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A strategy to apply machine learning to small datasets in

materials science
Ying Zhang1 and Chen Ling1

There is growing interest in applying machine learning techniques in the research of materials science. However, although it is

recognized that materials datasets are typically smaller and sometimes more diverse compared to other fields, the influence of

availability of materials data on training machine learning models has not yet been studied, which prevents the possibility to

establish accurate predictive rules using small materials datasets. Here we analyzed the fundamental interplay between the

availability of materials data and the predictive capability of machine learning models. Instead of affecting the model precision

directly, the effect of data size is mediated by the degree of freedom (DoF) of model, resulting in the phenomenon of association

between precision and DoF. The appearance of precision–DoF association signals the issue of underfitting and is characterized by

large bias of prediction, which consequently restricts the accurate prediction in unknown domains. We proposed to incorporate the

crude estimation of property in the feature space to establish ML models using small sized materials data, which increases the

accuracy of prediction without the cost of higher DoF. In three case studies of predicting the band gap of binary semiconductors,

lattice thermal conductivity, and elastic properties of zeolites, the integration of crude estimation effectively boosted the predictive

capability of machine learning models to state-of-art levels, demonstrating the generality of the proposed strategy to construct

accurate machine learning models using small materials dataset.
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INTRODUCTION

In the past few decades the substantial advancement of machine
learning (ML) has spanned the application of this data driven
approach throughout science, commerce, and industry.1 Recently,
there has been an increasing interest in applying ML to solve
problems in materials science.2–7 In particular, ML techniques have
been used to represent inorganic materials,8–10 predict funda-
mental properties,11–13 create atomic potential,14–16 identify
functional candidates,17–21 analyze complex reaction networks,22

and guide experimental design.23–27 The key ingredient behind
these successes is that the behavior in unknown domains can be
accurately estimated by quantitatively learning the pattern from
sufficient training examples. However, compared to others fields
the materials data are typically much smaller and sometimes more
diverse,12 which undoubtable affects the construction of ML
models. For example, Faber et al.28 found the predictive accuracy
of the ML model for the formation energy of Elpasolite
compounds showed a systematic improvement with increasing
training set size. Schmidt et al.29 reported that the predicting error
for the formation energy of perovskite compounds decreased
monotonically with the size of training set following a power law,
where doubling the training set decreased the error by around
20%. Lee et al. examined the ML models for band gaps of
inorganic compounds and found the predicting accuracy con-
verged for the ordinary least-square regression and LASSO models
at certain sizes of training set, while for the support vector
machine model the error still slowly decreased at the largest
dataset in their study. While these studied unambiguously
demonstrated that the less availability of training data not only

renders the detection of patterns more difficult but also
deteriorates the capability of making prediction in the unexplored
domain, the role of materials dataset in constructing ML model
has not been systematically investigated to the best of our
knowledge. As a result, the possibility to establish accurate
predictive rules using small available materials datasets remains
unclear.
It is the focus of current work to comprehensively analyze the

interplay between the availability of materials data and the
predictive capability of ML models. Our study revealed an
important phenomenon when the model is trained using limited
available materials data: the association between the degree of
freedom (DoF) of model and the precision of prediction, that is,
the increase of precision is at the cost of higher DoF. Originated
from the statistical bias-variance tradeoff, the appearance of
precision–DoF association restricts the accuracy of prediction in
unknown domains. We also propose a solution to improve the
accuracy without causing higher DoF by incorporating the crude
estimation of property (CEP) in the feature space. In three case
studies, the integration of crude estimation effectively improved
the predictive accuracy of ML models, demonstrating the
generality of the proposed strategy to construct accurate ML
models using small materials data.

RESULTS

Precision–DoF association

We started with a survey of reported ML models of materials
properties,12,13,18,28–33 focusing on the accuracy of prediction in
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unknown domains. Such a property is usually quantified by

evaluating the predicting error by means of cross-validation (CV).

To compare models trained to predict different materials proper-

ties, the CV errors were scaled by the spanning range of modeled

properties. As seen in Fig. 1, the scaled error was in the range of

1–2% for models trained with 103–104 samples and increased to

10% and above for models established with ~100–200 examples,

in full agreement with the intuition that the predictive accuracy

increases with the availability of materials data. The seemly

universality of the trend in Fig. 1 is, however, surprising,

considering the diversity in the surveyed properties as well as

the variety of ML techniques used to construct the models. Fitting

the surveyed results led to the empirical power law of scaled error

= 0.67 × size−0.372, agreed well with the decreasing of error to

predict the formation energy of perovskite with the training size at

a power of −0.297.29 We acknowledge that the survey was

conducted for a few recent studies and the observed universality

is certainly subject to more examinations. Nonetheless, the

challenge to improve the predicting capability with limited
availability of materials data is clearly highlighted.
A detailed study was then performed to model the band gaps

of binary semiconductors (Eg) as the representative example to
understand the effect of data size on the predictive precision. We
used a series of manually crafted chemical parameters as possible
descriptors, adapting the approach proposed by Ward et al.34 The
optimum set of features that best describes the patterns in the
training data was selected using the stepwise forward search. We
used the kernel ridge regression (KRR) to construct ML models
because it gave the lowest predicting error as benchmarked with
other ML algorithms (Supporting Information, Table S1). To
manipulate the size of training data, subsets were randomly
sampled from the full dataset. Figure 2a shows the average five-
fold CV root mean-squared error (RMSE) of KRR models (unless
otherwise mentioned, all the errors in the paper were evaluated
using the CV method). As expected, the CV-RMSE continuously
decreased with the expansion of dataset. Fitting the RMSE with
data size gave a power law similar to that in Fig. 1. The smallest
CV-RMSE was recorded at 0.51 eV when the full dataset (108
examples) was utilized. Although the prediction had a decent
Pearson correlation of 0.94 with the training property, the
relatively large error indicated even the “best” model cannot
accurately predict Eg. The scaled error of 9.3% agreed well with the
trend shown in Fig. 1, further indicating the model did not achieve
any predictive capability beyond the observation in the survey.
To understand the origin of the large RMSE, we used the

Bootstrap method to break down the contribution of bias and
variance to the predicting error,35,36

bias2 ¼ 1

ntest

Xntest

l¼1
f x lð Þ � yl
� �2

; (1)

variance ¼ 1

ntest
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l¼1

1
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where ntest is the number of testing data, B is the number of
training sets sampled from the original training data, yl is the value
of the target property, and f(xl;D

b) is the property predicted by the
model using the training set of Db. f x lð Þ is the average of
predicted property for example l.
The squared bias was estimated at 0.26 eV2, over four time to

the variance of 0.06 eV2. A large bias overwhelming small variance
suggested that the selected features were not expressive enough
to predict the property, or in other words signaled the statistical
issue of underfitting. For the model falling in the region of
underfitting, the inclusion of more features can effectively
mitigate the statistical error. Figure 2b shows the RMSE as a
function of the degree of freedom (DoF) of models, defined as the

Fig. 1 Survey of scaled error and the size of training set in recent
publications. The red dashed line shows the fitted curve of scaled
error= 0.67 × size−0.372

Fig. 2 Effect of data size (n) on the root mean squared error of KRR models for predicting experimental band gaps. a Averaged five-fold cross-
validation RMSE as a function of data size. The red line shows the fitting curve of RMSE= 1.42 × size−0.23. b Averaged RMSE versus the
averaged degree of freedom of KRR models
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number of parameters with non-zero regression coefficients.37

Clearly, both the model precision and DoF exhibited high
correlation with training data and the improvement of precision
was strongly associated with higher model DoF.
To unveil the underlying relationship between data size, DoF,

and precision, a mediation analysis was conducted as illustrated in
Fig. 3. In the mediation analysis, three variables are chosen as
predictor, outcome and mediator and their relations are explored
through statistical significant test.38 In our study, the predictor
variable was data size, the outcome variable was RMSE (precision)
and the mediator variable was DoF. All binary associations of
RMSE with data size, RMSE with DoF, data size, and DoF were
statistically significant (p«0.01, t-test). Entering DoF in the
regression greatly reduced the strength of the correlation
between RMSE and data size and the p-value in t-test was
increased by more than 10 orders of magnitude, confirming that
the influence of data size on predictive precision was mediated by
model complexity. Therefore, instead of affecting the precision
directly, the variation of data size altered the DoF of optimized
model, which then changed the accuracy of prediction. Naturally,
this mediation effect resulted in the association between DoF and
predictive precision as observed in Fig. 2b.
To examine whether the choice of ML method affects the

conclusion that the effect of data size on the model precision is
mediated by the DoF, we also analyzed the models established
with the least absolute shrinkage and selection operator (LASSO)
regression. The CV-RMSE to predict Eg using LASSO method was
0.71 eV. The less accuracy was probably attributed to the failure to
capture the complicated physics with a linear regression
algorithm. Figure 4a shows the selection of LASSO model using
varied training sets. The decreasing of RMSE was associated with
smaller tuning parameter of LASSO model, λ. In LASSO method,
the tuning parameter determines the shrinkage of regression
coefficient. A smaller λ applies less penalty for shrinkage, hence
permitting the inclusion of more features in the optimized model.
As shown in Supporting Information, Figure S1, the association
between RMSE and DoF was clearly evidenced. Through the
mediation analysis we confirmed that the influence of data size on
predictive precision was mediated by the DoF of LASSO models
(Supporting Information, Figure S2). These results demonstrated
the precision–DoF association as a general statistical phenomenon
when the model is trained with small sized materials data rather
than a unique observation dependent on the choice of regression
method.
These results reveal the influence of materials dataset on

establishing ML model as following. Ideally, an ML model should
be established to exhibit hidden relations between the property
and features determined by the underlying physics. However, in

practice, the ML model is constructed to best describe the
structure in training data. Any change of internal pattern in
training set will lead to the change of ML model. Especially, for
models trained with small materials dataset, the DoF to select
features is sensitive to the availability of training data. While
inadequate selection of expressive features causes the under-
fitting of property, adding more training data allows the inclusion
of more features to alleviate the issue of underfitting. Conse-
quently, the predictive precision is improved with the cost of
higher model complexity, resulting in the observed precision–DoF
association.
Although it originates from the fundamental statistics, the

precision–DoF association is more than just a statistical phenom-
enon. Because the association occurs as a result of the under-
fitting, the predicting error is largely dominated by
characteristically large bias, which prevents to establish accurate
predictive rules. In the above study, even the “best” model
showed worse performance than modern density functional
theory prediction of Eg. Therefore, the development of effective
strategy to improve model precision without the cost of higher DoF
becomes a crucial challenge to practice ML in modeling materials
properties.

Strategy

In principle, the improvement of precision can be approached by
appropriately manipulating the training data. For example, we can
naturally consider adding more examples to the training set.
However, simply expanding the dataset not only leads to highly
complex model difficult to interpret the embedded physics but
also is likely hindered by the expensive cost to conduct additional
experiments. Using the empirical relation established from Fig. 1,
doubling the data size roughly leads to the decrease of error by
23%. Hence the exponentially growing cost challenges the
feasibility to improve the accuracy by adding new materials data.
A model can be also constructed by restricting the configurational
space of materials, such as predicting the band gaps of selected
families of semiconductors with fixed composition or crystalline
structure instead of modeling compounds spanning a wide

Fig. 3 Mediation analysis on the relationship of data size and
precision (RMSE) mediated by model DoF. The top numbers are the
standardized regression coefficients and standard errors in the
bracket. The bottom numbers show the p-value in t-test

Fig. 4 Effect of data size (n) on the averaged cross-validation RMSE
of LASSO models for predicting experimental band gaps. The
orange circles is the position of the optimized models
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chemical space.25,39 As a result, the constructed ML-estimator
gained more precision, but sacrificed the generality when
applying outside of the confined domain.
Considering the less flexibility of training data, a strategy should

be developed from designing appropriate feature space for the
modeling, which is widely recognized as a critical step in materials
informatics.30,34,40 Following the analysis in the previous section,
let us imagine a simple toy model where the property is explicitly
determined by a single feature. In this case, the precision–DoF
association should disappear once this special feature is included
in the modeling, even if the training data only contain, for
example, two samples. Therefore, our intention is to design
features to meet the consideration of (1) providing expressive
information so that the property can be estimated (though the
estimation may not be accurate) and (2) satisfying other
requirements such as low dimensionality and cheap cost of
acquiring.30 Based on the consideration 1, we remind ourselves
that the prediction of materials property has been carried out
centuries before the era of ML. Although the empirical estimation
may not be sufficiently accurate in terms of predicting absolute
values, it may still provide at least qualitatively knowledge about
targeted property. Because any prior knowledge of the targeted
property should be considered when constructing the appropriate
feature space, we are therefore motived to exercise the idea of
using the CEP as a descriptor additional to the chemical
descriptors in the ML models.
To give a more precise description of the proposed strategy, we

define the CEP as the prediction of targeted property using
methods at less accurate level, which includes zero or near zero
computational demanding calculations, empirical models, and
non-expensive experimental measurements. With this definition,
the usage of CEP meets the consideration 2 for the cheap cost of
acquiring. Our idea is to incorporate the CEP together with the
previously used chemical descriptors to predict targeted property.
In previous reports, the PBE-calculated band gaps, which is not
accurate but also less computational demanding, were used to
predict the band gaps calculated at more accurate and much
more expensive level.41,42 While the success of the earlier work
may partially be related to the fact that both the descriptor and
property were obtained using similar theory of foundation, we
prove in current work that the usage of CEP as a descriptor
improves the prediction of experimentally measured properties,
where the model performance is strongly affected by the large
noise contained in the training set. Furthermore, our study
demonstrates that the means to obtain CEP is not restricted to
density functional calculations, but can be extended to other non-

expensive methods. In the following section, we constructed ML
models in three exercises: the prediction of Eg using GGA-
calculated values as the CEP, lattice thermal conductivity (κL) using
empirical models to obtain the CEP, and elastic properties of
zeolites using force field calculations to obtain the CEP. In all three
studies the ML models achieved state-of-art predictive capability
after integrating CEP in the feature space, demonstrating the
generality of prosed strategy to construct accurate ML models
with small available materials data.

Exercise 1: Band gap of binary semiconductors

We first examined the proposed method in the modeling of Eg.
The band gaps simulated at the GGA-level were used as the crude
estimation of Eg, the values of which were taken from Materials
Project.43 The performance of the new KRR model is evaluated in
Fig. 5a using the leave-one-out cross-validation (LOOCV). In the
LOOCV, the prediction of the property at one position is
performed by removing that specific observation and using the
rest as the training set. The relationship between ML-predicted
value and Eg is clearly linear without large deviations even in the
range of extremely low or high values. The CV-RMSE of the new
ML model was 0.34 eV, decreased by 33% of the model using only
chemical descriptors (0.51 eV). The scaled error was reduced to
6.2% after incorporating the GGA band gap in the feature space.
The construction of ML models to predict the band gap of

semiconductors was attempted in several reports. Of particular
relevance to current work, Lee et al.41 used the PBE-band gap of
inorganic compounds to predict the values from G0W0 calculation
and achieved the CV error of 0.18 eV. Pilania et al.42 predicted the
band gap of elpasolite (A2BB′X6-type) compounds calculated at
HSE06 level using a multi-fidelity co-kriging statistical learning
framework and reported the accuracy of 0.1–0.2 eV on the
validation set. At the first glance the error of current ML model
seemed to be higher than these two reports. The larger predicting
error of the current model can be attributed to two aspects. The
first one is the different configuration spaces in the ML models. In
the work of Pilania et al.,42 the composition and crystalline
structure was fixed to A2BB′X6 and elpasolite, respectively, leaving
the only variant to be chemical constitutes. In general, the higher
DoF in the configuration space, the more challenging to construct
an accurate ML model. Another source of error came from the
noise of measurement in the training data. While both Lee et al.
and Pilania et al. employed values from first-principles calculations
as training data with the noise of calculation determined by the
accuracy of density functional theories, the current work modeled
the experimental Eg measured by various techniques, in which the

Fig. 5 KRR model to predict Eg using GGA calculated crude estimaiton. a Comparison of KRR models using GGA band gap and not using GGA
band gap as a descriptor. The GGA-simulated values are also plotted for comparison. b Effect of using crude estimation having different
correlation with the experimental measurements. The red circles show the positions of the model using and not using the GGA band gap as a
descriptor
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uncertainty of measurement was expected to have larger
contribution to the predictive error. We continue to discuss the
contribution of experimental noise to predicting error in the next
case study. To benchmark the performance of ML model, the
predicted band gap was compared with that from GW calculation
for 49 compounds.44 While both GW simulation and ML exhibited
reasonable predictive accuracy, the ML model showed smaller
RMSE of 0.39 eV than that of GW simulation (0.52 eV; Supporting
information, Figure S4), quantitatively demonstrating the pre-
dictive capability of the ML model.
Having established the predictive precision of the ML model, we

now discuss the mechanism of the apparent improved perfor-
mance after integrating GGA band gap in the feature space.
Because of the well-known underestimation of band gap in GGA
calculation, the improvement of ML-prediction cannot be
attributed to the argument that GGA band gap is sufficiently
accurate to predict the experimental values. In fact, the linear
regression with only the feature of GGA band gap gave a CV-RMSE
of 0.71 eV. Statistically, GGA band gap has a Pearson correlation
coefficient of 0.86 with Eg. Therefore, although GGA simulation
falls away from accurately predicting the experimental value, the
value of GGA band gap provides a conditional range to estimate
Eg.

45 Adding this expressive information reduced the squared bias
from 0.26 to 0.09 eV2 (Bootstrap estimation), demonstrating the
significant alleviation of the issue of underfitting. More impor-
tantly, despite the greatly improved precision, the model DoF was
in fact reduced from 12 to 9 after adding GGA band gap as a new
descriptor, confirming that the improvement of precision was no
longer associated with the increase of DoF. These results were in
full agreement with the expectation that the usage of CEP
descriptor enhances the accuracy of prediction without scarifying
the complexity of ML models.
To further analyze the effect of integrating the statistically

correlated CEP in the feature space, we added synthetic Gaussian
noise to the GGA band gap, which acted as an irreducible error in
a presumably badly controlled estimation. As we expect,
integrating a feature weakly correlated with the target property
barely affected the predictive performance, as shown in Fig. 5b. At
the limit when the CEP was composed of random noise, the model
behaved the same as that without knowing the crude estimation.
The predicting error decreased rapidly once the Pearson correla-
tion exceeded a threshold, about 0.5 in our study. Interestingly,
this threshold was coincidently close to the highest Pearson
correlation between Eg and chemical descriptors. We note that
this result did not prove that an ML model should always select
features exhibiting higher correlation with the property. None-
theless, it clearly demonstrated that the integration of CEP
improves the predicting capability if the estimation shows
sufficient statistical correlation with property.

Exercise 2: Lattice thermal conductivity

In contrast to the study of Eg, the CEP of the lattice thermal
conductivity (κL) cannot be directly obtained as output from ab
initio calculation. Although first-principle-based methods can
predict κL through accurately accounting for the anharmonic
lattice dynamics, the high computational cost prevents the usage
as descriptors in ML modeling. In our study, we used the empirical
Slack model to obtain the CEP of κL,

46 assuming that the phonon
scattering is dominated by the Umklapp process. In addition, we
used a unified Grüneissen parameter for all compounds to avoid
the expensive calculation of the anharmonicity of lattice dynamics.
While these assumptions together with other sources of error such
as ignoring the contribution from optical phonon evidently
resulted in apparent inaccuracy to predict κL (Supporting
Information, Figure S5), the estimation showed good statistical
trend with the experimental values with the Pearson correlation of
0.87 and the Spearman ranking correlation of 0.85, suggesting the

simplified Slack model was an inaccurate estimation but
statistically correlated descriptor to establish the ML model.
Figure 6 compares the experimental κL with the prediction from

ML model using the LOOCV method. Clearly, the ML model
accurately predicted κL across a diverse range of compounds. The
difference between the experimental κL and predicted value lied
within a factor of 1.5 for 65% of the whole 93 compounds and
within a factor of 2 for 90% of compounds. Only one outlier (GaTe)
had the predicted value differing from experiment by more than
half an order of magnitude. Quantitatively, we used the average
factor difference (AFD) as proposed by Miller et al.47 to evaluate
the performance of the ML model. For the LOOCV prediction, the
model has AFD of 1.38 (1.34 if not including GaTe in the
modeling), exceeding the reported value of 1.48 using a modified
Debye–Callaway model to predict κL.

47 The performance of the ML
model was further verified by comparing the prediction with other
reported models. For the compounds with simple crystalline
structures of rocksalt, zincblende, and diamond, the current ML
model achieved the AFD of 1.27 while for compounds with more
complicated crystalline structures the AFD was 1.42. These values
demonstrated the significant improvement of ML model com-
pared to the calculation using Slack model with full Grüneissen
parameter calculations or with the Grüneissen parameter esti-
mated from the Mie–Grüneissen equation.48,49

It is interesting to note that the prediction for high κL seemed to
exhibit higher accuracy than that for lower κL. The examination of
AFD confirmed this observation by showing an uneven distribu-
tion of error: for compounds with κL higher than 0.1 W cm−1 K−1,
the AFD was 1.33 while for those with κL lower than 0.1 W cm−1

K−1 the AFD was 1.43. These results reflected the effect of the
uncertainty of measurement on the predictive accuracy. In
principle, a random noise affects the predicting error indepen-
dently with the range of property. However, for models that
learned the property in the logarithm format the predicting error
is calculated on the relative scale, magnifying the noise for
samples with small valued properties. Similar observations were
noticed in the ML modeling of elastic properties of inorganic
compounds, where the prediction seemed to be better for higher
moduli materials.39

Fig. 6 Comparison of the lattice thermal conductivity from
experimental measurement and from kernel ridge regression using
leave-one-out calculation. The dark and light yellow shows the
deviation within a factor of 2 and 5, respectively
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Exercise 3: Elastic modulus of zeolites

The above two cases used the experimental values of Eg and κL as
the training property and the precision of ML model was
consequently affected by the uncertainty associated with different
measurement techniques. In many studies the training set of
property is created through high-throughput simulation where
the uncertainty of measurements is better controlled. To examine
the performance of the proposed strategy in the prediction of
simulation derived properties, we modeled the Voigt–Reuss–Hill
averaged bulk and shear moduli (K and G, respectively) of zeolites.
Evans and Coudert31 recently calculated K and G for over one
hundred silica zeolites by means of the DFT method and used
gradient boosting regressor to predict the DFT calculated values.
Their ML model achieved significantly better predictive accuracy
when compared to force fields for prediction of bulk modulus. For
five classical force fields, the prediction of bulk modulus showed
large deviation from DFT values with systematic errors exhibited in
some calculations. Here we used the dataset of Evans and Coudert
and established new ML models by incorporating the force field
calculation as an additional descriptor in the feature space. Figure
6 compared the three-fold CV RMSE of different ML models for the
prediction of log(K). In general, the integration of CEP from force
field calculation improved the precision with RMSE reduced by
around 50%. Similarly improved predictive precision was also
observed for the prediction of log(G) (Supporting Information,
Figure S6). Interestingly, although the Catlow potential gave better
prediction of DFT-calculated bulk modulus compared to other
classical potentials,31 the corresponding ML models had the
second worst predictive accuracy. As shown in the insertion of Fig.
7, the RMSE was strongly correlated to the relative influence of
CEPs in the ML model. Therefore, the improved predictive
precision was attributed to the statistical relation of CEP with
the property but not to its absolute value.

DISCUSSION

We summarized the results from the cases studies in Table 1. All
these studies utilized the available dataset of around 100
examples, which in our opinion represented a lower limit to
apply ML in materials research. Although these studies varied in
terms of data source, method to obtain CEP, the algorithm to
select appropriate features, and regression method, in the vicinity

of including CEP as a descriptor the predictive capability was
effectively boosted with scaled error well below the trend
observed in the aforementioned survey, demonstrating the
capability of the proposed strategy in constructing accurate ML
models with small available materials data. Of importance is that
the success of proposed strategy relies on the statistical relation of
CEP and property instead of requiring sufficiently accurate
estimation of targeted property itself, which places the minimal
hurdle to design appropriate descriptor. Considering the vast
number of models and methods to empirically predict materials
properties, we are optimistic that our proposed strategy permits a
general solution to bridge machine learning techniques and the
conventional wisdom of materials scientists to create better
predictive models.
Developing the method to harvest the trend in a small materials

data is not only of scientific significance but also of practical
importance. Many materials properties are available in the
quantity typically of the size of one to a few hundreds,
necessitating the needs of special care when attempting to
establish ML model. The current work studied the fundamental
interplay between the data volume and predictive precision. We
demonstrated that instead of affecting the precision directly the
effect of data volume is mediated by the model DoF, resulting in
the precision–DoF association when the model is trained with
limited availability of materials data. The appearance of
precision–DoF association is a signal of statistical underfitting
and characterized by large bias of prediction, hence restricting the
predictive capability in unknown domains. A solution to establish
accurate ML models with small materials data is proposed by
incorporating the CEP as a descriptor. In three case studies, the
usage of crude estimation effectively boosted the predictive
capability of ML models to state-of-art levels, demonstrating the
generality of the proposed strategy to construct accurate ML
models using small materials data.

METHODS

Data preparation

Property dataset. Except for indium nitride, the band gaps of AxBy binary
compounds with experimental values in the range of 0.5–6 eV were
compiled from two handbooks.50,51 For indium nitride we used the value
of 0.77 eV from the latest measurement by Wu et al.52 Interestingly, the

Fig. 7 Root mean square error of gradient boosting regressor to
predict the bulk modulus (log(K)) of silica zeolite using crude
estimation from different classical force field calculations. The RMSE
of the model not using crude estimation is also shown. Insertion: the
relative influence of different classical force field calculations in the
machine learning model

Table 1. Summary of the results from case studies of modeling the

experimental band gap (Eg), lattice thermal conductivity(κL), and

elastics of zeolite (log(K))

Property Eg κL log(K)

Data volume 108 93 102

Scaled error (%) 6.2 4.1 6.1

Scaled error
before (%)

9.3 6.2 13

DoF 9 5 -a

DoF before 12 7 -a

Source of
property

Experiment Experiment DFT

Source of CEP DFT Empirical model Force field
calculation

Regression
method

Kernel ridge Kernel ridge Gradient
boosting

Feature
selection

Stepwise
forward search

Stepwise
forward search

—

a

aFollowing the same approach used in ref. 31 no feature selection was

performed for log(K)
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model trained with the handbook value of 1.9 eV always predicted the
band gap of indium nitride around 0.8 eV. The lattice thermal conductivity
data were compiled from several resources.47,49,51,53–57 The dataset was
cleaned in the following procedure. For the materials studied in ref. 47, the
same values of thermal conductivity were used. For other materials with
duplicate measurements of the thermal conductivity, we used the values
from the latest reports.

Crude estimation of properties. The modeling of Eg used the band gap
calculated at the GGA level from Materials Project as the crude estimation.
Note the dataset did not include compounds with transition metals.
Therefore, we did not distinguish the GGA and GGA+ U calculations in the
modeling. The GGA band gap is well-known to underestimate the
experimental band gap significantly. On average, the GGA band gap
deviated from experimental values by 1.39 eV for the complied dataset.
The CEP of κL was obtained using the Slack model

κL ¼
0:849 ´ 3

ffiffiffi

43
p

20π3ð1� 0:514ϒ�1 þ 0:228γ�2Þ ´
k3bθ

3
DρV

1=3

h3TN3=2nγ2
; (3)

where the Debye temperature was calculated

θD ¼ h

kb
ð6π2nÞ13f ðσÞ

ffiffiffiffiffiffiffiffi

K=ρ
p

: (4)

Here γ is the Grüneissen parameter, T is the temperature, N is the number
of atoms in the unit cell, V is the unit cell volume, ρ is the density, kb is the
Boltzmann constant, σ is the Poisson ratio, and K is the bulk modulus. The
inputs of V, ρ, σ, and K were all obtained from first-principles calculations in
Materials Project.39 To avoid the expensive calculation of γ, we assume a
value of 1 for all compounds. This simplification was made on the
following considerations. First, the Grüneissen parameter can be roughly
estimated as 0.5(∂K/∂P)−1, where the value of the derivative for most
materials is around 3–6.58 Second, the value of 1 lies between that for
tetrahedral compounds and for octahedral compounds,47 which are two of
the most common bonding environments in inorganic compounds. Third,
we anticipated that the error caused by this simplification as other sources
of error will be corrected in the ML modeling.

Chemical descriptors. Following the approach of Ward et al.,34 the
“fingerprint”-type chemical descriptors were categorized into the follow-
ing: (1) stoichiometric attributes including the weight percentage and
atomic percentage of the elements; (2) elemental properties including
electronegativity, atomic radius, effective nuclear charge, Vander Waals
radius, covalent radius, row number in the periodic table, block number,
enthalpy of formation of gaseous atoms, ionization energy, and valence
number; (3) compound descriptors including the molecular weight,
density, volume, coordination number, and atomic number density; and
(4) electronic structure contributes. The subset of optimal features was
selected using the feature selection algorithm.

Machine learning

Regression. For the KRR the Scikit-learn package in Python was used.59

The prediction value for the property is

f̂KRR xð Þ ¼
Xn

i¼1
αiK x; x ið Þ; (5)

where K is a kernel to measure the similarity between the training point xi
and the predicting point x. A standard choice of the kernel is the radial
basis function kernel Kðx; x iÞ ¼ exp � x�x ij j2

2σ2

� �

with the length scale σ used
to tune the similarity. The weights α=(α1,α2,…αn)

┬ are a set of variables
that minimize the cost function

C α1; ¼ αnð Þ ¼ 1

2

Xn

i¼1
yi � f̂KRR x ið Þ

� �2

þ η
X

ij
αiKðx i ; x jÞαj ; (6)

where η is a tuning parameter to control the regularization term with the
squared error. The hyperparameters σ and η are determined from CV.
For the LASSO method the glmnet package in R was used.60 The LASSO

prediction value for the target property at the point x is

f̂LASSO xð Þ ¼ β0 þ
Xp

j
βjxj ; (7)

where xj is the jth feature of the predicting point x. The coefficients βj in
LASSO model are a set of variables to minimize the objective function

L β0; β1; ¼ ; βp
� �

¼
Xn

i¼1
yi � β0 �

Xp

j¼1
βjxij

� �2

þλ
Xp

j¼1
βj
�

�

�

�; (8)

where n is the number of data, xij is the jth feature of the ithdata xi, yi is the
target property of the ith data, and λ is a tuning parameter to control the
impact of the shrinkage penalty, λ

Pp
j¼1 βj

�

�

�

�.
The prediction for Zeolite mechanic properties were utilizing the

gradient boosting regression method as employed in the study of Evans
and Coudert.31 The calculation was performed using the gbm package in
R.61

Feature selection. In the LASSO regression, the model was determined by
varying the tuning parameter λ so that the shrinkage selects a subset of
non-zero coefficients to minimize the CV error. In the KRR, the stepwise
forward search procedure was used to select the features. The stepwise
forward search started with zero feature and iteratively searched for the
next feature with the largest reduction of CV error. The search stopped
when the CV error cannot be reduced by adding new feature.

Mediation analysis. The mediation analysis was conducted following the
procedure of Preacher and Kelly,38 computed with MBESS package in R
using an ordinary least squares regression-based analysis.62 The standar-
dized regression coefficient along with the standard error of the
coefficients are reported. To determine the significance of the relation,
the t-test was conducted at the statistical significance level of 0.01.

Data Availability

The datasets for the study are available from the corresponding author on
reasonable request.
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