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A prerequisite for successful screening campaigns in drug discovery or chemical genetics is the availability of structurally
and thus functionally diverse compound libraries. Diversity-oriented synthesis (DOS) provides strategies for the
generation of such libraries, of which the build/couple/pair (B/C/P) algorithm is the most frequently used. We have
developed an advanced B/C/P strategy that incorporates multidimensional coupling. In this approach, structural diversity
is not only defined by the nature of the building blocks employed, but also by the linking motif installed during the
coupling reaction. We applied this step-efficient approach in a DOS of a library that consisted of 73 macrocyclic
compounds based around 59 discrete scaffolds. The macrocycles prepared cover a broad range of different molecular
shapes, as illustrated by principal moment-of-inertia analysis. This demonstrates the capability of the advanced B/C/P
strategy using multidimensional coupling for the preparation of structurally diverse compound collections.

D
iversity-oriented synthesis (DOS) represents an approach
towards small-molecule library synthesis that seeks to incor-
porate a high degree of structural diversity in an efficient

manner1–3. Structurally diverse compound libraries have proved to
be valuable for drug discovery4–6 and in chemical genetics7;
indeed, numerous modulators of challenging biological targets
have been identified from DOS-derived compound collections8–12.

Biological macromolecules interact with the three-dimensional
chemical information presented by potential modulators, and the
functional diversity of a compound collection is linked directly to
its structural diversity13–15. There are a number of ways to incorporate
structural diversity into a compound collection, but variation of the
molecular scaffold is widely thought the most important16–18.
Moreover, the overall three-dimensional shape diversity of a library
is primarily dependent on the diversity of the central scaffold19.

The build/couple/pair (B/C/P) strategy20 is one of the most com-
monly used approaches to create scaffold diversity. In the build
phase, suitable building blocks are synthesized. These building
blocks are then combined in the couple phase (Fig. 1a) using the
same reaction to form linear precursors that are subsequently sub-
jected to scaffold-defining reactions in the pair phase. We reasoned
that the utilization of a set of diverse branching reactions in the
couple phase starting from a pluripotent functional group (multidi-
mensional coupling, Fig. 1b) rather than a sole coupling reaction
would significantly increase the structural diversity of the linear pre-
cursors. This is because the structural diversity of the linear precur-
sors would be defined not only by the nature of the building blocks
employed, but also by the respective linking motif installed. Thus,
multidimensional coupling would lead to a greater structural diver-
sity of linear precursors, which in turn would lead to a significant
increase in the structural diversity of the final compounds.

We were interested in applying this approach in the DOS of
macrocycles. Macrocycles have played an important part in drug
discovery based on natural products. Owing to their conformational

preorganization, macrocycles can bind to extended protein surfaces
without major entropic loss and show remarkable target affinity and
selectivity21. However, the high complexity of macrocycles derived
from natural products hampers their synthetic modification and
pharmacokinetic optimization. Thus, synthetic macrocycles of
medium complexity have moved into the focus of drug discovery
in the past decade and many synthetic macrocyclic modulators
with appropriate pharmacokinetic properties were identified for tra-
ditional as well as challenging new targets, such as protein–protein
interactions22,23. Despite these encouraging examples, macrocycles
are still underrepresented in pharmaceutical compound collec-
tions24. Although the construction of libraries of peptide and pepti-
domimetic macrocycles is well established25,26, the efficient
preparation of structurally diverse non-peptidic macrocycle collec-
tions remains a challenge27.

Reported DOS approaches for the generation of diverse non-pep-
tidic macrocycle collections include the use of ring expansion28,29,
fragment-based domain shuffling30, two-directional synthesis31

and, most frequently, the classical B/C/P strategy32,33. However,
only a limited degree of scaffold diversity (approximately 20 distinct
scaffolds) has been achieved using these approaches.

Here we report the application of the multidimensional B/C/P
strategy to the DOS of a library of macrocycles with unprecedented
scaffold diversity. This was achieved by exploiting the pluripotent
reactivity of azide-derived aza-ylides. Starting from the common
precursor 1 (Fig. 2), a series of diverse azido building blocks (such
as 2 and 3) was prepared in the build phase. In the multidimensional
couple step, the attached azide group was transformed in situ into an
aza-ylide, which was reacted with a set of diverse electrophiles in
aza-Wittig reactions34 that resulted in various structural motifs
(for example, urea 4 and guanidine 5). These aza-Wittig reactions
proceeded with concomitant installation of either a new azide
group (as in compound 4) or a terminal alkene (as in compound
5). Along with the initially attached terminal alkyne, these groups
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served as macrocyclization handles in the subsequent pair phase.
Depending on the functionality installed in the couple phase,
macrocyclizations were performed either by copper-catalysed35,36

(for example, leading to 6) and ruthenium-catalysed37 azide–alkyne
cycloadditions38 (CuAAC and RuAAC) or by enyne metathesis39

(for example, leading to 7).
To take advantage of solution-phase combinatorial synthesis

with the generic purification of product from reagents by fluorous
solid-phase extraction40,41, we installed a polyfluorocarbon tag on
the common precursor 1. In the final step of the synthesis, the fluor-
ous tag could be cleaved divergently by transesterification, transami-
dation, ester hydrolysis and ester reduction (to provide compounds
such as 8–12) as a means of further diversification. In total, 73
macrocycles based on 59 distinct scaffolds were obtained in 4–5
steps from 1.

Results
Build phase: preparation of azido building blocks. The starting
unit 1 was prepared easily on a multigram scale in two steps from
commercially available starting material (Supplementary Fig. S1).
With this compound in hand, facile amide-bond formation via

acyl chlorides was used to prepare efficiently seven azido building
blocks (2, 3, 13–17) in the build phase (Fig. 3 and Supplementary
Fig. S2). These building blocks differ not only chemically
(aromatic versus benzylic and aliphatic azides), but also exhibit
different rigid geometries. Thus, it was envisaged that they would
induce distinct shapes in the final macrocyclic products.

Couple phase: multidimensional coupling using aza-Wittig
reactions. In the multidimensional couple phase of the DOS,
different aza-Wittig reactions were performed to convert the azido
building blocks into various linear precursors for subsequent
macrocyclizations. These reactions are discussed exemplarily for
azido building block 3 (Fig. 3). The azide group was reacted
initially with PPh3 or P(n-Bu)3 to form the corresponding
aza-ylide 18, which was not isolated but reacted directly with
different electrophiles, such as carbon dioxide, isocyanates, acyl
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chlorides and aldehydes, to form the corresponding aza-
Wittig products.

The reaction of the aza-ylide with carbon dioxide led to the
formation of the corresponding isocyanate 19, which was instantly
trapped by different amines in a one-pot procedure42–45 to afford
ureas 20–23. The ureas were used directly as linear precursors in
macrocyclizations (for example, 20 and 21) and/or were
further diversified in a second reaction. For instance, urea 21 was
converted easily into the corresponding oxalylurea 24 by reaction
with oxalyl chloride in the presence of pyridine. Ureas 22 and 23
were cyclized via mild activation of the acid functionality using
N,N′-diisopropylcarbodiimide in the presence ofN-hydroxysuccini-
mide to afford hydantoin 25 and dihydrouracil 26, respectively.
Using an acyl chloride as an electrophile in the aza-Wittig
reaction of 18 led to the smooth formation of amide 27. The
reaction of the aza-ylide 18 with an isocyanate afforded the
corresponding unsymmetric carbodiimide 28, which was converted
directly into guanidine 5 by addition of an amine in a one-pot
procedure. Finally, aza-ylide 18 was reacted with an aldehyde to
obtain the resulting imine 29 as an intermediate. Without
isolation, imine 29 was either reduced with NaBH4 to give amine
30 or used as a dienophile in an aza-Diels–Alder reaction
with Danishefsky’s diene under Lewis-acid activation46 to obtain
dihydropyridinone 31.

Pair phase: macrocyclizations. In the pair phase of our strategy the
linear precursors were macrocyclized divergently. Depending on
whether an azide or a terminal alkene had been attached in the
couple phase, CuAAC and RuAAC or enyne metathesis were
carried out (Fig. 4). In general, the macrocyclization methods
used in this study (CuAAC, RuAAC, enyne metathesis) proved to
be very robust and delivered the desired macrocyclic products in
moderate-to-good yields (see Supplementary Information p. S12
for some limitations).

CuI and N,N-diisopropylethylamine (DIPEA) in refluxing THF
proved to be reliable conditions for the CuAAC macrocyclizations
that led to 1,4-triazole structures (for example, 32, Fig. 4a).
[Cp*RuCl]4 (Cp*¼ pentamethylcyclopentadienyl) in refluxing
THF was used to promote the RuAAC to obtain 1,5-triazole-con-
taining macrocycles (such as 33, Fig. 4a). In both cases the reactions
were performed at high dilution (1 mM) to prevent dimerization.
The AAC macrocyclizations gave highly selective access to the
desired regioisomer, and only one linear precursor delivered a
mixture of two regioisomers on RuAAC (precursor 25, see
Supplementary Information, p. S66). The CuAAC macrocyclization
products were isolated in an average yield of 61% and the RuAAC
macrocyclization products were obtained in an average yield of 42%.

For linear precursors that contained a terminal alkene (such as
linear precursors 5 and 20 in Fig. 3), enyne metathesis was used
to construct macrocyclic architectures in the pair phase (Fig. 4b).
Grubbs second-generation catalyst was used under an initial atmos-
phere of ethylene. After the alkyne had converted into the corre-
sponding intermediate linear diene, the ethylene atmosphere was
replaced by argon to force the subsequent ring-closing metathesis
to completion. In total, seven macrocyclic dienes (for example, 35,
Fig. 4b) were obtained in an average yield of 43%. The diene
motif present in these products provides a synthetic handle for
further diversification using Diels–Alder reactions. As an example,
diene 35 reacted with N-methylmaleimide to provide the macrocyc-
lic Diels–Alder product 36 (Fig. 4b).

Cleavage of the fluorous tag. Cleavage of the polyfluorocarbon tag
was used to diversify the library further (Fig. 2 and Supplementary
Fig. S3). The ester functionality that linked the fluorous tag to the
macrocycle was converted into various esters (for example, 8) or
amides (such as 9). Furthermore, it was hydrolysed to the
corresponding acid (for example, 10) or reduced to the
corresponding alcohol (such as 11).
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The library. Using the strategy outlined above, a DOS of 73
macrocyclic compounds was achieved, which contains 59 distinct
macrocyclic scaffolds among other unique structural features
(Fig. 5 and Supplementary Fig. S4). Apart from the diversity
introduced by using different building blocks, multidimensional
coupling led to a large variety of linking structural motifs
(highlighted in purple). Each compound was prepared from the
common starting unit 1 in not more than five steps. The library
was made using parallel synthetic techniques that led to 1–48 mg
of each final product (molecular mass range 357–558, mean value
444). All library members were assessed for their identity and
quality (high-resolution mass spectroscopy, HPLC), and purified,
if necessary, by flash chromatography or preparative HPLC to
ensure a high purity (mean value 98% according to HPLC) of
final products. Full characterization was undertaken for the
compounds derived from building blocks 2, 3, 13, 14 and 16
(68% of final products). All NMR spectra needed to be recorded
at elevated temperatures because of slowly interconverting
conformers at room temperature.

Diversity assessment. To assess the degree of overall shape diversity
obtained in this macrocyclic DOS library, we compared our set of
macrocycles with three reference collections29,47: (1) a set of 40
top-selling brand-name drugs, (2) a set of 60 diverse natural
products and (3) a set of 24 macrocyclic natural products. Based
on the lowest-energy conformations of all depicted molecules,
normalized ratios of principal moment-of-inertia (PMI)
descriptors were calculated and plotted on a triangular graph, as
previously reported19. The resulting PMI plot (Fig. 6) visualizes
intuitively the shape diversity of each of the four collections in
‘molecular shape space’ spanned by the three basic shape types,
‘rod-like’, ‘disc-like’ and ‘spherical’.

Although the drug reference set predominantly exhibits rod-like
shapes with a varying proportion of disc-like features, the

non-macrocyclic and macrocyclic sets of natural products possess
significantly higher shape diversity with much more pronounced
spherical characteristics. We were pleased to find that our macrocyc-
lic library covers a molecular shape space comparatively as broad as
that of the selected natural products and thus displays very high
molecular shape diversity.

Discussion
Variation of the basic molecular scaffold is thought to be the most
important feature to enhance structural and thus functional diver-
sity of a compound collection. The advanced DOS strategy reported
herein addresses the need for such scaffold-diverse libraries. The
multidimensional coupling within the B/C/P algorithm employs a
pluripotent functional group to assemble the building blocks
using various reactions, rather than only a sole coupling reaction.
Thus our strategy enables the generation of a much higher degree
of structural diversity that is not only defined by the nature of the
building blocks used, but also by the type of linking motif installed.

We applied this strategy to the preparation of a macrocycle
library, as macrocycles are an underrepresented structural class in
screening collections. Azide-derived aza-ylides were identified as a
fruitful multidimensional coupling handle. A structurally diverse
collection of different azido building blocks was prepared efficiently
during the build phase. Using aza-Wittig reactions and a few sub-
sequent transformations, eight different linking motifs were gener-
ated by multidimensional coupling. Divergent macrocyclization in
the pair phase led to a large number of distinct macrocyclic scaf-
folds. In total, 73 compounds based on 59 discrete scaffolds were
prepared efficiently in not more than five steps from a common pre-
cursor. Polyfluorocarbon-tag technology was used to facilitate puri-
fication. The synthetic route is highly modular, which allows for the
facile synthesis of analogues of the first-generation library members.
Both different building blocks and different linking motifs contrib-
ute simultaneously to the structural diversity, which results in a
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broad coverage of molecular shapes by the macrocycles prepared, as
demonstrated by the PMI plot. The synthesized macrocycle library
exhibits molecular shape diversity comparable to that of natural
products. This demonstrates the capability of the advanced B/C/P
strategy using multidimensional coupling for the preparation of
shape-diverse scaffolds. Currently, the first-generation library
members are being screened in phenotypic assays for antibacterial
activity against different multidrug-resistant bacterial strains, as
well as for antiproliferative activity and their ability to disrupt
selected protein–protein interactions.
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