
A Strategy for Decomposing

Complex Queries in a Heterogeneous DDB

S. M. Deen, R. R. Amin, M. C. Taylor

Preci Project, Department
University of Aberdeen,

Of Computing Science,
Aberdeen, Scotland.

Abstract

In a generalised distributed database
system with decentralised controls and
heterogeneous and pre-existing nodes,
queries can be very complex, particularly if
they provide a data integration facility.
We describe here an algorithm for the
optimal decomposition of such queries into
subqueries, taking into consideration the
availability of nodal operations (some
nodes may not be able to perform all
operations) and other factors. This
algorithm is being implemented in the PRECI*
system.

In a distributed database system, an
efficient query processing strategy is
essential for ameliorated performance. In
general there will be many possible
strategies for processing a particular query,
and ideally each of these should be evaluated
in order to determine the best strategy.
Unfortunately, however, the,problem of
selecting optimal strategies for complex
queries 1s NP-complete, so it is not feasible
to evaluate every strategy for such queries.
Many query decomposition algorithms have
therefore been designed to produce optimal or
near-optimal strategies only under a set of
highly restrictive assumptions that apply to
a particular implementation (1, 2). The only
algorithm developed for a DDB which allows
heterogeneous pre-existing databases as nodes
is that of the MULTIBASE project (3). They

Permission 10 copy without fee all or part of this material is gmnted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice Zr given that copying is by pennksion of the Very Lave
Data Lkse Endowment. To copy otherwise, or to repubhh, requbes a fee
and/or special permission from the Endowment.

Proceedings of the Tenth Intematlonal
Conterence on Very Large Dats Bsses.

evaluate strategies in terms of data movement
and local processing, disregarding response
time. All final processing is done at the
result node, so that there is little parallel
processing. In PRECI* (4, 6) we have aimed to
achieve a higher degree of parallelism while
still taking account of data movement and local
processing.

Recognising the NP completeness of the general
problem, we propose to tackle it in two stages:
optimal decomposition of a query into subqueries
and the subsequent allocation of the subqueries
optimally to nodes, taking into account the
presence of replicated data and network charac-
teristics. We believe that for complex queries
in heterogeneous DDBs, this two-staged approach
is most fruitful although it may not yield the
optimal strategy. In this paper, we present
Only the decomposition strategy which involves
determining the order of operations to be
performed, applying transformations to the
original query expression in order to reduce the
total cost (in terms of data movement and local
processing) or to reduce response time by
increasing parallelism without increasing the
total cost. Operations are then grouped into
subqueries. For the node allocation stage, we
decide where each subquery should be executed,
evaluating each possible strategy according to
the total cost and response time. There may be
many possible strategies since, in PRECI*,
operations on external data (data sent from
another node) may be performed at any node which
supports an appropriate interface, unlike in
MULTIBASE where only the result node is used for
such operations. We assume that a given node
may not be able to perform all PAL operations,
and this is taken into consideration in the
query decomposition strategy.

PRECI* is a generalised distributed database
management system supporting heterogeneous,.
possibly pre-existing, databases as nodes (4, 5).
It also allows data replication under global
supervision. Any database may join PRECI* as
a node, provided it supplies a minimal
relational interface, and any network could be
used to link the nodes. Queries to the DDB are
expressed in the PRECI algebraic language (PAL),

Singapore, August, 1994

397

and address a global external schema which is
defined, optionally via a global conceptual
schema, in terms of the nodal schemas, using
PAL. A query can be represented as a parse-tree,
Its mapping to the collection of nodal schemas
is then done by query modification, by which
each relation in the parse tree is replaced by
its definition in terms of the nodal schemas.
Because the nodes can be pre-existing data-
bases, there are likely to be incompatibilities
between them which must be resolved by data
integration techniques (5, 7, 8). PAL contains
a number of constructs specifically for data
integration (more details later). When mappings
between nodal and external schemas are complex,
even a fairly simple query over a global
external schema can become quite complex when
mapped to the collection of nodal schemas.

Once the query has been expressed over the
collection of nodal schemas, decomposition
proceeds. Given a query expression there are
two decisions to be made:

(1) What is the best decomposition of this
expression into subexpressions?

(2) Can the expression be improved by
transforming it to an equivalent
expression?

Decom osition
1

of an expression can be
done y

repeat

identify a branch of the parse tree that
can be answered by a single node;
detach this branch and replace it by a
single vertex available to all nodes;
s while (more than one subexpression is left)

(a branch of a query tree can be answered by a
single node if each vertex is available to that
node. A relation is available to those nodes at
which it is stored, while an operator is
available to those nodes which support that
operator as part of their relational interface.
Any other vertex is available to all nodes).

In determining the best set of subexpressions,
we take the view that usually an expression
should be broken only where necessary, with as
few subqueries as possible. The fewer the sub-
queries, the fewer the number of intermediate
results to be sent between nodes. Further, a
subquery involving a large number of operations
will often produce a result substantially
smaller than the sum of the sizes of its
constituent relations. So this strategy should
produce low consnunication costs. For some types
of expression it will also reduce local
processing costs by doing processing on locally
stored data, rather than on external data (data

Proceodlnga of tha With IntemaUonal
Conloronoa on Voy Larga Data Sams.

398

sent from another node) for which indices are
not available.

However, there are situations in which an
expression, which is the union of two sub-
expressions, is best divided even if it could be
answered by a single node. This is because the
result of a union operation is large in
comparison to its operands, and performing a
union on external data is not expensive.

Thus the breakpoints of an expression (i.e. the
vertices at which it should be split into sub-
expressions) are the following:

(1) any vertex which is the root of a
subtree whose vertices are not all
available to a single node;

(2) any vertex which holds a union operator.

From a query expression, and the list of break-
points which describe its decomposition, we then
seek transformations which can improve the query
expression. There are two classes of transforma-
tions to be considered:

(1) distribute a unary operation over a
binary operation

(2) change the order of two adjacent unary
operations.

Obviously these transformations can only be
considered if they produce an equivalent query
expression.

When considering transformations in class (l), we
apply the following rules:

1 Rule

Distribute a unar
operation if the is

operation over a binary
inary operation is a

breakpoint of the expression and the unary
operation tends to reduce the size of its
operand.

Rule 2

Distribute a unar
operation if the f:

operation over a binary
inary operation is a

breakpoint of the expression; the unary
operation does not significantly increase

. the size of its operand and is best done
on locally stored data; and the operand . . -
is locally stored (i.e. no descendant of
me binary operation in the expression
tree is a breakpoint).

Transformations in class (1) allow the unary
operation to be applied before data transmission.
When Rule 1 applies, this means that the trans-
formation has reduced the volume of data
transmitted. Selection and projection are

Sbgqioro, August, 1984

examples of unary operations which fall into
this category. When Rule 2 applies, processing
time can be reduced by performing the unary
operation on locally stored data, where indices
are available, and sometimes response time can
be improved by increasing parallelism.

When considering transformations in class (2),
we apply Rules 3 and 4:

Rule 3

Change the order of two adjacent unary
operations if the first operation (i.e.
the first to be evaluated) is a break-
point and the second operation reduces
the size of its operand.

Rule 4

Change the order of two adjacent unary
operations if the first is an
expensive operation and the second
reduces the size of its operand.

Applying Rule 3 allows an operation to be
performed which reduces the volume of data to
be transmitted. Applying Rule 4 gives the
expensive operation a smaller operand on
which to work, thereby reducing processing
costs. For example, if a node is unable to
perform some unary operation on its data, it
will have to send the data to another node for
processing. In such cases a transformation
under Rule 3, which causes a selection or
projection to be done first, will be profit-
able. Similarly, a transformation under Rule
4 can cause a selection or projection to be
done before a complex operation.

To illustrate the application of these
principles to query decomposition in PRECI*, we
must first describe some of the constructs of
PAL. PAL is based on the relational algebra
but permits nested selection and includes some
special constructs which are particularly useful
for data integration. The use of these
constructs is described in (5).

The "alteration" command has two forms. It can
either extend a relation by an extra attribute,
or it can define an attribute to replace one of
a relation's existing attributes. The crux of
the syntax is:

R : EXT(C = <attribute definition>) 1)
S : REP(C BY b II= (attribute definition>I) I 2)

The symbol '*' may be read as "where". In (1)
the relation-R is extended by a new attribute C,
subject to an optional predicate, In (2) the
attribute C in relation S is replaced by
attribute b. The new attribute will take the
same values as C, unless the optional clause is
included to define b in the same way as in (1).

Proceedings of the Tenth Internatlonal
Conference on Very Large Data Bases.

399

The transpose operation also has two forms:

TRC(R : (cl, c2, cn)+c, b)
TCR(S : c+(cl, c2, . ..(cn), b) II :

The operation TRC (Transpose Rows to Column)
transforms a (n t 1)ary relation R (a, cl, c2,
. . . . cn) into a ternary relation T (a, b, c) by
changing cl to cn of the same domain into part
'of a new column c, and by adding a new attribute
b for sequencing. Attribute a can be composite.
Conversely TCR (Transpose Column to Rows)
transforms a ternary relation into an (n t 1)ary
relation by changing column c into a row
described by attributes cl, c2, cn in order
of the values of b.

These integration commands can involve a
substantial amount of processing so they are
best done before data transmission, i.e. when
indices are available. The decomposition
algorithm aims to achieve this whenever possible
by applying appropriate transformations to the
query expression.

We can now apply the rules described earlier to
PAL expressions. Selection and projection are
unary operations which reduce the size of their
operands, so-by Rule 1, they should be distri-
buted over any binary operation which is a
breakpoint, provided the transformation produces
an equivalent expression.

Alteration is a unary operation which meets the
requirements of Rule 2 when its operand is
locally stored, so it should be distributed over
union. Sometimes alteration can increase the
size of its operand, but in practice it will
often be followed by a selection or projection
which can also be distributed over the union to
decrease the size. Transpose also meets the
requirements of Rule 2 so it too can be
distributed over union.

When an alteration is adjacent to a selection or
projection, it is preferable to do the selection
or projection first - the requirements of Rule 3
and of Rule 4 are met in this case. This will
not be possible however when a selection is
defined in terms of attributes created by the
alteration, or if a projection removes
attributes needed for the alteration.

These transformations produce an optimised query
expression together with the breakpoints which
indicate the points at which the expression
should be split into subexpressions. An
optimiser can then take over to carry out the
second stage, namely, subquery allocations to
nodes based on estimates of the communications
cost, processing cost and response time of each
strategy. We have not yet studied this second
stage of optimisation.

Singapore, August, 1994

The query decomposition technique is currently
being implemented as part of a research proto-
type of PRECI* at Aberdeen. A fuller
description of the technique is given in (6).

This work is supported by the UK Science
Research Council and EEC Cost 11 his grants.
We wish to thank all our PRECI collaborators,
particularly David Bell of Ulster Polytechnic
and Jane Grimson of Trinity College, Dublin
for comnents and suggestions.

References

1.

2.

3.

4.

5.

6.

7.

8.

Hevner A- & Yao S. B. "Query Processing
in a Distributed Database", Proceedings of
the Third Berkeley Workshop on Distributed
Data Management and Computer Networks,
Berkeley, California, August 1978.
Epstein R., Stonebraker M. & Wong E.
"Distributed Query Processing in a
Relational Database System", Proceedings
of ACM SIGMOD Conference, May 1978.

Dayal U. "Processing Queries over
Generalisation Hierarchies in a Multi-
database System", Proceedings of the
Ninth International Conference on Very
Large Databases, Florence, Italy, 1983.

Deen S. M., Amin R. R., Ofori-DwumfuoG. 0.
& Taylor M. C. "The Architecture of a
Generalised Distributed Database System -
PRECI*", to be published in the Computer
Journal.

Deen S. M., Amin R. R. 41 T
"Data Integration in Distri "i:

lor, M. C.
uted

Databases", submitted for publication.

Deen S. M., Amin R. R. & Taylor, M. C.
"Query Decomposition in PRECI*",
Proceedings of the Third Seminar on
Distributed Data Sharing Systems, Parma,
Italy, 1984 (to be published by North
Holland; F. Schreiber and W. Litwin eds).

Motro A. & Buneman P. "Constructing
Superviews", Proceedi s of ACM SIGMOD
Conference, Michigan, 7 981.

Dayal U. h Hwan H. Y. "View Definition
and Generalisat on 9 for Database Integration
in MULTIBASE: a System for Heterogeneous
Distributed Databases", Proceedin s of the
Sixth Berkeley Workshop on Distri ii uted Data
Management and Computer Networks, 1982.

Procoodlnga of tha Tenth Intomtilonrl
ContoronceonVoy~rgoD~~.

