
A Stream Compiler for
Communication-Exposed Architectures

Michael I. Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S. Meli,
Andrew A. Lamb, Chris Leger, Jeremy Wong, Henry Hoffmann,

David Maze, and Saman Amarasinghe

MIT Laboratory for Computer Science
200 Technology Square
Cambridge, MA 02139

{mgordon, thies, karczma, jasperln, saadat, aalamb, clleger, jnwong, hank, dmaze, saman}@lcs.mit.edu

ABSTRACT
With the increasing miniaturization of transistors, wire de-
lays are becoming a dominant factor in microprocessor per-
formance. To address this issue, a number of emerging archi-
tectures contain replicated processing units with software-
exposed communication between one unit and another (e.g.,
Raw, SmartMemories, TRIPS). However, for their use to be
widespread, it will be necessary to develop compiler technol-
ogy that enables a portable, high-level language to execute
efficiently across a range of wire-exposed architectures.
In this paper, we describe our compiler for StreamIt: a

high-level, architecture-independent language for streaming
applications. We focus on our backend for the Raw proces-
sor. Though StreamIt exposes the parallelism and communi-
cation patterns of stream programs, some analysis is needed
to adapt a stream program to a software-exposed processor.
We describe a partitioning algorithm that employs fission
and fusion transformations to adjust the granularity of a
stream graph, a layout algorithm that maps a stream graph
to a given network topology, and a scheduling strategy that
generates a fine-grained static communication pattern for
each computational element.
We have implemented a fully functional compiler that par-

allelizes StreamIt applications for Raw, including several
load-balancing transformations. Using the cycle-accurate
Raw simulator, we demonstrate that the StreamIt compiler
can automatically map a high-level stream abstraction to
Raw without losing performance. We consider this work to
be a first step towards a portable programming model for
communication-exposed architectures.

∗ This version of the paper is dated August 9, 2002 and corrects some typos
in the ASPLOS £nal copy. More information on the StreamIt project is
available from http://compiler.lcs.mit.edu/streamit

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASPLOS X 10/02 San Jose, CA, USA
Copyright 2002 ACM 1-58113-574-2/02/0010 ...$5.00

1. INTRODUCTION
As we approach the billion-transistor era, a number of

emerging architectures are addressing the wire delay prob-
lem by replicating the basic processing unit and exposing
the communication between units to a software layer (e.g.,
Raw [35], SmartMemories [23], TRIPS [29]). These ma-
chines are especially well-suited for streaming applications
that have regular communication patterns and widespread
parallelism.
However, today’s communication-exposed architectures are

lacking a portable programming model. If these machines
are to be widely used, it is imperative that one be able to
write a program once, in a high-level language, and rely on
a compiler to produce an efficient executable on any of the
candidate targets. For von-Neumann machines, imperative
programming languages such as C and FORTRAN served
this purpose; they abstracted away the idiosyncratic details
between one machine and another, but encapsulated the
common properties (such as a single program counter, arith-
metic operations, and a monolithic memory) that are neces-
sary to obtain good performance. However, for wire-exposed
targets that contain multiple instruction streams and dis-
tributed memory banks, a language such as C is obsolete.
Though C can still be used to write efficient programs on
these machines, doing so either requires architecture-specific
directives or an impossibly smart compiler that can extract
the parallelism and communication from the C semantics.
Both of these options disqualify C as a portable machine
language, since it fails to hide the architectural details from
the programmer and it imposes abstractions which are a
mismatch for the domain.
In this paper, we describe a compiler for StreamIt [33], a

high level stream language that aims to be portable across
communication-exposed machines. StreamIt contains basic
constructs that expose the parallelism and communication
of streaming applications without depending on the topol-
ogy or granularity of the underlying architecture. Our cur-
rent backend is for Raw [35], a tiled architecture with fine-
grained, programmable communication between processors.
However, the compiler employs three general techniques that
can be applied to compile StreamIt to machines other than
Raw: 1) partitioning, which adjusts the granularity of a
stream graph to match that of a given target, 2) layout,

1

float->float filter FIRFilter (float sampleRate, int N) {
float[N] weights;

init {
weights = calcImpulseResponse(sampleRate, N);

}

prework push N-1 pop 0 peek N {
for (int i=1; i<N; i++) {

push(doFIR(i));
}

}

work push 1 pop 1 peek N {
push(doFIR(N));
pop();

}

float doFIR(int k) {
float val = 0;
for (int i=0; i<k; i++) {

val += weights[i] * peek(k-i-1);
}
return val;

}
}

float->float pipeline Equalizer (float samplingRate, int N) {
add splitjoin {

int bottom = 2500;
int top = 5000;
split duplicate;
for (int i=0; i<N; i++, bottom*=2, top*=2) {

add BandPassFilter(sampleRate, bottom, top);
}
join roundrobin;

}
add Adder(N);

}

void->void pipeline FMRadio {
add DataSource();
add FIRFilter(sampleRate, N);
add FMDemodulator(sampleRate, maxAmplitude);
add Equalizer(sampleRate, 4);
add Speaker();

}

Figure 1: Parts of an FM Radio in StreamIt.

which maps a partitioned stream graph to a given network
topology, and 3) scheduling, which generates a fine-grained
static communication pattern for each computational ele-
ment. We consider this work to be a first step towards
a portable programming model for communication-exposed
architectures.
The rest of this paper is organized as follows. Section 2

provides an introduction to StreamIt, Section 3 contains an
overview of Raw, and Section 4 outlines our compiler for
StreamIt on Raw. Sections 5, 6, and 7 describe our algo-
rithms for partitioning, layout, and communication schedul-
ing, respectively. Section 8 describes code generation for
Raw, and Section 9 presents our results. Section 10 consid-
ers related work, and Section 11 contains our conclusions.

2. THE STREAMIT LANGUAGE
StreamIt is a portable programming language for high-

performance signal processing applications. The current ver-
sion of StreamIt is tailored for static-rate streams: it requires
that the input and output rates of each filter are known
at compile time. In this section, we provide a very brief
overview of the syntax and semantics of StreamIt, version
1.1. A more detailed description of the design and rationale
for StreamIt can be found in [33], which describes version

DataSource

FIRFilter

FM Demodulator

Equalizer

Speaker

duplicate splitter

BandPass 1 BandPass N

roundrobin joiner

Adder

Figure 2: Block diagram of the FM Radio.

stream

stream

stream

stream

splitter

����� �
am

����� �
am

joiner

joiner

stream

splitter

stream

(a) A pipeline. (b) A splitjoin. (c) A feedbackloop.

Figure 3: Stream structures supported by StreamIt.

1.0; the most up-to-date syntax specification can always be
found on our website [1].

2.1 Language Constructs
The basic unit of computation in StreamIt is the filter.

A filter is a single-input, single-output block with a user-
defined procedure for translating input items to output items.
An example of a filter is the FIRFilter, a component of
our software radio (see Figure 1). Each filter contains an
init function that is called at initialization time; in this
case, the FIRFilter calculates weights, which represents
its impulse response. The work function describes the most
fine grained execution step of the filter in the steady state.
Within the work function, the filter can communicate with
its neighbors via FIFO queues, using the intuitive opera-
tions of push(value), pop(), and peek(index), where peek
returns the value at position index without dequeuing the
item. The number of items that are pushed, popped, and
peeked1 on each invocation are declared with the work func-
tion.
In addition to work, a filter can contain a prework function

that is executed exactly once between initialization and the
steady-state. Like work, prework can access the input and
output tapes of the filter; however, the I/O rates of work and
prework can differ. In an FIRFilter, a prework function is
essential for correctly filtering the beginning of the input
stream. The user never calls the init, prework, and work

functions–they are all called automatically.
The basic construct for composing filters into a commu-

nicating network is a pipeline, such as the FM Radio in
Figure 1. A pipeline behaves as the sequential composition
of all its child streams, which are specified with successive
calls to add from within the pipeline. For example, the out-
put of DataSource is implicitly connected to the input of
FIRFilter, who’s output is connected to FMDemodulator,
and so on. The add statements can be mixed with regu-
lar imperative code to parameterize the construction of the
stream graph.

1We define peek as the total number of items read, including
the items popped. Thus, we always have that peek ≥ pop.

2

There are two other stream constructs besides pipeline:
splitjoin and feedbackloop (see Figure 3). From now on,
we use the word stream to refer to any instance of a filter,
pipeline, splitjoin, or feedbackloop.
A splitjoin is used to specify independent parallel streams

that diverge from a common splitter and merge into a com-
mon joiner. There are two kinds of splitters: 1) duplicate,
which replicates each data item and sends a copy to each
parallel stream, and 2) roundrobin(w1, . . . , wn), which sends
the first w1 items to the first stream, the next w2 items to
the second stream, and so on. roundrobin is also the only
type of joiner that we support; its function is analogous to
a roundrobin splitter. If a roundrobin is written without
any weights, we assume that all wi = 1. The splitter and
joiner type are specified with the keywords split and join,
respectively (see Figure 1); the parallel streams are specified
by successive calls to add, with the i’th call setting the i’th
stream in the splitjoin.
The last control construct provides a way to create cycles

in the stream graph: the feedbackloop. Due to space con-
straints, we omit a detailed discussion of the feedbackloop.

2.2 Design Rationale
StreamIt differs from other stream languages in that it

imposes a well-defined structure on the streams; all stream
graphs are built out of a hierarchical composition of filters,
pipelines, splitjoins, and feedbackloops. This is in contrast
to other environments, which generally regard a stream as
a flat and arbitrary network of filters that are connected
by channels. However, arbitrary graphs are very hard for
the compiler to analyze, and equally difficult for a program-
mer to describe. The comparison of StreamIt’s structure
with arbitrary stream graphs could be likened to the differ-
ence between structured control flow and GOTO statements:
though the programmer might have to re-design some code
to adhere to the structure, the gains in robustness, readabil-
ity, and compiler analysis are immense.

3. THE RAW ARCHITECTURE
The Raw Microprocessor [9, 35] addresses the wire delay

problem [15] by providing direct instruction set architecture
(ISA) analogs to three underlying physical resources of the
processor: gates, wires and pins. Because ISA primitives ex-
ist for these resources, a compiler such as StreamIt has direct
control over both the computation and the communication
of values between the functional units of the microprocessor,
as well as across the pins of the processor.
The architecture exposes the gate resources as a scalable

2-D array of identical, programmable tiles, that are con-
nected to their immediate neighbors by four on-chip net-
works. Each network is 32-bit, full-duplex, flow-controlled
and point-to-point. On the edges of the array, these net-
works are connected via logical channels [13] to the pins.
Thus, values routed through the networks off of the side of
the array appear on the pins, and values placed on the pins
by external devices (for example, wide-word A/Ds, DRAMS,
video streams and PCI-X buses) will appear on the net-
works.
Each of the tiles contains a compute processor, some mem-

ory and two types of routers–one static, one dynamic–that
control the flow of data over the networks as well as into
the compute processor (see Figure 4). The compute proces-
sor interfaces to the network through a bypassed, register-

SMEM

Switch

Registers

DMEM

PC

PC

ALU

IMEM

Figure 4: Block diagram of the Raw architecture.

mapped interface [9] that allows instructions to use the net-
works and the register files interchangeably. In other words,
a single instruction can read up to two values from the net-
works, compute on them, and send the result out onto the
networks, with no penalty. Reads and writes in this fash-
ion are blocking and flow-controlled, which allows for the
computation to remain unperturbed by unpredictable tim-
ing variations such as cache misses and interrupts.
Each tile’s static router has a virtualized instruction mem-

ory to control the crossbars of the two static networks. Col-
lectively, the static routers can reconfigure the communica-
tion pattern across these networks every cycle. The instruc-
tion set of the static router is encoded as a 64-bit VLIW
word that includes basic instructions (conditional branch
with/without decrement, move, and nop) that operate on
values from the network or from the local 4-element register
file. Each instruction also has 13 fields that specify the con-
nections between each output of the two crossbars and the
network input FIFOs, which store values that have arrived
from neighboring tiles or the local compute processor. The
input and output possibilities for each crossbar are: North,
East, South, West, Processor, to the other crossbar, and
into the static router. The FIFOs are typically four or eight
elements large.
To route a word from one tile to another, the compiler in-

serts a route instruction on every intermediate static router
[22]. Because the routers are pipelined and compile-time
scheduled, they can deliver a value from the ALU of one
tile to the ALU of a neighboring tile in 3 cycles, or more
generally, 2+N cycles for an inter-tile distance of N hops.
The results of this paper were generated using btl, a cycle-

accurate simulator that models arrays of Raw tiles identi-
cal to those in the .15 micron 16-tile Raw prototype ASIC
chip. With a target clock rate of 250 MHz, the tile em-
ploys as compute processor an 8-stage, single issue, in-order
MIPS-style pipeline that has a 32 KB data cache, 32 KB
of instruction memory, and 64 KB of static router memory.
All functional units except the floating point and integer
dividers are fully pipelined. The mispredict penalty of the
static branch predictor is three cycles, as is the load latency.
The compute processor’s pipelined single-precision FPU op-
erations have a latency of 4 cycles, and the integer multiplier
has a latency of 2 cycles.

4. COMPILING STREAMIT TO RAW
The phases of the StreamIt compiler are described in Ta-

ble 1. The front end is built on top of KOPI, an open-source
compiler infrastructure for Java [12]; we use KOPI as our
infrastructure because StreamIt has evolved from a Java-
based syntax. We translate the StreamIt syntax into the

3

Phase Function

KOPI Front-end Parses syntax into a Java-like abstract syntax tree.
SIR Conversion Converts the AST to the StreamIt IR (SIR).
Graph Expansion Expands all parameterized structures in the stream graph.
Scheduling Calculates initialization and steady-state execution orderings for filter firings.
Partitioning Performs fission and fusion transformations for load balancing.
Layout Determines minimum-cost placement of filters on grid of Raw tiles.
Communication Scheduling Orchestrates fine-grained communication between tiles via simulation of the stream graph.
Code generation Generates code for the tile and switch processors.

Table 1: Phases of the StreamIt compiler.

KOPI syntax tree, and then construct the StreamIt IR (SIR)
that encapsulates the hierarchical stream graph. Since the
structure of the graph might be parameterized, we propa-
gate constants and expand each stream construct to a static
structure of known extent. At this point, we can calculate
an execution schedule for the nodes of the stream graph.

The automatic scheduling of the stream graph is one of the
primary benefits that StreamIt offers, and the subtleties of
scheduling and buffer management are evident throughout
all of the following phases of the compiler. The scheduling is
complicated by StreamIt’s support for the peek operation,
which implies that some programs require a separate sched-
ule for initialization and for the steady state. The steady
state schedule must be periodic–that is, its execution must
preserve the number of live items on each channel in the
graph (since otherwise a buffer would grow without bound.)
A separate initialization schedule is needed if there is a filter
with peek > pop, by the following reasoning. If the initial-
ization schedule were also periodic, then after each firing it
would return the graph to its initial configuration, in which
there were zero live items on each channel. But a filter with
peek > pop leaves peek − pop (a positive number) of items
on its input channel after every firing, and thus could not be
part of this periodic schedule. Therefore, the initialization
schedule is separate, and non-periodic.

In the StreamIt compiler, the initialization schedule is
constructed via symbolic execution of the stream graph, un-
til each filter has at least peek−pop items on its input chan-
nel. For the steady state schedule, there are many tradeoffs
between code size, buffer size, and latency, and we are devel-
oping techniques to optimize different metrics [34]. In this
paper, we use a simple hierarchical scheduler that constructs
a Single Appearance Schedule (SAS) [5] for each filter. A
SAS is a schedule where each node appears exactly once in
the loop nest denoting the execution order. We construct
one such loop nest for each hierarchical stream construct,
such that each component is executed a set number of times
for every execution of its parent. In later sections, we refer
to the “multiplicity” of a filter as the number of times that
it executes in one steady state execution of the entire stream
graph.

Following the scheduler, the compiler has stages that are
specific for communication-exposed architectures: partition-
ing, layout, and communication scheduling. The next three
sections of the paper are devoted to these phases.

5. PARTITIONING
StreamIt provides the filter construct as the basic abstract

unit of autonomous stream computation. The programmer
should decide the boundaries of each filter according to what
is most natural for the algorithm under consideration. While
one could envision each filter running on a separate machine
in a parallel system, StreamIt hides the granularity of the

KEY

Blocked on send or receive

(a) Original (runs on 64 tiles).

(b) Partitioned (runs on 16 tiles).

Figure 5: Execution traces for the (a) original and (b)

partitioned versions of the Radar application. The x

axis denotes time, and the y axis denotes the proces-

sor. Dark bands indicate periods where processors are

blocked waiting to receive an input or send an output;

light regions indicate periods of useful work. The thin

stripes in the light regions represent pipeline stalls. Our

partitioning algorithm decreases the granularity of the

graph from 53 unbalanced tiles (original) to 15 balanced

tiles (partitioned). The throughput of the partitioned

graph is 2.3 times higher than the original.

4

null

InputGenerate
12

FIRFilter (64)12

FIRFilter (16)12

InputGenerate

FIRFilter (64)1

FIRFilter (16)1

VectorMultiply

null

duplicate

roundrobin

VectorMultiply

FIRFilter (64)1

1 2

1 2

Magnitude Magnitude

DetectionDetection

FIRFilter (64)2

VectorMultiply
3

3

Magnitude

Detection

FIRFilter (64)3

VectorMultiply
4

4

Magnitude

Detection

FIRFilter (64)4

1

a

b

a

b

c c c c

1 2 3 4

Figure 6: Stream graph of the original 12x4 Radar ap-

plication. The 12x4 Radarapplication has 12 channels

and 4 beams; it is the largest version that fits onto 64

tiles without filter fusion.

null

5

1

InputGenerate

FIRFilter (64)

FIRFilter (16)

1

InputGenerate

FIRFilter (64)

FIRFilter (16)

null

duplicate

roundrobin

FIRFilter (64)

VectorMultiply
1

VectorMultiply
2

Magnitude

Magnitude

2Detection

1Detection

FIRFilter (64)

VectorMultiply
3

Magnitude

3Detection

FIRFilter (64)

VectorMultiply
4

Magnitude

4Detection

FIRFilter (64)

1 12

1 12

1 12

a a

b b

1
c

3
c

2
c

4
c

1 3

2 4

Figure 7: Stream graph of the load-balanced 12x4

Radar application. Vertical fusion is applied to col-

lapse each pipeline into a single filter, and horizontal fu-

sion is used to transform the 4-way splitjoin into a 2-way

splitjoin. Figure 5 shows the benefit of these transfor-

mations.

target machine from the programmer. Thus, it is the re-
sponsibility of the compiler to adapt the granularity of the
stream graph for efficient execution on a particular architec-
ture.
We use the word partitioning to refer to the process of

dividing a stream program into a set of balanced computa-
tion units. Given that a maximum of N computation units
can be supported, the partitioning stage transforms a stream
graph into a set of no more than N filters, each of which per-
forms approximately the same amount of work during the
execution of the program. Following this stage, each filter
can be run on a separate processor to obtain a load-balanced
executable.

5.1 Overview
Our partitioner employs a set of fusion, fission, and re-

ordering transformations to incrementally adjust the stream
graph to the desired granularity. To achieve load balancing,
the compiler estimates the number of instructions that are
executed by each filter in one steady-state cycle of the en-
tire program; then, computationally intensive filters can be
split, and less demanding filters can be fused. Currently, a
simple greedy algorithm is used to automatically select the
targets of fusion and fission, based on the estimate of the
work in each node.
For example, in the case of the Radar application, the

original stream graph (Figure 6) contains 52 filters. These
filters have unbalanced amounts of computation, as evi-
denced by the execution trace in Figure 5(a). The parti-
tioner fuses all of the pipelines in the graph, and then fuses
the bottom 4-way splitjoin into a 2-way splitjoin, yielding
the stream graph in Figure 7. As illustrated by the execution
trace in Figure 5(b), the partitioned graph has much bet-
ter load balancing. In the following sections, we describe in
more detail the transformations utilized by the partitioner.

5.2 Fusion Transformations
Filter fusion is a transformation whereby several adjacent

filters are combined into one. Fusion can be applied to de-
crease the granularity of a stream graph so that an applica-
tion will fit on a given target, or to improve load balancing
by merging small filters so that there is space for larger
filters to be split. Analogous to loop fusion in the scien-
tific domain, filter fusion can enable other optimizations by
merging the control flow graphs of adjacent nodes, thereby
shortening the live ranges of variables and allowing indepen-
dent instructions to be reordered.

5.2.1 Unoptimized Fusion Algorithm
In the domain of structured stream programs, there are

two types of fusion that we are interested in: vertical fu-

sion for collapsing pipelined filters into a single unit, and
horizontal fusion for combining the parallel components of
a splitjoin into one. Given that each StreamIt filter has a
constant I/O rate, it is possible to implement both vertical
and horizontal fusion as a plain compile-time simulation of
the execution of the stream graph. A high-level algorithm
for doing so is as follows:

1. Calculate a legal initialization and steady-state sched-
ule for the nodes of interest.

2. For each pair of neighboring nodes, introduce a circu-
lar buffer that is large enough to hold all the items

5

produced during the initial schedule and one iteration
of the steady-state schedule. For each buffer, maintain
indices to keep track of the head and tail of the FIFO
queue.

3. Simulate the execution of the graph according to the
calculated schedules, replacing all push, pop, and peek
operations in the fused region with appropriate ac-
cesses to the circular buffers.

That is, a naive approach to filter fusion is to simply im-
plement the channel abstraction and to leverage StreamIt’s
static rates to simulate the execution of the graph. How-
ever, the performance of fusion depends critically on the
implementation of channels, and there are several high-level
optimizations that the compiler employs to improve upon
the performance of a general-purpose buffer implementa-
tion. We describe a few of these optimizations in detail
in the following sections.

5.2.2 Optimizing Vertical Fusion
Figure 8 illustrates two of our optimizations for vertical fu-

sion: the localization of buffers and the elimination of mod-
ulo operations. In this example, the UpSampler pushes K

items on every step, while the MovingAverage filter peeks
at N items but only pops 1. The effect of the optimizations
are two-fold. First, buffer localization splits the channel be-
tween the filters into a local buffer (holding items that are
transfered within work) and a persistent peek buffer (hold-
ing items that are stored between iterations of work). Sec-
ond, modulo elimination arranges copies between these two
buffers so that all index expressions are known at compile
time, preventing the need for a modulo operation to wrap
around a circular buffer.
The execution of the fused filter proceeds as follows. In

the prework function, which is called only on the first in-
vocation, the peek buffer is filled with initial values from
the UpSampler. The steady work function implements a
steady-state schedule in which LCM(N, K) items are trans-
ferred between the two original filters–these items are com-
municated through a local, temporary buffer. Before and
after the execution of the MovingAverage code, the con-
tents of the peek buffer are transferred in and out of the
buffer. If the peek buffer is small, this copying can be
eliminated with loop unrolling and copy propagation. Note
that the peek buffer is for storing items that are persistent
from one firing to the next, while the local buffer is just for
communicating values during a single firing.

5.2.3 Optimizing Horizontal Fusion
The naive fusion algorithm maintains a separate input

buffer for each parallel stream in a splitjoin. However, in the
case of a duplicate splitter, the input buffer can be shared be-
tween the streams, as illustrated in Figure 9. As in pipeline
fusion, the code of the component filters is inlined into a
single filter with repetition according to the steady-state
schedule. However, there are some modifications: all pop
statements are converted to peek statements, and the pop’s
are performed at the end of the fused work function. This
allows all the filters to see the data items before they are
consumed. Finally, the roundrobin joiner is simulated by a
reorder-roundrobin filter that re-arranges the output of the
fused filter according to the weights of the joiner. Separat-
ing this reordering phase from the fused filter also decreases

UpSampler (K)

int val = pop();

for (int i=0; i<K; i++)

 push(val);

MovingAverage (N)

int sum = 0;

for (int i=0; i<N; i++)

 sum += peek(i);

push(sum/N);

pop();

(a) Original

int i, j, val;

for (i=0; i<CEIL(N/K); i++) {

 val = pop();

 for (j=0; j<K; j++)

 peek_buffer[i*K+j] = val;

}

UpSamplingMovingAverage (K, N)

int i, j, sum, val;

int buffer[PEEK_SIZE+LCM(N,K)];

for (i=0; i<LCM � �������	�
������������
 val = pop();�	���

� �	������	������������
 buffer[PEEK_SIZ �������
������ !�#"�$�%��
}

for (i=0; i<PEEK_SIZE; i++)&�' ���	(��*) �� !�#+
(�(�,

- &�'
���	(��

[i];

for (i=0; i<LCM � �������	�.�/����������
 sum = 0;�	���

� �	������	������������
 sum ��� &�' ���	(��*) ���.������ ��
 push(sum/N);

for (i=0; i<PEEK_SIZE; i++)

+
(�(�,

- &�'
���	(��*)

�� !� &�' ���	(��
[i+LCM(N,K)];

int PEEK_SIZE = K*CEIL(N/K);

int peek_buffer[PEEK_SIZE];

prework

work

(b) Fused

Figure 8: Vertical fusion with buffer localization and

modulo-division optimizations.

duplicate

roundrobin (N, N)

push(pop() - pop());

Subtract
push(pop() + pop());

Add

(a) Original

AddSubtract

push(peek(0) + peek(1));

push(peek(0) - peek(1));

for (int i=0; i<2; i++)

 pop();

ReorderRoundRobin (N)

int i, j;

for (i=0; i<2; i++)

 for (j=0; j<N; j++)

 push(peek(i+2*j));

for (i=0; i<2; i++)

 for (j=0; j<N; j++)

 pop();

(b) Fused

Figure 9: Horizontal fusion of a duplicate splitjoin con-

struct with buffer sharing optimization.

6

MovingAverage (N)

int sum = 0;

for (int i=0; i<N; i++)

 sum += peek(i);

push(sum/N);

pop();

MovingAverage (N)

roundrobin

duplicate

1 MovingAverage (N)K

J
MovingAverage (N)

for (int i=0; i<J-1; i++)

 pop();

prework

int i, sum = 0;

for (i=0 ; i<N; i++)

 sum += peek(i);

push(sum/N);

pop();

for (i=0; i<K-1; i++)

 pop();

work

(a) Original (b) Fused

Figure 10: Fission of a filter that peeks.

the buffer requirements within the fused node. When ap-
propriate, pipeline fusion can be applied to fuse these two
nodes into a single filter that represents the entire splitjoin.

5.3 Fission Transformations
Filter fission is the analog of parallelization in the stream-

ing domain. It can be applied to increase the granularity of
a stream graph to utilize unused processor resources, or to
break up a computationally intensive node for improved load
balancing.

5.3.1 Vertical Fission
Some filters can be split into a pipeline, with each stage

performing part of the work function. In addition to the
original input data, these pipelined stages might need to
communicate intermediate results from within work, as well
as fields within the filter. This scheme could apply to fil-
ters with state if all modifications to the state appear at the
top of the pipeline (they could be sent over the data chan-
nels), or if changes are infrequent (they could be sent via
StreamIt’s messaging system.) Also, some state can be iden-
tified as induction variables, in which case their values can
be reconstructed from the work function instead of stored as
fields. We have yet to automate vertical filter fission in the
StreamIt compiler.

5.3.2 Horizontal Fission
We refer to “horizontal fission” as the process of dis-

tributing a single filter across the parallel components of
a splitjoin. We have implemented this transformation for
“stateless” filters–that is, filters that contain no fields that
are written on one invocation of work and read on later in-
vocations. Let us consider such a filter F with steady-state
I/O rates of peek, pop, and push, that is being parallelized
into an K-way splitjoin. There are two cases to consider:

1. If peek = pop, then F can simply be duplicated K

ways in the splitjoin. The splitter is a roundrobin that
routes pop elements to each copy of F , and the joiner is

roundrobin(w , w)

1

2 3

roundrobin(w w + w)2 3

1
roundrobin(w + w w)

2
,

,

3

roundrobin(w , w)21

Figure 11: Synchronization removal. If there are neigh-

boring splitters and joiners with matching rates, then the

nodes can be removed and the component streams can

be connected. The example above is drawn from a sub-

graph of the 3GPP application; the compiler automati-

cally performs this transformation to expose parallelism

and improve the partitioning. Synchronization removal

is especially valuable in the context of libraries–many

distinct components can employ splitjoins for processing

interleaved data streams, and the modules can be com-

posed without having to synchronize all the streams at

each boundary.

a roundrobin that reads push elements from each com-
ponent. Since F does not peek at any items which it
does not consume, its code does not need to be modi-
fied in the component streams–we are just distributing
the invocations of F .

2. If peek > pop, then a different transformation is ap-
plied (see Figure 10). In this case, the splitter is a
duplicate, since the component filters need to exam-
ine overlapping parts of the input stream. The i’th
component has a steady-state work function that be-
gins with the work function of F , but appends a series
of (K − 1) ∗ pop pop statements in order to account
for the data that is consumed by the other compo-
nents. Also, the i’th filter has a prework function that
pops (i− 1) ∗ pop items from the input stream, to ac-
count for the consumption of previous filters on the
first iteration of the splitjoin. As before, the joiner is
a roundrobin that has a weight of push for each stream.

5.4 Reordering Transformations
There are a multitude of ways to reorder the elements of

a stream graph so as to facilitate fission and fusion transfor-
mations. For instance, neighboring splitters and joiners with
matching weights can be eliminated (Figure 11); a splitjoin
construct can be divided into a hierarchical set of splitjoins
to enable a finer granularity of fusion (Figure 12); and identi-
cal stateless filters can be pushed through a splitter or joiner
node if the weights are adjusted accordingly.

5.5 Automatic Partitioning
In order to drive the partitioning process, we have im-

plemented a simple greedy algorithm that performs well on
most applications. The algorithm analyzes the work func-
tion of each filter and estimates the number of cycles re-
quired to execute it. Because of the static I/O rates in
StreamIt, most loops within work can be unrolled, allowing
a close approximation of the actual cycle count. Multiply-
ing this cycle count by the multiplicity of the filter in the

7

duplicate

roundrobin(w1,w2,w3,w4)

duplicate

roundrobin(w1+w2,w3+w4)

duplicate duplicate

roundrobin(w1,w2) roundrobin(w3,w4)

Figure 12: Breaking a splitjoin into hierarchical units.

Though our horizontal fusion algorithms work on the

granularity of an entire splitjoin, it is straightforward

to transform a large splitjoin into a number of smaller

pieces, as shown here. Following this transformation, the

fusion algorithms can be applied to obtain an intermedi-

ate level of granularity. This technique was employed to

help load-balance the Radar application (see Section 9).

steady-state schedule, the algorithm obtains an estimate of
the steady-state computational requirements for each filter.
In the case where there are fewer filters than tiles, the

partitioner considers the filters in decreasing order of their
computational requirements and attempts to split them us-
ing the filter fission algorithm described above. Fission pro-
ceeds until there are enough filters to occupy the available
machine resources, or until the heaviest node in the graph is
not amenable to a fission transformation. Generally, it is not
beneficial to split nodes other than the heaviest one, as this
would introduce more synchronization without alleviating
the bottleneck in the graph.
If the stream graph contains more nodes than the tar-

get architecture, then the partitioner works in the opposite
direction and repeatedly fuses the least demanding stream
construct until the graph will fit on the target. The work
estimates of the filters are tabulated hierarchically and each
construct (i.e., pipeline, splitjoin, and feedbackloop) is ranked
according to the sum of its children’s computational require-
ments. At each step of the algorithm, an entire stream con-
struct is collapsed into a single filter. The only exception
is the final fusion operation, which only collapses to the ex-
tent necessary to fit on the target; for instance, a 4-element
pipeline could be fused into two 2-element pipelines if no
more collapsing was necessary.
Despite its simplicity, this greedy strategy works well in

practice because most applications have many more filters
than can fit on the target architecture; since there is a long
sequence of fusion operations, it is easy to compensate from
a short-sighted greedy decision. However, we can construct
cases in which a greedy strategy will fail. For instance,
graphs with wildly unbalanced filters will require fission of
some components and fusion of others; also, some graphs
have complex symmetries where fusion or fission will not be
beneficial unless applied uniformly to each component of the
graph. We are working on improved partitioning algorithms
that take these measures into account.

6. LAYOUT
The goal of the layout phase is to assign nodes in the

stream graph to computation nodes in the target architec-
ture while minimizing the communication and synchroniza-
tion present in the final layout. The layout assigns exactly
one node in the stream graph to one computation node in
the target. The layout phase assumes that the given stream

graph will fit onto the computation fabric of the target and
that the filters are load balanced. These requirements are
satisfied by the partitioning phase described above.
The layout phase of the StreamIt compiler is implemented

using simulated annealing [19]. We choose simulated anneal-
ing for its combination of performance and flexibility. To
adapt the layout phase for a given architecture, we supply
the simulated annealing algorithm with three architecture-
specific parameters: a cost function, a perturbation func-
tion, and the set of legal layouts. To change the compiler
to target one tiled architecture instead of another, these pa-
rameters should require only minor modifications.
The cost function should accurately measure the added

communication and synchronization generated by mapping
the stream graph to the communication model of the tar-
get. Due to the static qualities of StreamIt, the compiler
can provide the layout phase with exact knowledge of the
communication properties of the stream graph. The terms
of the cost function can include the counts of how many
items travel over each channel during an execution of the
steady state. Furthermore, with knowledge of the routing
algorithm, the cost function can infer the intermediate hops
for each channel. For architectures with non-uniform com-
munication, the cost of certain hops might be weighted more
than others. In general, the cost function can be tailored to
suit a given architecture.

6.1 Layout for Raw
For Raw, the layout phase maps nodes in the stream graph

to the tile processors. Each filter is assigned to exactly one
tile, and no tile holds more than one filter. However, the
ends of a splitjoin construct are treated differently; each
splitter node is folded into its upstream neighbor, and neigh-
boring Joiner nodes are collapsed into a single tile (see Sec-
tion 7.1). Thus, Joiners occupy their own tile, but splitters
are integrated into the tile of another filter or Joiner.
Due to the properties of the static network and the com-

munication scheduler (Section 7.1), the layout phase does
not have to worry about deadlock. All assignments of nodes
to tiles are legal. This gives simulated annealing the flexi-
bility to search many possibilities and simplifies the layout
phase. The perturbation function used in simulated anneal-
ing simply swaps the assignment of two randomly chosen
tile processors.
After some experimentation, we arrived at the following

cost function to guide the layout on Raw. We let channels

denote the pairs of nodes {(src1, dst1) . . . (srcN , dstN)} that
are connected by a channel in the stream graph; layout(n)
denote the placement of node n on the Raw grid; and
route(src, dst) denote the path of tiles through which a data
item is routed in traveling from tile src to tile dst. In our
implementation, the route function is a simple dimension-
ordered router that traces the path from src to dst by first
routing in the X dimension and then routing in the Y di-
mension. Given fixed values of channels and route, our cost
function evaluates a given layout of the stream graph:

cost(layout) =
∑

items(src, dst) · (hops(path) + 10 · sync(path))
(src,dst) ∈ channels

where path = route(layout(src), layout(dst))

In this equation, items(src, dst) gives the number of data

8

21

22

23

15

17

19

roundrobin(1, 1)

roundrobin (11, 11)

push(pop())

Identity
push(pop())

Identity

20

2
4

6
8

12

10

14
16

18

Figure 13: Example of deadlock in a splitjoin. As

the joiner is reading items from the stream on the left,

items accumulate in the channels on the right. On Raw,

senders will block once a channel has four items in it.

Thus, once 10 items have passed through the joiner, the

system is deadlocked, as the joiner is trying to read from

the left, but the stream on the right is blocked.

21

22

23

15

17

19

roundrobin(1, 1)

buffering_roundrobin (11, 11)

push(pop())

Identity
push(pop())

Identity

buffering_roundrobin (11, 11)

buf

int i;

for (i=0; i<11; i++) {

 push(input1.pop());

 buf[i] = input2.pop();

}

for (i=0; i<11; i++) {

 push(buf[i]);

}

20

2

4

6

8

12

10

14

16

18

Figure 14: Fixing the deadlock with a buffering joiner.

The buffering roundrobin is an internal StreamIt con-

struct (it is not part of the language) which reads items

from its input channels in the order in which they ar-

rive, rather than in the order specified by its weights.

The order of arrival is determined by a simulation of the

stream graph’s execution; thus, the system is guaranteed

to be deadlock-free, as the order given by the simulation

is feasible for execution on Raw. To preserve the seman-

tics of the joiner, the items are written to the output

channel from the internal buffers in the order specified

by the joiner’s weights. The ordered items are sent to

the output as soon as they become available.

words that are transfered from src to dst during each steady
state execution, hops(p) gives the number of intermediate
tiles traversed on the path p, and sync(p) estimates the cost
of the synchronization imposed by the path p. We calculate
sync(p) as the number of tiles along the route that are as-
signed a stream node plus the number of tiles along the route
that are involved in routing other channels.
With the above cost function, we heavily weigh the added

synchronization imposed by the layout. For Raw, this metric
is far more important than the length of the route because
neighbor communication over the static network is cheap. If
a tile that is assigned a filter must route data items through
it, then it must synchronize the routing of these items with
the execution of its work function. Also, a tile that is in-
volved in the routing of many channels must serialize the
routes running through it. Both limit the amount of paral-
lelism in the layout and need to be avoided.

7. COMMUNICATION SCHEDULER
With the nodes of the stream graph assigned to compu-

tation nodes of the target, the next phase of the compiler
must map the communication explicit in the stream graph
to the interconnect of the target. This is the task of the com-
munication scheduler. The communication scheduler maps
the infinite FIFO abstraction of the stream channels to the
limited resources of the target. Its goal is to avoid deadlock
and starvation while utilizing the parallelism explicit in the
stream graph.
The exact implementation of the communication sched-

uler is tied to the communication model of the target. The
simplest mapping would occur for targets implementing an
end-to-end, infinite FIFO abstraction, in which the sched-
uler needs only to determine the sender and receiver of each
data item. This information is easily calculated from the
weights of the splitters and joiners. As the communication
model becomes more constrained, the communication sched-
uler becomes more complex, requiring analysis of the stream
graph. For targets implementing a finite, blocking nearest-
neighbor communication model, the exact ordering of tile
execution must be specified.
Due to the static nature of StreamIt, the compiler can

statically orchestrate the communication resources. As de-
scribed in Section 4, we create an initialization schedule and
a steady-state schedule that fully describe the execution of
the stream graph. The schedules can give us an order for
execution of the graph if necessary. One can generate or-
derings to minimize buffer length, maximize parallelism, or
minimize latency.
Deadlock must be carefully avoided in the communication

scheduler. Each architecture requires a different deadlock
avoidance mechanism and we will not go into a detailed
explanation of deadlock here. In general, deadlock occurs
when there is a circular dependence on resources. A circu-
lar dependence can surface in the stream graph or in the
routing pattern of the layout. If the architecture does not
provide sufficient buffering, the scheduler must serialize all
potentially deadlocking dependencies.

7.1 Communication Scheduler for Raw
The communication scheduling phase of the StreamIt com-

piler maps StreamIt’s channel abstraction to Raw’s static
network. As mentioned in Section 3, Raw’s static network
provides optimized, nearest neighbor communication. Tiles

9

lines of # of constructs in the program # of filters in the
Benchmark Description code filters pipelines splitjoins feedbackloops expanded graph

FIR 64 tap FIR 125 5 1 0 0 132
Radar Radar array front-end[20] 549 8 3 6 0 52
Radio FM Radio with an equalizer 525 14 6 4 0 26
Sort 32 element Bitonic Sort 419 4 5 6 0 242
FFT 64 element FFT 200 3 3 2 0 24
Filterbank 8 channel Filterbank 650 9 3 1 1 51
GSM GSM Decoder 2261 26 11 7 2 46
Vocoder 28 channel Vocoder [30] 1964 55 8 12 1 101
3GPP 3GPP Radio Access Protocol [3] 1087 16 10 18 0 48

Table 2: Application Characteristics.

250 MHz Raw processor C on a 2.2 GHz
Benchmark StreamIt on 16 tiles C on a single tile Intel Pentium IV

Utilization
of tiles

used
MFLOPS

Throughput
(per 105 cycles)

Throughput
(per 105 cycles)

Throughput
(per 105 cycles)

FIR 84% 14 815 1188.1 293.5 445.6
Radar 79% 16 1,231 0.52 app. too large 0.041
Radio 73% 16 421 53.9 8.85 14.1
Sort 64% 16 N/A 2,664.4 225.6 239.4
FFT 42% 16 182 2,141.9 468.9 448.5
Filterbank 41% 16 644 256.4 8.9 7.0
GSM 23% 16 N/A 80.9 app. too large 7.76
Vocoder 17% 15 118 8.74 app. too large 3.35
3GPP 18% 16 44 119.6 17.3 65.7

Table 3: Performance Results.

communicate using buffered, blocking sends and receives. It
is the compiler’s responsibility to statically orchestrate the
explicit communication of the stream graph while prevent-
ing deadlock.
To statically orchestrate the communication of the stream

graph, the communication scheduler simulates the firing of
nodes in the stream graph, recording the communication as
it simulates. The simulation does not model the code inside
each filter; instead it assumes that each filter fires instan-
taneously. This relaxation is possible because of the flow
control of the static network–since sends block when a chan-
nel is full and receives block when a channel is empty, the
compiler needs only to determine the ordering of the sends
and receives rather than arranging for a precise rendezvous
between sender and receiver.
Special care is required in the communication scheduler to

avoid deadlock in splitjoin constructs. Figure 13 illustrates
a case where the naive implementation of a splitjoin would
cause deadlock in Raw’s static network. The fundamental
problem is that some splitjoins require a buffer of values at
the joiner node–that is, the joiner outputs values in a dif-
ferent order than it receives them. This can cause deadlock
on Raw because the buffers between channels can hold only
four elements; once a channel is full, the sender will block
when it tries to write to the channel. If this blocking propa-
gates the whole way from the joiner to the splitter, then the
entire splitjoin is blocked and can make no progress.
To avoid this problem, the communication scheduler im-

plements internal buffers in the joiner node instead of ex-
posing the buffers on the Raw network (see Figure 14). As
the execution of the stream graph is simulated, the scheduler
records the order in which items arrive at the joiner, and the
joiner is programmed to fill its internal buffers accordingly.
At the same time, the joiner outputs items according to the
ordering given by the weights of the roundrobin. That is,
the sending code is interleaved with the receiving code in the
joiner; no additional items are input if a buffered item can

be written to the output stream. To facilitate code gener-
ation (Section 8), the maximum buffer size of each internal
buffer is recorded.
Our current implementation of the communication sched-

uler is overly cautious in its deadlock avoidance. All feed-
backloops are serialized by the communication scheduler to
prevent deadlock. More precisely, the loop and body streams
of each feedbackloop cannot execute in parallel. Crossed
routes in the layout of the graph are serialized as well, forc-
ing each path to wait its turn at the contention point.

8. CODE GENERATION
The final phase in the flow of the StreamIt compiler is code

generation. The code generation phase must use the results
of each of the previous phases to generate the complete pro-
gram text. The results of the partitioning and layout phases
are used to generate the computation code that executes on
a computation node of the target. The communication code
of the program is generated from the schedules produced by
the communication scheduler.

8.1 Code Generation for Raw
The code generation phase of the Raw backend generates

code for both the tile processor and the switch processor.
For the switch processor, we generate assembly code directly.
For the tile processor, we generate C code that is compiled
using Raw’s GCC port. First we will discuss the tile pro-
cessor code generation. We can directly translate the inter-
mediate representation of most StreamIt expressions into C
code. Translations for the push(value), peek(index), and
pop() expressions of StreamIt require more care.
In the translation, each filter collects the data necessary

to fire in an internal buffer. Before each filter is allowed to
fire, it must receive pop items from its switch processor (peek
items for the initial firing). The buffer is managed circularly
and the size of the buffer is equal to the number of items
peeked by the filter. peek(index) and pop() are translated

10

0

4

8

12

16

20

24

28

32

FIR Radio Sort FFT Filterbank 3GPP

�
�
�
�
� �
�
��
� �
��	

� �
�
�

� �
� �
��

�
�
��
�
��
�
�
��
� 	�
�
�
�
 �
� �
�

Figure 15: StreamIt throughput on a 16-tile Raw ma-

chine, normalized to throughput of hand-written C run-

ning on a single Raw tile.

into accesses of the buffer, with pop() adjusting the end
of the buffer, and peek(index) accessing the indexth ele-
ment from the end of the buffer. push(value) is translated
directly into a send from the tile processor to the switch
processor. The switch processors are then responsible for
routing the data item.
The filter code does not interleave send instructions with

receive instructions. The filter must receive all of the data
necessary to fire before it can execute its work function. This
is an overly conservative approach that prevents deadlock
for certain situations, but limits parallelism. For example,
this technique prevents feedbackloops from deadlocking by
serializing the loop and the body. The loop and the body
cannot execute in parallel. We are investigating methods for
relaxing the serialization.
As described in Section 7.1, the communication sched-

uler computes an internal buffer schedule for each collapsed
Joiner node. This schedule exactly describes the order in
which to send and receive data items from within the Joiner.
The schedule is annotated with the destination buffer of the
receive instruction and the source buffer of the send instruc-
tion. Also, the communication scheduler calculates the max-
imum size of each buffer. With this information the code
generation phase can produce the code necessary to realize
the internal buffer schedule on the tile processor.
Lastly, to generate the instructions for the switch pro-

cessor, we directly translate the switch schedules computed
by the communication scheduler. The initialization switch
schedule is followed by the steady state switch schedule, with
the steady state schedule looping infinitely.

9. RESULTS
Our current implementation of StreamIt supports fully

automatic compilation through the Raw backend. We have
also implemented the optimizations that we have described:
synchronization elimination, modulo expression elimination
(vertical fusion), buffer localization (vertical fusion), and
buffer sharing (horizontal fusion).
We evaluate the StreamIt compiler for the set of applica-

tions shown in Table 2; our results appear in Table 3. For
each application, we compare the throughput of StreamIt
with a hand-written C program, running the latter on ei-
ther a single tile of Raw or on a Pentium IV. For Radio,
GSM, and Vocoder, the C source code was obtained from a

0

2

4

6

8

10

12

14

16

FIR Radar Radio Sort FFT Filterbank GSM Vocoder 3GPP

�� �
��
�
� ��
��
��
� !

"��
#
$ %
&!
'
� �
$
(!
"�% �
#
)*

Sequential C program on 1 tile

StreamIt program on 16 tiles

+-,

Figure 16: Throughput of StreamIt code running
on 16 tiles and C code running on a single tile, nor-
malized to throughput of C code on a Pentium IV.

third party; in other cases, we wrote a C implementation fol-
lowing a reference algorithm. For each benchmark, we show
MFLOPS (which is N/A for integer applications), proces-
sor utilization (the percentage of time that an occupied tile

is not blocked on a send or receive), and throughput. We
also show the performance of the C code, which is not avail-
able for C programs that did not fit onto a single Raw tile
(Radar, GSM, and Vocoder). Figures 15 and 16 illustrate
the speedups obtained by StreamIt compared to the C im-
plementations2.
The results are encouraging. In many cases, the StreamIt

compiler obtains good processor utilization–over 60% for
four benchmarks and over 40% for two additional ones. For
GSM, parallelism is limited by a feedbackloop that sequen-
tializes much of the application. Vocoder is hindered by our
work estimation phase, which has yet to accurately model
the cost of library calls such as sin and tan; this impacts the
partitioning algorithm and thus the load balancing. 3GPP
also has difficulties with load balancing, in part because our
current implementation fuses all the children of a stream
construct at once.
StreamIt performs respectably compared to the C imple-

mentations, although there is room for improvement. The
aim of StreamIt is to provide a higher level of abstraction
than C without sacrificing performance. Our current imple-
mentation has taken a large step towards this goal. For in-
stance, the synchronization removal optimization improves
the throughput of 3GPP by a factor of 1.8 on 16 tiles (and
by a factor of 2.5 on 64 tiles.) Also, our partitioner can
be very effective–as illustrated in Figure 5, partitioning the
Radar application improves performance by a factor of 2.3
even though it executes on less than one third of the tiles.
The StreamIt optimization framework is far from com-

plete, and the numbers presented here represent a first step
rather than an upper bound on our performance. We are ac-
tively implementing aggressive inter-node optimizations and
more sophisticated partitioning strategies that will bring us
closer to achieving linear speedups for programs with abun-
dant parallelism.

2FFT and Filterbank perform better on a Raw tile than on
the Pentium 4. This could be because Raw’s single-issue
processor has a larger data cache and a shorter processor
pipeline.

11

10. RELATED WORK
The Transputer architecture [2] is an array of processors,

where neighboring processors are connected with unbuffered
point-to-point channels. The Transputer does not include
a separate communication switch, and the processor must
get involved to route messages. The programming language
used for the Transputer is Occam [17]: a streaming language
similar to CSP [16]. However, unlike StreamIt filters, Oc-
cam concurrent processes are not statically load-balanced,
scheduled and bound to a processor. Occam processes are
run off a very efficient runtime scheduler implemented in
microcode [24].
DSPL is a language with simple filters interconnected in

a flat acyclic graph using unbuffered channels [25]. Unlike
the Occam compiler for the Transputer, the DSPL compiler
automatically maps the graph into the available resources
of the Transputer. The DSPL language does not expose a
cyclic schedule, thus the compiler models the possible exe-
cutions of each filter to determine the possible cost of exe-
cution and the volume of communication. It uses a search
technique to map multiple filters onto a single processor for
load balancing and communication reduction.
The Imagine architecture is specifically designed for the

streaming application domain [28]. It operates on streams
by applying a computation kernel to multiple data items
off the stream register file. The compute kernels are writ-
ten in Kernel-C while the applications stitching the kernels
are written in Stream-C. Unlike StreamIt, with Imagine the
user has to manually extract the computation kernels that
fit the machine resources in order to get good steady state
performance for the execution of the kernel [18]. On the
other hand, StreamIt uses fission and fusion transforma-
tions to create load-balanced computation units and filters
are replicated to create more data parallelism when needed.
Furthermore, the StreamIt compiler is able to use global
knowledge of the program for layout and transformations
at compile-time while Stream-C interprets each basic block
at runtime and performs local optimizations such as stream
register allocation in order to map the current set of stream
computations onto Imagine.
The iWarp system [7] is a scalable multiprocessor with

configurable communication between nodes. In iWarp, one
can set up a few FIFO channels for communicating between
non-neighboring nodes. However, reconfiguring the commu-
nication channels is more coarse-grained and has a higher
cost than on Raw, where the network routing patterns can
be reconfigured on a cycle-by-cycle basis [32]. ASSIGN [26]
is a tool for building large-scale applications on multiproces-
sors, especially iWarp. ASSIGN starts with a coarse-grained
flow graph that is written as fragments of C code. Like
StreamIt, it performs partitioning, placement, and routing
of the nodes in the graph. However, ASSIGN is implemented
as a runtime system instead of a full language and compiler
such as StreamIt. Consequently, it has fewer opportunities
for global transformations such as fission and reordering.
SCORE (Stream Computations Organized for Reconfig-

urable Execution) is a stream-oriented computational model
for virtualizing the resources of a reconfigurable architec-
ture [8]. Like StreamIt, SCORE aims to improve portabil-
ity across reconfigurable machines, but it takes a dynamic
approach of time-multiplexing computations (divided into
“compute pages”) from within the operating system, rather
than statically scheduling a program within the compiler.

Ptolemy [21] is a simulation environment for heteroge-
neous embedded systems, including the domain of Synchronous
Dataflow (SDF) that is similar to the static-rate stream
graphs of StreamIt. While there are many well-established
scheduling techniques for SDF [5], the round-robin nodes in
our stream graph require the more general model of Cyclo-
Static Dataflow (CSDF) [6] for which there are fewer re-
sults. Even CSDF does not have a notion of an initialization
phase, filters that peek, or a dynamic messaging system as
supported in StreamIt. In all, the StreamIt compiler differs
from Ptolemy in its focus on optimized code generation for
the nodes in the graph, rather than high-level modeling and
design.
Proebsting and Watterson [27] present a filter fusion al-

gorithm that interleaves the control flow graphs of adja-
cent nodes. However, they assume that nodes communicate
via synchronous get and put operations; StreamIt’s asyn-
chronous peek operations and implicit buffer management
fall outside the scope of their model.
A large number of programming languages have included

a concept of a stream; see [31] for a survey. Synchronous
languages such as LUSTRE [14], Esterel [4], and Signal [11]
also target the embedded domain, but they are more control-
oriented than StreamIt and are not aggressively optimized
for performance. Sisal (Stream and Iteration in a Single As-
signment Language) is a high-performance, implicitly par-
allel functional language [10]. The Distributed Optimizing
Sisal Compiler [10] considers compiling Sisal to distributed
memory machines, although it is implemented as a coarse-
grained master/slave runtime system instead of a fine-grained
static schedule.

11. CONCLUSION
In this paper, we describe the StreamIt compiler and a

backend for the Raw architecture. Unlike other stream-
ing languages, StreamIt enforces a structure on the stream
graph that allows a systematic approach to optimization and
parallelization. The structure enables us to define multiple
transformations and to compose them in a hierarchical man-
ner.
We introduce a collection of optimizations–vertical and

horizontal filter fusion, vertical and horizontal filter fission,
and filter reordering–that can be used to restructure stream
graphs. We show that by applying these transformations,
the compiler can automatically convert a high-level stream
program, written to reflect the composition of the applica-
tion, into a load-balanced executable for Raw.
The stream graph of a StreamIt program exposes the data

communication pattern to the compiler, and the lack of
global synchronization frees the compiler to reorganize the
program for efficient execution on the underlying architec-
ture. The StreamIt compiler demonstrates the power of this
flexibility by partitioning large programs for execution on
Raw. However, many of the techniques we describe are not
limited to Raw; in fact, we believe that the explicit paral-
lelism and communication in StreamIt is essential for ob-
taining high performance on other communication-exposed
architectures. In this sense, we consider the techniques de-
scribed in this paper to be a first step towards establishing
a portable programming model for communication-exposed
machines.

12

12. ACKNOWLEDGEMENTS
We are very grateful to Anant Agarwal, Michael Taylor,

David Wentzlaff, Walter Lee, Matt Frank, and the rest of
the Raw group for developing the Raw infrastructure and for
investing a lot of time supporting us. We also thank Andy
Ong, John Chapin, Vanu Bose, and Stephanie Seneff for
valuable conversations regarding applications for StreamIt.
Our thanks to Mani Narayanan as well for implementing the
BitonicSort application and helping to debug the compiler.
This work is supported in part by a grant from DARPA
(PCA F29601-04-2-0166), an award from NSF (CISE EIA-
0071841), and fellowships from the Singapore-MIT Alliance
and the MIT-Oxygen Project.

13. REFERENCES
[1] Streamit homepage.

http://compiler.lcs.mit.edu/streamit.

[2] The Transputer Databook. Inmos Corporation, 1988.

[3] 3rd Generation Partnership Project. 3GPP TS 25.201,

V3.3.0, Technical Specification, March 2002.

[4] G. Berry and G. Gonthier. The Esterel Synchronous
Programming Language: Design, Semantics,

Implementation. Science of Computer Programming, 19(2),
1992.

[5] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Software
Synthesis from Dataflow Graphs. Kluwer Academic
Publishers, 1996.

[6] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete.
Cyclo-static dataflow. IEEE Trans. on Signal Processing,
1996.

[7] S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H. T.
Kung, M. Lam, B. Moore, C. Peterson, J. Pieper,

L. Rankin, P. S. Tseng, J. Sutton, J. Urbanski, and
J. Webb. iWarp: An integrated solution to high-speed

parallel computing. In Supercomputing, 1988.

[8] E. Caspi, M. Chu, R. Huang, J. Yeh, J. Wawrzynek, and

A. DeHon. Stream Computations Organized for
Reconfigurable Execution (SCORE): Extended Abstract. In

Proceedings of the Conference on Field Programmable
Logic and Applications, 2000.

[9] M. B. T. et. al. The Raw Microprocessor: A Computational
Fabric for Software Circuits and General Purpose

Programs. IEEE Micro vol 22, Issue 2, 2002.

[10] J. Gaudiot, W. Bohm, T. DeBoni, J. Feo, and P. Mille”.

The Sisal Model of Functional Programming and its
Implementation. In Proceedings of the Second Aizu

International Symposium on Parallel
Algorithms/Architectures Synthesis, 1997.

[11] T. Gautier, P. L. Guernic, and L. Besnard. Signal: A

declarative language for synchronous programming of

real-time systems. Springer Verlag Lecture Notes in

Computer Science, 274, 1987.

[12] V. Gay-Para, T. Graf, A.-G. Lemonnier, and E. Wais. Kopi

Reference manual.
http://www.dms.at/kopi/docs/kopi.html, 2001.

[13] T. Gross and D. R. O’Halloron. iWarp, Anatomy of a
Parallel Computing System. MIT Press, 1998.

[14] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The

synchronous data-flow programming language LUSTRE.

Proc. of the IEEE, 79(9), 1991.

[15] R. Ho, K. Mai, and M. Horowitz. The Future of Wires. In

Proc. of the IEEE, 2001.

[16] C. A. R. Hoare. Communicating sequential processes.

Communications of the ACM, 21(8), 1978.

[17] Inmos Corporation. Occam 2 Reference Manual. Prentice
Hall, 1988.

[18] U. J. Kapasi, P. Mattson, W. J. Dally, J. D. Owens, and

B. Towles. Stream scheduling. In Proc. of the 3rd

Workshop on Media and Streaming Processors, 2001.

[19] S. Kirkpatrick, J. C.D. Gelatt, and M. Vecchi. Optimization

by Simulated Annealing. Science, 220(4598), May 1983.

[20] J. Lebak. Polymorphous Computing Architecture (PCA)

Example Applications and Description. External Report,

Lincoln Laboratory, Mass. Inst. of Technology, 2001.

[21] E. A. Lee. Overview of the Ptolemy Project. UCB/ERL

Technical Memorandum UCB/ERL M01/11, Dept. EECS,

University of California, Berkeley, CA, March 2001.

[22] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb,
V. Sarkar, and S. P. Amarasinghe. Space-Time Scheduling

of Instruction-Level Parallelism on a Raw Machine. In

Architectural Support for Programming Languages and

Operating Systems, 1998.

[23] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and

M. Horowitz. Smart memories: A modular recongurable

architecture. In ISCA 2000, Vancouver, BC, Canada.

[24] D. May, R. Shepherd, and C. Keane. Communicating
Process Architecture: Transputers and Occam. Future
Parallel Computers: An Advanced Course, Pisa, Lecture
Notes in Computer Science, 272, June 1987.

[25] A. Mitschele-Thiel. Automatic Configuration and
Optimization of Parallel Transputer Applications.
Transputer Applications and Systems ’93, 1993.

[26] D. R. O’Hallaron. The ASSIGN Parallel Program
Generator. Carnegie Mellon Technical Report
CMU-CS-91-141, 1991.

[27] T. A. Proebsting and S. A. Watterson. Filter Fusion. In

POPL, 1996.

[28] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany,

A. Lopez-Lagunas, P. R. Mattson, and J. D. Owens. A
bandwidth-efficient architecture for media processing. In

International Symposium on Microarchitecture, 1998.

[29] K. Sankaralingam, R. Nagarajan, S. Keckler, and
D. Burger. A Technology-Scalable Architecture for Fast

Clocks and High ILP. University of Texas at Austin, Dept.
of Computer Sciences Technical Report TR-01-02, 2001.

[30] S. Seneff. Speech transformation system (spectrum and/or
excitation) without pitch extraction. Master’s thesis,
Massachussetts Institute of Technology, 1980.

[31] R. Stephens. A Survey of Stream Processing. Acta
Informatica, 34(7), 1997.

[32] M. B. Taylor, W. Lee, S. Amarasinghe, and A. Agarwal.

Scalar Operand Networks: On-Chip Interconnect for ILP in

Partitioned Architectures. Technical Report

MIT-LCS-TR-859, Mass. Inst. of Technology, July 2002.

[33] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt:

A Language for Streaming Applications. In Proceedings of
the International Conference on Compiler Construction, to

appear, Grenoble, France, 2002.

[34] W. Thies, M. Karczmarek, M. Gordon, D. Maze, J. Wong,

H. Hoffmann, M. Brown, and S. Amarasinghe. StreamIt: A
Compiler for Streaming Applications. MIT-LCS Technical

Memo LCS-TM-622, Cambridge, MA, 2001.

[35] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee,

V. Lee, J. Kim, M. Frank, P. Finch, R. Barua, J. Babb,

S. Amarasinghe, and A. Agarwal. Baring it all to software:

Raw machines. IEEE Computer, 30(9), 1997.

13

