tively, the best measurement can be simply defined as that with

the highest QWin but such a definition is problematic when de-

tailed information about null measurements is required.

We thus suggest here to use the cluster analysis of Teanby

et al. (2004b) and determine the ‘best’ splitting measurement

from clusters of similar splitting parameters and choosing that

with the lowest variance. Then, to each of the N test splitting

windows a quality value QWin between −1 and +1 is assigned.

The quality Qbest of the measurement closest to the cluster

midpoint is determined separately. In order to account for

events with a few problematic S-wave windows, we define the

overall quality of the event as a weighted average of Qbest and

the mean of the individual measurements:

Qevent = ω1

∑

QWin

N
+ ω2 Qbest. (5)

The factors ω1,2 determine the weight of the average and best

quality, respectively. We suggest using values of ω1 = 1/3 and

ω2 = 2/3.

NULLS

Null measurements represent cases where the shear wave is not

split. Although generally neglected, null measurements never-

theless bear important information about the anisotropy of

the rock (Wuestefeld and Bokelmann 2007). Nulls occur if a)

the wave travels through an isotropic medium, b) the initial

polarization of the shear wave coincides with an anisotropic

symmetry axis or if c) the wave travels along an (isotropic)

symmetry axis of the medium (see Fig. 1). Furthermore, the

effective anisotropy encountered by a seismic wave is a func-

tion of ray direction (Fig. 2). Ray directions with lower

anisotropy should therefore produce characteristically more

nulls at a similar signal-to-noise ratio since the resolution limit

of the splitting method is reached. Nulls thus have significant

potential to further constrain the anisotropy of the rocks in

future developments of automated splitting.

Note that with decreasing signal-to-noise ratio the split

shear wave increasingly resembles a null measurement. This

is because no distinctive pulse is split or the amplitude of the

secondary S-wave is masked by the noise level. Thus far, we

must reject these ‘noise nulls’. We can achieve this by com-

paring the initial polarization with the observed fast direc-

tion and the signal-to-noise ratio before and after correction.

‘Real nulls’ (parallel symmetry axis and initial polarization)

generally also show large EV and very small XC delay times,

resulting in quality values of close to −1, whereas ‘noise nulls’

have quality values closer to −0.5. Note, that the observation

of nulls from all directions and initial polarizations indicate

an isotropic medium.

STATION GEOMETRY AND EXPERIMENT

S E T U P

The best experiment setup is obviously a permanent, regularly

spaced 3D array of high-sampling rate, broadband sensors

located around and within the expected seismogenic zone.
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Figure 5 Diagnostic plot for the example of a good (a) and null (b) shear-wave splitting measurement. The top left panel shows SH (blue), SV

(red) and ray (black) seismogram components and P and S windows. The top right panel shows radial (blue) and transverse (red) component

before (top two traces) and after (bottom) splitting correction. The lower left panel shows the particle motion in SH–SV coordinates before (left)

and after (right) correction. Finally, the lower right panel shows the error surfaces of the eigenvalue (left) and cross-correlation (lower right)

methods. These represent the error surfaces of the respective best measurements. The location of the minimum is indicated by thin black lines
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Following equation (2), a minimum percentage anisotropy of

A = 2% corresponds to a delay time of dt ≈ 2 ∗ r/100/VSmean.

Typical S-wave velocities are in the order of 2000 m/s, result-

ing in expected delay times of 10 μs per metre raypath length.

For typical source-receiver distances of 100 m that requires at

least a sampling rate of 1000 Hz. A detailed discussion may

be found in Gibowicz and Kijko (1994). This ideal 3D array

setup is probably only possible in mining environments where

galleries allow easy access.

Eisner et al. (2009) presented a study on the accuracy of

event locations for various source-receiver geometries at a sin-

gle borehole situation. As shown below, the interpretation of

shear-wave splitting measurements requires reasonable direc-

tional coverage. If prior knowledge of the anisotropy is avail-

able the experiment design can be adopted accordingly. For

example, near-vertical fractures are best mapped with near-

vertically travelling rays. Verdon et al. (2009) pointed out that

minimal ray coverage from strategically planed directions can

be sufficient for a successful inversion.

SUGGESTED WOR K FLOW FOR FULLY

AUTO MATED S H EA R - W A V E SPL I T T I NG

We presume that the P- and S-wave arrivals have previously

been picked and only traces with both picks available can

be used. The P-pick is used for seismogram rotations (as dis-

cussed below) and obviously the S-pick serves as the basis for

the shear-wave window to be analysed for splitting. Also, we

assume that each of the traces to be analysed has a known

event location. Having both event location and P- and S-picks

available in all traces can also be regarded as an inherent 0th-

order quality control since only traces of reasonable quality

allows detection of both phases, especially if an auto-picker

and auto-locator is used. Furthermore, consistently rejecting

lowest quality traces from the data base significantly reduces

the computational costs.

The following steps are required to develop a consistent in-

put data set and the necessary parameters for an automated

splitting analysis. As a first step we recommend filtering out

any electrical noise from the raw, unrotated seismograms (see

Appendix). The characteristic relationship between source-

receiver distance and S-wave amplitude decay for the reservoir

in question should then be determined (Al-Harrasi et al. 2009).

This serves as a basis for the minimum length of the splitting

window. The maximum delay time in the grid-search, dtmax,

should be chosen based on the dominant frequency of the S-

waves. As a rule-of-thumb, this dtmax is approximately half the

average dominant period of the S-wave but can vary largely.

Finally, the window length for cluster analysis (Teanby et al.

2004b) should be chosen. Note that the shortest possible win-

dow must be longer than dtmax to avoid the wavelet being

shifted out of the analysis window. Obviously, overlapping

the P- and S-wave window and contamination with reflected

or refracted waves has to be avoided.

After these preprocessing and configuration steps the auto-

mated splitting is performed in four steps:

1 Rotation from sensor to geographical reference frame

(X-Y-Z to E-N-Z) by using check shots. If these are not avail-

able compare P-particle motion with straight line polariza-

tions.

2 Rotation from geographical to ray reference frame (E-N-Z

to L-SH-SV, see Fig. 3) by maximizing particle motion in the

P-window on one component (e.g., Vidale 1986; Jurkevics

1988). Note that this approach shows a 180◦ ambiguity of

the resulting polarization direction. This ambiguity can be

eliminated by identifying the correct quadrant using the event

locations or by incorporating the dip information of particle

motion in the inversion (Jones et al. in press).

3 Shear-wave splitting analysis using the cluster analysis for

multiple (100–250) test windows as described in Teanby et al.

(2004b). For very short source-receiver distances make sure

that the S-window does not include P-energy. The splitting pa-

rameters (Φ, dt) are determined by two different techniques,

the cross-correlation and eigenvalue method. Simultaneously,

the initial polarization of the corrected shear wave is deter-

mined from the corrected traces.

4 Quality determination by comparing the results of the two

techniques and the selection of the ‘good’ measurements for

further interpretation.

This is repeated for each event of every station, to obtain a

complete data set of shear-wave splitting parameters. Figure 5

Figure 5 (continued) and the individual results of the cluster windows are shown as circles. Additionally, the best result of the two methods

are shown in both plots as blue ‘+’ and red ‘x’ for eigenvalue and cross-correlation respectively. The upper right diagrams represent the fast

axis (top) and delay time variations for each window and include the corresponding error bars. Note the reduction of energy on the transverse

component and the linear particle motion. Furthermore, the two correction methods (XC and EV) give the same result in a) and different in b).

Small error bars indicate a clear and stable measurement. The null measurement in (b) has linear particle motion from the onset. Note the small

delay time estimates for the XC method and 45◦ difference in the fast orientation estimate. Cycle skipping causes repetitive patterns in the error

surfaces of both methods. See text for discussion.
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shows a diagnostic figure illustrating all steps of the splitting

process.

The proposed method of testing various windows around

the S-pick renders the results independent of picking accuracy.

However, the resolution of delay time and thus anisotropy is

limited by the sampling rate of the seismogram. Most un-

certainty in the determination of anisotropy is introduced

through the accuracy of event location and, to a smaller ex-

tent, the velocity model (equation (1)). Manual quality control

suggests that generally only around 10% of a given data set

produces good measurements, although that may vary with

wave form quality and picking accuracy. For further analysis,

we thus consider only measurements that have a quality value

Q above a certain threshold, which we denote Ŵ. Obviously,

this threshold can be varied if the data set is exceptionally

large or small. The overall signal-to-noise ratio of the data set

should be taken into account. We suggest using a threshold of

0.75 ≤ Ŵ ≤ 0.9.

VERIF ICATION USING A S YNTHETIC

MODEL

We first test the automated workflow for processing and in-

terpreting split shear waves on three synthetic data sets. In

accordance with Fig. 2, we simulate seismic waves passing

through a HTI and/or VTI medium within a background

matrix with vP = 3.009 km/s, vS = 1.654 km/s and ρ =
2340 kg/m3. Thomson’s anisotropic parameters for the VTI

are ε = 0.013, γ = 0.033 and δ = −0.001. These parameters

of the background matrix correspond to sandstone shale as

given in Thomsen (1986). The HTI medium simulates vertical

cracks striking at 30◦N with a crack density of ρc = 0.031.

The waves arrive at the station from all ranges of backaz-

imuths and inclinations in steps of 10◦ (cf. Fig. 2). For each

direction we simulated 20 seismograms of initial polarizations

between −45◦ and +45◦ to mimic variation of source mech-

anisms. We repeated this for 4 different signal-to-noise ratios

(S/N) between 2.5–20. Thus the synthetic data set consists in

28 800 3-component seismograms. Figure 6 shows the upper

hemisphere plots of the mean quality for the different models.

For each direction the mean quality of the 20 rays with differ-

ent initial polarization is calculated. As a threshold we choose

Ŵ ≥ 0.75 for good and Ŵ ≤ −0.75 for null measurements.

The reliability of the automation can be assessed by compar-

ing the automatically assigned quality Q with the separation

� between observed initial polarization and estimated fast S-

wave polarization. For a separation of � = 45◦, we expect the

effect of splitting to be strongest and thus the highest quality

of measurements, whereas for � = 0◦ and � = 90◦ we expect

nulls. Figure 7 shows a map of the distribution of results in

the �-Q plane. The automated quality control robustly as-

signs the correct quality. It shows that a separation from the

null direction of approximately � > 20◦ is required for split-

ting to be reliably detected. This now allows the selection of

a suitable threshold for a reliable measurement. These ‘good’

measurements can then be used for interpretation and we sug-

gest below an automated interpretation procedure that inverts

for best fitting rock physics parameters.

Figure 6 Distribution of mean splitting measurement quality in upper hemisphere for synthetic VTI, HTI and VTI+HTI media. Crosses indicate

‘good’ mean quality (Ŵ > 0.75) and circles ‘good nulls’ (Ŵ < −0.75). The remaining unconstrained measurements are represented as dots. The

bar in b) and c) indicates the strike of the HTI plane of isotropy.
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Figure 7 Result density map (or 2D histogram) of a synthetic data set of 28 800 measurements of varying source polarization and signal-to-noise

ratios through an HTI medium. The colour represents the number of measurements within a cell of a certain combination of quality value and

initial polarization. Note that good measurements require a separation between source polarizations and fast orientation of 30–60◦ and nulls

generally have a separation of 20◦ from source polarization. The signal-to-noise ratio strongly affects these limits.

AUTOMATED IN V E R S I ON

The measurement of Φ and A as outlined above can never be

the conclusion of a shear-wave monitoring experiment. The

shear-wave splitting observations must be interpreted in terms

of subsurface structure. When dealing with large quantities of

data that are generated by automated splitting analysis, in-

terpretation presents its own difficulties. Traditionally, when

interpreting shear-wave splitting measurements it is assumed

that Φ directly relates to the strike ϕc of a set of aligned

cracks, with increasing A representing an increase in crack

density ρc. However, Fig. 2 shows that the interaction be-

tween various fabrics and shear waves travelling at arbitrary

angles in the subsurface is complicated, often unintuitive and

always non-linear. Modelling the anisotropic structure using

rock physics theory helps with reliably interpreting the ob-

servations. Rather than relying on ‘chi-by-eye’ in comparing

models with observations, automated inversions (Sileny and

Plomerova 1996; Verdon et al. 2009) allow systematic explo-

ration of the whole parameter space. This becomes particu-

larly crucial when dealing with large data sets, where at first

glance the results can often appear as a cloud, with patterns

and structure not immediately obvious. How well the subsur-

face structure is imaged is highly dependent on the range of

arrival angles available in the data set (Verdon et al. 2009).

For instance, from Figs 1, 3 and 6 it is clear that near-vertical

waves will do a good job of imaging vertical fractures but will

not be able to image VTI fabrics. In this section we outline

a procedure for interpreting automated shear-wave splitting

observations.

The type of rock physics model to be used in inversion

should be dependent on the geological setting in question.

For instance, in hydrocarbon reservoirs, the most important

causes of anisotropy are aligned VTI sedimentary fabrics and

aligned vertical fractures. Hence, the free parameters in the

inversion are the strength of the VTI anisotropy, as given by

Thomsen’s (1986) γ and δ parameters, the strike of the frac-

tures, ϕc and the fracture density ρc. Alternatively, in some

settings it may be more appropriate to invert for two sets of

vertical fractures each with strike ϕc(1,2) and density ρc(1,2).

In hard rock and geothermal settings nearer to the surface,

fractures are more likely to be dipping and VTI is less com-

mon, so the free parameters become the fracture density, strike

and dip. There is no conceptual reason why the complexity

of the inversion could not be increased with the inclusion of

further fabrics. However, the inclusion of extra degrees of

freedom beyond those mentioned above often only leads to

trade-offs between parameters, rather than any significant re-

duction of misfit between the observed and modelled splitting

measurements.

Such inversion completes the automated splitting workflow

(Fig. 8). We follow the method outlined in Verdon et al.

(2009) by performing a grid search over the free parame-

ters chosen (ϕc, ρc, γ and δ in this case) and for each case

we compute the full 81 components of the elastic stiffness

tensor. Note that a grid search may not be the most com-

putationally effective approach but offers some protection

against local minima. We fix Thomson’s ε to γ /2, as ε does

not affect S-waves. For each elastic model the Christoffel
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Figure 8 Workflow of fully automated shear-wave splitting with quality control.

equation is solved to compute the splitting parameters (Φ

and A) for each arrival azimuth and inclination observed

in the data set. The misfit between modelled and observed

Φ and A is computed for each observation and summed to

give the overall rms misfit. Figure 9 shows the result of such

an inversion for an orthorhombic, VTI plus HTI, medium

as shown in Fig. 2. Directional coverage with good split-

ting measurements is excellent, as every possible direction is

covered by several initial polarizations of the S-wave. The

crack strike is well recovered, crack density and γ are slightly

underestimated.

AP PLICATIO N T O R E A L DA T A :

VALHALL OILF IELD

In this section we compare the results of the automation

to a previous manual analysis of the Valhall Oilfield in the

North Sea. Valhall is an overpressured, undersaturated Upper

Cretaceous chalk reservoir. The microseismicity mainly oc-

curs in the overlying siltstone cap-rock and is a consequence

of production-induced subsidence. Six seismometers were in-

stalled in a vertical monitoring well outside and above the

seismogenic zone. 324 events could be located during the

56 days recording period (Dyer et al. 1999), yielding 1908

usable records.

The manual approach of Teanby et al. (2004a) uses stack-

ing of the error surfaces from individual events of the top

three sensors to improve result quality, resulting in 144 reli-

able measurements. Further restricting the maximum accepted

error, yields 117 and 110 reliable measurements for Φ and dt

respectively. Using this method, the authors inferred a sin-

gle set of vertical cracks oriented N65◦E and maximum delay

times of 20 ms, or 2.5% anisotropy.

The automation allows easy variation of input parameters

and we tested the data set with different band-pass filters

(Maultzsch et al. 2003; Chapman 2003) with a lower fre-

quency of always 5 Hz and upper filter frequencies of 20 Hz,

30 Hz, 35 Hz, 40 Hz, 45 Hz, 50 Hz and 100 Hz. In order

C© 2010 European Association of Geoscientists & Engineers, Geophysical Prospecting, 58, 755–773



A strategy for automated analysis of passive microseismic data 767

Figure 9 Inversion results for the VTI+HTI model. The upper right plot gives an upper hemisphere projection of the arrivals used in splitting

analysis. In the other panels we plot the RMS misfit between observation and model as a function of fracture density, fracture strike and

Thomsen’s γ and δ parameters. The 90% confidence interval is marked in bold and the best fit model is indicated by red lines.

to mimic the results by Teanby et al. (2004b) we restricted

the maximum delay time to 20 ms and 40 ms, respectively

(see Table 2). Figure 10 shows the histogram of delay times

for the XC and EV methods for the different parameter sets.

Note the large amount of very small XC delay times and max-

imum possible EV delay times for all parameters, representing

null measurements. These peaks are more pronounced for the

40 ms tests. In combination with the peak at maximum XC

delay times for both 20 ms tests, this indicates that limiting

the maximum delay to 20 ms will miss useful results and un-

derestimate the percentage anisotropy and eventually fracture

density and/or VTI strength.

One important problem, especially when working with

band-limited data, is cycle skipping (Teanby et al. 2004b;

Vecsey et al. 2007). This effect can be observed in the

Valhall data set particularly well for the 50 Hz, 40 ms test

(Fig. 10b,f) by a minimum of estimated EV-delay times at

approximately 16 ms. The panels on the right-hand side of
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Table 2 Results of the automated splitting inversion of the Valhall

data set using different filters and maximum delay times

Number of good ϕc ρc γ δ

20 Hz 40 ms 92 75◦ 0.075 0.020 0.02

30 Hz 40 ms 231 110◦ 0.105 0.145 0.06

35 Hz 40 ms 260 115◦ 0.100 0.085 0.05

40 Hz 40 ms 261 115◦ 0.100 0.135 0.05

45 Hz 40 ms 213 135◦ 0.095 0.085 0.04

50 Hz 40 ms 173 165◦ 0.090 0.065 0.04

100 Hz 40 ms 140 170◦ 0.085 0.070 0.04

30 Hz 20 ms 60 60◦ 0.045 0.020 0.15

50 Hz 20 ms 141 170◦ 0.040 0.055 0.02

100 Hz 20 ms 125 140◦ 0.040 0.050 0.02

Fig. 10(e–h) show the distribution of the dominant frequencies

of the signal within the best S-window. This shows a Gaussian

distribution of dominant frequencies centred around 32 Hz. It

is thus obvious that the minimum in EV-delay times is caused

by cycle skipping (Fig. 5) but it is impossible to judge the

‘correct’ delay time. However, the spike at 20 ms in XC- and

EV delay times for the tests limited to a 20 ms delay supports

the assumption that such limitation underestimates the true

anisotropy and misses a non-negligible amount of large delay

time measurements. Furthermore, two estimates of a delay

time from two independent splitting methods add confidence

to the result. Cycle skipping affects the delay time estimate and

hence the strength of anisotropy, while the fast orientation

estimate can be 90◦ wrong. In our inversion technique cycle

skipping may only affect the resulting fracture density and

VTI strength but not the inferred crack strike (Fig. 11).

Figure 10 Distribution of delay times (first and third column) observed at the Valhall field for the EV (dashed) and XC method (solid) at the

different parameters analysed. The y-axis for all plots shows the number or measurements within each bin. Note the large amount of very

small XC delay times and maximum possible EV delay times for all parameters, representing null measurements. The peak at maximum XC

delay times for dtmax = 20 ms indicates that this maximum delay is selected too short. Interestingly, there is a minimum in EV delay times at

approximately 16 ms, which may indicate a cycle skipping effect for a signal with dominant frequency of 32 Hz. The histograms of dominant

frequencies for each of the test (second and third column) show a peak at this frequency.
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Figure 11 Inversion results for the Valhall North Sea oilfield in the same format as Fig. 9. This example shows the results for an upper filter

frequency of 30 Hz, maximum delay time of 20 ms and a quality threshold of Ŵ ≥ 0.8. See Fig. 9 for description and Table 2.

The splitting results are now inverted for VTI and HTI

anisotropy. We use a quality threshold of Ŵ = 0.80 and the

same additional error constraints as in the manual approach.

The results are presented in Table 2 and replicate the results

of the manual approach of Teanby et al. (2004b) for a filter

of 30 Hz and restricting the maximum delay time to 20 ms.

Figure 11 shows the error surface plots for that inversion.

Note that the anisotropy parameters at Valhall show varia-

tion with frequency bands used. The fracture strike rotates

from N75◦E at low frequencies to N170◦E at broader band-

widths with fracture density, γ and δ slightly decreasing with

increasing bandwidth. Exploring the details of that frequency

dependence is beyond the scope of this paper.

S U M M A R Y

We have presented an automated method for shear-wave

splitting analysis that provides an objective estimate of the
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quality of the measurement. Based on characteristic differ-

ences between two splitting techniques the quality of a mea-

surement can be determined robustly. As a result, good and

null measurements can be easily distinguished. The best mea-

surements are then used in an inversion routine to determine

the anisotropy parameters of the rock mass. Here, we use

this approach to infer dominant crack orientation and density

as well as the strength of anisotropy caused by sedimentary

fabrics.

This workflow may be extended in the future. Given a long

enough recording period, the process may be applied to sub-

sets of the data to analyse the temporal variation during ob-

servation/production. Furthermore, shear-wave splitting to-

mography will help isolating zones of anisotropy along the

raypaths (e.g., Abt and Fisher 2008). However, this requires

very good ray coverage, which is not yet available in most ex-

periments. And finally, recent publications have demonstrated

that frequency dependent shear-wave splitting may yield in-

formation about the actual fractures size and/or pore connec-

tivity (e.g., Marson-Pidgeon and Savage 1997; Liu et al. 2006;

Maultzsch et al. 2003; Brown and Gurevich 2004; Al-Anboori

et al. 2005). The Chapman (2003) fracture model allows for

pressure equalization from pore to crack to fracture scale,

each of which should show different relaxation time scales

and sensitivity to different frequencies of the wave and hence,

a frequency dependent shear-wave splitting.

The automated shear-wave splitting technique presented

in this paper enables processing of large data sets relatively

cheaply. In production environments this automated process-

ing may be used as a real-time monitoring tool. It may even be

possible to apply this technique in real-time to laboratory and

field shear experiments, to monitor fractures evolution ahead

of rock failure.
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APPENDIX: A DAPTIVE F ILTERING

OF PERIODIC NOISE

Periodic noise is a common problem in seismic records. 50

Hz is most common as it represents the transmission grid fre-

quency. Some trains (also in mines) work on 16.7 Hz or 25 Hz.

Higher frequencies can be introduced by overtones. Finally,

some tool used in production or by nearby industries can cause

a characteristic periodic noise (Bokelmann and Baisch 1999).

Butler and Russelly (2003) described a method to filter

out multi-frequency stationary noise, aimed to cancel multiple

harmonics of a dominant noise frequency. However, periodic

noise frequencies may not be consistent for every recording of

each sensor, perhaps due to varying sources of noise and/or

beating as an artefact of resampling the seismogram in the pre-

processing. We propose an adaptive multi-notch filter based

on the Fourier transform of the autocorrelation of a noise

window. The noise window is chosen to be from the start of

the seismogram to 50 samples before the P-pick. An autocor-

relation of the window ensures that any dominant frequencies

are amplified and thus better detected than pure white noise.

The frequency spectrum SNoise of the noise is normalized to

Figure A1 Examples of the self-adopting periodic frequency filter for two seismogram examples. Top panels show original (red) and filtered

(black) seismograms. The lower panels show the normalized power spectrum for the different stages of filtering: initial (red), first run (blue)

and final (black). The upper part of the panel represents the notch filter, a weighted filter factor F in frequency domain. Note that only spikes

produced by periodic noise are filtered, whereas spikes in the signal part remain intact.
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form a notch filter F

F = 1 − (SNoise/ max(SNoise)). (6)

The filtered seismogram trace T is then the inverse Fourier

transform of the product of the spectrum of the complete

seismogram SSeis multiplied by the filter F:

T = ifft(SSeis × F ). (7)

Figure (A1) shows two examples of this filter. We found best

results when applying this filter twice. More runs may be ap-

plicable in complex settings. Furthermore, different (decreas-

ing) weighting factors ω for the filter can be applied in each

step. This may ensure that the first dominant frequency is

filtered out, whereas the remaining filters might detect signal-

containing frequencies and thus must be damped less in order

to maintain signal fidelity.
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