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ABSTRACT

This paper presents a systematic method for simultaneously
defining a software architecture and selecting off-the-shelf
components for reuse. The method builds upon existing
techniques for component selection and architecture evalu-
ation. We identify architectural decisions that have a large
effect on the components used early in the process so that
different ways of building the system can be investigated.
The result of applying the method is a partial definition of
a system’s architecture along with a set of components that
could be incorporated.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures;
D.2.13 [Software Engineering]: Reusable Software

Keywords

Component-based software engineering, component selec-
tion, software architecture, multi-criteria decision making

1. INTRODUCTION

Maintaining consistency between the architecture of a sys-
tem and the components available in the market is a per-
sistent concern in component-based software engineering.
When functionality is packaged as a component, architec-
tural assumptions are made that affect the role it plays in a
system [8]. By incorporating off-the-shelf components, one
accepts their architectural restrictions. Implicitly, the selec-
tion of components and the definition a system’s architec-
ture are intertwined [7, 17]. When the architecture chosen
does not accommodate a particular type of component, we
have a choice: either change the architecture or use a differ-
ent component. The presence of this choice is fundamental
to the selection of multiple components. Allowing the flex-
ibility to make changes in either area complicates the de-
sign process—instead of performing a unilateral comparison
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between components available and components needed, we
must manage the simultaneous evolution of both.

This complication can be eliminated by reducing the mul-
tiple selection problem to several instances of the traditional
selection problem. Instead of trying to match components
with a changing architecture, we specify multiple alterna-
tives for the architecture that remain constant. The fitness
of each component in one architecture or another is eval-
uated by analyzing the architectural assumptions it makes
(at least those that are discernible early in the process).
Essentially, we are treating each possible change as a dif-
ferent architecture and then analyzing the components that
can be used with that architecture (using traditional com-
ponent selection techniques). Each architecture and its set
of corresponding components is a solution. At this point we
must decide which solution is the most favorable.

This paper presents a systematic method for defining com-
ponents and architecture together. Applying the method
produces a set of feasible approaches for building a system
(an approach is an architecture and a set of corresponding
components). Given these alternatives, we describe how to
evaluate the tradeoffs involved with each approach to arrive
at an outline of the architecture and components that best
satisfy the needs of the system. Section 2 describes back-
ground information, and section 3 details the method. We
discuss conclusions and areas for future work in section 4.

2. BACKGROUND
2.1 Definitions

Component A component is an existing piece of soft-
ware written with reuse in mind that can be deployed with
little or no modification. We assume that components are
designed to be used in certain types of applications, which
implies that there are constraints regarding the incorpora-
tion of a component into a system. Components can be
obtained in-house or off-the-shelf. A more precise definition
of a component can be found in [22, 9].

Architecture Software architecture deals with the defi-
nition of components, their external behavior, and how they
interact [15, 2]. In this context an architecture contains a
description of component needs or roles. The process of
architectural definition can be viewed as a number of ar-
chitectural decisions that need to be made. We are chiefly
concerned with the way in which these decisions affect the
components needed by the system.

Architecture can be expressed informally; or using mod-
eling (as in UML 2.0 [3]) or an architecture description lan-



guage [15]. A more formal way to express an architecture
is useful because it may uncover more subtle architectural
assumptions; however, the method we present does not rely
on any specific technique for specifying architecture.

Architectural Approach The process of defining an ar-
chitecture involves decisions about components and their in-
teractions. An architectural approach captures instances of
these decisions, thereby partially specifying the components
needed by a system and restrictions on how they interact.

Implementation Approach The specification of an ar-
chitectural approach provides us with a list of components
needed. When an architectural approach is combined with a
set of actual off-the-shelf components that meet these needs,
the result is an implementation approach.

2.2 Related Work

Research in the area of component selection is closely re-
lated to the method described in this paper. Our method
builds upon existing component selection techniques to ad-
dress a more complicated problem. Component selection
methods are traditionally done in an architecture-centric
manner, meaning they aim to answer the question: given a
description of a component needed in a system, what is the
best existing alternative available in the market? Existing
methods include OTSO [12], STACE [13], and BAREMO
[14]. These methods define criteria upon which to judge al-
ternatives for a component role and the synthesis of multiple
criteria to decide the most promising alternative.

Another type of component selection approaches is built
around the relationship between requirements and compo-
nents available for use. The goal here is to recognize the
mutual influence between requirements and components in
order to obtain a set of requirements that is consistent with
what the market has to offer. This is done by merging re-
quirements engineering and component selection techniques.
Examples of these methods include PORE [16] and CRE [1].

In relation to existing component selection methods, our
approach aims to achieve goals similar to those of PORE
and CRE, except we are interested in the relationship be-
tween architecture and components instead of requirements
and components. While the mutual influence between re-
quirements, architecture, and components is well known [7,
17] we are unaware of any systematic methods that address
the simultaneous definition of architecture and component
choices.

In any component selection method, it is unrealistic to ex-
pect a perfect match between components needed and com-
ponents available. A group of components that compose a
system may have overlaps and gaps in required function-
ality. A gap represents a lack of functionality; an overlap
can cause a confusion of responsibility and degrade non-
functional properties like size and performance. Techniques
to express and minimize gaps and overlaps are described in
[18] and [10].

While existing component selection techniques guide the
analysis of components, architecture evaluation analyzes the
properties of architectures. Of the methods in this area,
ATAM [11] is particularly relevant due to its treatment of
quality attributes and scenarios. An architectural decision is
analyzed by observing the effect it has on certain properties
(quality attributes) of an architecture. Quality attributes
are elicited through the use of scenarios. Alternatives for an
architecture can be evaluated by applying scenarios and an-
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alyzing how well each alternative satisfies the relevant qual-
ity attributes. These techniques are used in our method to
evaluate architectural approaches.

The interdependencies between architecture and compo-
nents can be traced back to the phenomena of architectural
mismatch. Influential papers in this area include [8] and
[21]. Mismatch occurs when components in a system make
conflicting architectural assumptions. In the context of this
paper, we determine architecture and components by finding
a satisfactory solution with a minimal amount of mismatch.

Finally, we rely on existing multi-criteria decision mak-
ing techniques to balance tradeoffs. The Analytic Hierarchy
Process (AHP) [19] provides a method to assign a relative
importance to each criterion in a consistent manner. Using
the notion of a utility function [4], values measured for each
criterion can be mapped to a common scale that represents
”overall usefulness”. For a good description of the subtleties
of multi-criteria decision making, we recommend [5].

2.3 Example System

An example system is referenced throughout the paper for
clarification. The system under analysis was a senior design
project at Milwaukee School of Engineering named Reac-
tion! Presentation Software. Reaction! allows the user to
create multimedia enhanced presentations that include syn-
chronized 3D animations, audio, and video. A sophisticated
component selection method is ideal for this type of appli-
cation due to the large potential for reuse and the diversity
of components available.

Figure 1 sketches a generic architecture for this system.
A presentation is authored through a user interface. To
execute the presentation, the file is parsed and interpreted
to create a collection of Scene objects (for each slide) that
get rendered. The rendering component makes use of various
APIs.

3. AREDUCTION APPROACH

The difficulty of orchestrating the changes between archi-
tecture and components directly is that a decision made in
one area often influences the other area in a way that is not
well understood up front. The reduction approach is advan-
tageous because we postpone making architectural decisions
until we have analyzed the constraints that those decisions
put on the components that can be used.

The process consists of five steps, which are shown in Fig-
ure 2. The numbers order the steps in the process, which
are explained in the following subsections.

3.1 Choosing Key Architectural Decisions

Our goal is to model a flexible architecture with specifica-
tions for multiple architectures that will remain constant. A
set of fixed architectures allows components to be selected
using traditional techniques. However, it is not practical to
anticipate and formulate every possible change that could be
made. Instead, we must focus on identifying and modeling
only the most important changes.

The process of defining an architecture can be viewed as a
set of decisions. Decisions are made on various aspects of an
architecture, for example: architectural style, decomposition
of functionality into components, infrastructure, protocols,
and data formats. To identify these decisions, one must
understand what the system will do and have ideas for how
it could be built.



E » Parser P Interpreter g Renderer
pr— :
7'}
Presentation
File GuI 3D API Sound AP 3D Text API
Figure 1: A sketch of the architecture for the Reaction! system.
1. Choose Key of th§ R.eact?'on.’ systerr.l. The first two decisions relate to
»  Architectural | thfe dlStI‘ljbl'ltIOIl of functionality across components, and the
Decisions third decision concerns data format.
1. Object Abstraction A presentation will include a
3 number of graphics objects. Should these objects know
2. Model how to render themselves (K AD1,), or should they be
Component decoupled from rendering mechanisms (K AD13)?

Marketplace

A

3. List Feasible

Implementation
Approaches

A

4. Choose Best

Implementation
Approach

Figure 2: Steps in the process. The upstream arrows
indicate iterative paths through the steps.

An architectural approach can be characterized by choos-
ing an alternative for each aspect. Each choice places dif-
ferent limitations on the components that could feasibly be
used. The architectural decisions identified are analogous to
sensitivity points in constraint optimization problems. Each
decision is an independent variable, and the alternatives for
a given variable represent the values it can assume. The de-
pendent variable is the set of components that could feasibly
be used in the system. A decision is a sensitivity point if
different alternatives for that decision yield widely varying
sets of components to choose from.

The knowledge required to judge which decisions will have
a large influence on component selection can be derived from
domain knowledge. Additionally, it may be useful to do an
initial exploration of the component marketplace to identify
trends in the types of components available. The underly-
ing architectural decisions at work can be inferred from the
differences between predominant component types.

An architectural approach is the result of only a few key
decisions to fully specify an architecture. Key decisions must
affect component selection. Decisions that are independent
of the components used can be made at any time based on
the merit of the alternatives themselves and do not need
to be considered when analyzing the relationship between
architecture and components.

We consider three architectural decisions in the analysis
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Object Communication How are the objects syn-
chronized? Will they keep track of timing individu-
ally (K AD2,), or will a master object coordinate them
(KAD2)?

Presentation Format What is the best file format
to store presentations in? Choices could include XML
(KAD3,) or as serialized objects (K ADgp).

3.2 Modeling the Component Marketplace

The next step identifies candidate components for reuse.
This is by nature a loosely defined activity because a specific
description of the components needed is not available yet.
Thus, the goal is to identify components that may prove
useful in the construction of the system. The functional
requirements of the system should provide some guidance,
in that one can search for components that provide some
portion of the functionality described by the requirements.

Each candidate component needs to be analyzed with re-
spect to the assumptions it makes about the type of archi-
tecture it will be used in. When this information is coupled
with a description of each component’s basic functionality
(provided and required), we have a portrait of the compo-
nents the marketplace has to offer and the types of applica-
tions they were designed for. The result is a Model of the
Component Marketplace (MCM), that we will utilize later to
decide which components satisfy certain architectural con-
straints.

We represent the MCM in three matrices. Candidate com-
ponents are listed along the columns of each matrix. A
requirements fulfillment matriz and component dependency
matriz show the functionality provided and required by each
component. An architectural assumptions matrix documents
the relationship between each component and the key archi-
tectural decisions. Tables 1, 2, and 3 show examples of these
matrices.

The relevancy of each architectural decision can be evalu-
ated by observing the architectural assumptions matrix. De-
cisions that have no relationship with any candidate compo-
nents (e.g. KAD> and KAD3) can be removed—they don’t
help characterize the relationship between architecture and
available components. The most significant key architec-
tural decisions are found by iteratively selecting them and
analyzing their relationship with existing components.



Table 1: Abbreviated Requirements Fulfillment Matrix: Each mark signifies that the component in the
column provides the functionality listed in the row.

Ogre DirectX OpenGL OpenAL OGLFT Qt
Scene Mgmt. b'q
Graphics API X X
Audio b'¢ b'd
3D Text X X
GUI Widgets b'e
. . . one component in C.
Table 2: Abbreviated Architectural Assumptions
Matrix: The use of Ogre implies a commitment to 2. C is self-sufficient. Every dependency documented in
KAD;,, where objects render themselves. the component dependency matrix is provided by a
Ogre DirectX component in C.
KADq la
KAD, 3. The alternatives chosen in the architectural approach
K ADs AA are consistent with the assumptions in the archi-

tectural assumptions matriz for each component in C.

Our example implementation approach I A., satisfies con-
ditions 1 and 3. The set of components for A, is not
self-sufficient because DirectX requires MFC, which is not a
member of the set.

Using this definition, multiple feasible implementation ap-

Table 3: Abbreviated Component Dependencies
Matrix: Ogre requires an underlying graphics API,
and DirectX can only be used with MFC. OGLFT
and GLTT are used with OpenGL

Graphics API MFC OpenGL ; . .

Ogre < proaches can be associated with the same architectural ap-
DirectX < proach. For example, (AAey, {DirectX,Ogre, MFC?}) and
OGLFT - (AAcz,{DirectX,Ogre, MFC,Qt}) are both feasible. To

GLTT ” reduce the number of superfluous permutations, it is useful

to define a greatest implementation approach. An imple-
mentation approach (AA, C) is the greatest implementation
approach for the architectural approach AA if VC'((AA,C")
is feasible) = C’ C C. According to our definition of fea-
sibility, there can only be one greatest implementation ap-
proach.

Calculating the greatest feasible implementation approaches
using the matrices from the MCM is straightforward. Up to
this point, we have assumed that a combination of compo-
nents is either feasible or not. In reality, a set of components
may be a viable option even when some level of architectural
mismatch is present. To accommodate this, we can make the
stipulation that only strictly infeasible implementation ap-
proaches are to be eliminated. Implementation approaches
that introduce an acceptable level of mismatch are included
in the set of possibilities. Alternatively, a more restrictive
policy would more selectively choose which implementation

With these matrices, it is possible to determine if a par-
ticular choice of architectural alternatives (an architectural
approach) has an associated set of components that provides
the necessary functionality. An architectural approach with
such a set of components constitutes a feasible implementa-
tion approach.

3.3 Enumerating Feasible Implementation Ap-
proaches

Each implementation approach represents a different way
to build the system. Before defining an implementation ap-
proach more formally, we must define an architectural ap-
proach. Step 1 of the process defined a set of key archi-
tectural decisions KAD:... KAD,,. Each key architectural
decision has an associated set of alternatives, represented

by the sets Axap,...Axap, . An architectural approach is
a member of the set AKADl X AKAD2 X ... X AKADH. In
the Reaction! analysis there are only two distinct architec-
tural approaches (since we eliminated KAD; and K AD3),
for example AAq; = (KAD1,).

Let C\, be the set of all candidate components identified
in step 2 of the process. An implementation approach I A
is defined by the tuple (AA,C) where AA is an architec-
tural approach, C is a set of components, and C' C C,.
Using the example architectural approach from above, we
can construct an implementation approach by adding a set
of components: [A., = (AAes, {DirectX, Ogre, Qt}).

An implementation approach 1A = (AA, C) is feasible if
it satisfies the following constraints:

1. The components in C' satisfy the functionality required
by the system. This condition is met if each row of the
requirements fulfillment matriz is covered by at least
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approaches are feasible, but run the risk of eliminating the
best option.

To deal with the option of creating a custom component
if no satisfactory off-the-shelf components exist, we intro-
duce the concept of a generic custom component. If the
components for an implementation approach do not satisfy
the first feasibility constraint, a generic custom component
(to be constructed later) is used as a place holder. This
preserves the implementation approach as an option until
the next step, where we must evaluate if it is worthwhile to
build the custom component.

Table 4 shows the greatest feasible implementation ap-
proaches for the Reaction! system. An implementation ap-
proach may include many components that provide the same
functionality. If these components are interchangeable, then
the implementation approach is consistent. Inconsistent im-
plementation approaches mean that some dependencies are
remaining and need to be removed using another iteration



with adjusted key architectural decisions (see the upward
arrow in Fig. 2).

Table 4: Greatest feasible implementation ap-
proaches.
Architectural Approach | Components
(KADh,) Cu
(KADqy) Cu — {Ogre}

The Reaction! analysis contains inconsistent implementa-
tion approaches because Qt and MFC are not interchange-
able due to the dependency between MFC and DirectX (see
the component dependency matriz). To remedy this, the
choice of GUI toolkit should be made a key architectural de-
cision (K AD2,: MFC, and K ADsp: Qt). The same problem
exists regarding the dependency between OGLFT/GLTT
and OpenGL. Thus, K ADs becomes the choice of graph-
ics API, where KAD3,: OpenGL and KADs,: DirectX.
After repeating the analysis, we obtain the results shown in
Table 5. Figures 3 and 4 each depict one of these implemen-
tation approaches.

Table 5: Greatest feasible consistent implementa-
tion approaches obtained after adjusting the key ar-
chitectural decisions. The architectural approach
tuples reference alternatives for each KAD.

Arch. Appr. Components

(1a, 2a, 3a) | Cu — {Qt, DirectX}

(1a, 2a, 3b) | Cy, — {Qt,OpenGL,OGLFT,GLTT}

(la, 2b, 3a) | Cy — {MFC, DirectX}

(1a, 2b, 3b) | Cu — {MFC, OpenGL, OGLFT,GLTT}

(1b, 2a, 3a) | Cy — {Ogre, Qt, DirectX }

(1Ib, 2a, 3b) | Cy — {Ogre, Qt,OpenGL,OGLFT,
GLTT}

(1b, 2b, 3a) | Cy — {Ogre, MFC, DirectX}

(1b, 2b, 3b) | Cy — {Ogre, MFC,OpenGL,OGLFT,
GLTT}

3.4 Choosing an Implementation Approach

To compare implementation approaches, we need to bal-
ance tradeoffs between the suitability of an architecture and
the quality of components available in that architecture. A
natural solution would be to evaluate architecture and com-
ponents separately, then compare the results between each
pair of implementation approaches. However, we run into a
problem: sets of components from different implementation
approaches can’t be compared using the same criteria since
they are meant for different architectures.

We need to evaluate architecture and components as a
whole; our main concern is the effect an implementation ap-
proach has on the overall quality of the system. We define
quality by specifying system-wide properties. These prop-
erties can be functional requirements (features), run-time
attributes (e.g. performance, reliability, usability), or non-
run-time attributes (e.g. cost, modifiability, scalability).
These properties are essentially criteria used in a multi-
criteria decision-making problem. The definition of these
criteria is the subject of many existing papers on compo-
nent selection [12, 6]
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For each implementation approach, we evaluate the conse-
quences of the architectural decisions and components cho-
sen for each of the system-wide properties. This can be
done informally using subjective judgment, or more rigor-
ously by defining metrics (as in [20]). After evaluating each
implementation approach on each property, a ranking of al-
ternatives can be produced using a method for synthesizing
multiple criteria like AHP [19].

In the Reaction! system, properties of interest include
performance, portability, and extensibility. It is most im-
portant to analyze properties that discriminate between so-
lutions. Portability is a good example, since some compo-
nents we’ve identified are more platform independent than
others. Consider the implementation approaches (la, 2b,
3a) and (1b, 2a, 3b), shown in figures 3 and 4. The latter
approach relies on MFC and DirectX, which are designed
for Windows. The former approach uses Qt and OpenGL
instead, which have cross-platform implementations. With
all other properties being equal, the first approach would be
preferred based on its better portability.

After obtaining the most preferred implementation ap-
proach, we can rely on existing component selection pro-
cesses to choose specific components for each role (in this
case only one component exists for each role). The result is
a partial definition of the system’s architecture, and a list of
specific existing components that the system will use.

3.5 Conclusion

We have presented a systematic method for analyzing the
relationship between components and architecture. The goal
of the method is to discover the effect of chosen architectural
decisions on the usable component base. By enumerating
the components that go with different architectural options,
we are able to arrive at a partial definition of the system’s
architecture and a set of corresponding components.

Our approach has inherent limitations. We rely on the
ability of the analyst to discern the architectural assump-
tions each component makes. This is may be difficult, since
many assumptions are implicit and not detectable early in
the process [7].

With a large number of components to choose from and
many potential ways to build the system, the practicality of
the method is diminished due to the exponential growth of
alternatives and comparisons. One way to address this prob-
lem is to create tool support for the method. Once criteria
is defined and evaluated for each implementation approach,
the comparisons that follow can be done automatically.

One premise of component-based software engineering is
that requirements, architecture, and the selection of com-
ponents are interrelated. Existing methods address the re-
lationship between requirements and components, while we
focus on the relationship between architecture and compo-
nents. The integration of these methods is needed to address
the complete problem.

We have included a trivial example to illustrate the con-
cepts of the method. The next step is to validate it on a
mid-sized system.
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