
UCLA
Papers

Title
A Stream-Oriented Power Management Protocol for Low Duty Cycle Sensor Network
Applications

Permalink
https://escholarship.org/uc/item/198055mj

Authors
Ramanathan, Nithya
Yarvis, Mark D
Chhabra, Jasmeet
et al.

Publication Date
2005-05-05

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/198055mj
https://escholarship.org/uc/item/198055mj#author
https://escholarship.org
http://www.cdlib.org/

A Stream-Oriented Power Management Protocol for Low Duty Cycle Sensor Network
Applications

Nithya Ramanathan†�, Mark Yarvis�, Jasmeet Chhabra�, Nandakishore Kushalnagar�,
Lakshman Krishnamurthy�, Deborah Estrin†

� Intel Corporation
2111 N.E. 25th Ave, Portland, OR
{mark.d.yarvis, jasmeet.chhabra,

nandakishore.kushalnagar,
lakshman.krishtnamurthy}@intel.com

† UCLA, Center for Embedded Network Sensing
3563 Boelter Hall
Los Angeles, CA

{nithya, destrin}@cs.ucla.edu

Abstract

Most power management protocols are packet-based and op-
timize for applications with mostly asynchronous (i.e. unex-
pected) traffic. We present AppSleep, a stream-oriented power
management protocol for latency tolerant sensor network appli-
cations. For this class of applications, AppSleep demonstrates
an over 3x lifetime gain over B-MAC and SMAC. AppSleep lev-
erages application characteristics in order to take advantage of
periods of high latency tolerance to put the network to sleep for
extended periods of time, while still facilitating low latency re-
sponses when required. AppSleep also gives applications the
flexibility to efficiently and effectively trade latency for energy
when desired, and enables energy efficient multi-fragment uni-
cast communication by only keeping the active route awake. We
also present Adaptive AppSleep, an application driven addition
to AppSleep which supports varying latency requirements while
still maximizing energy efficiency. Our evaluation demonstrates
that for an overlooked class of applications, stream-oriented
power management protocols such as AppSleep outperform
packet-based protocols such as B-MAC and S-MAC. ∗∗∗∗

1. Introduction

Many energy efficient protocols have been developed
in order to address the power management needs of wire-
less sensor network (WSN) applications. However, as
WSN applications diversify and distinguish themselves
based on bandwidth and latency requirements, no single
protocol can optimally address all scenarios. For the class
of latency-tolerant, non-realtime applications, leveraging
an application’s characteristics provides greater energy
savings over traditional approaches [1] [2].

Our motivating application is Intel’s FabApp [3], an
application that monitors the vibration signatures of indus-
trial equipment in a fabrication plant to predict mechanical
failures. In a typical production installation, motes trans-

∗ Other names and brands may be claimed as the property of others.

mit samples once a day from approximately 4000 sensors.
This data is archived in a data center and analyzed offline
for trends over multiple time scales. In this application,
asynchronous queries typically occur shortly after pre-
scheduled sample collection at the data center, and a re-
sponse latency on the order of several minutes can be tol-
erated. Due to the lax latency constraints, nodes need not
wake up with fine granularity. FabApp represents a broad
class of latency tolerant applications with bursty data
transmission.

Existing power management approaches do not address
applications, such as FabApp, with low sampling frequen-
cies and latency-tolerant, asynchronous traffic. These
power management techniques do not take advantage of
scheduled data transmissions or latency tolerance on un-
scheduled data transmissions to reduce power consump-
tion. The hypothesis of this paper is that, for the class of
applications represented by the FabApp, moving the
power saving functionality closer to the application and
tying it to transport and data collection patterns results in
much higher performance.

Most power management protocols focus on ensuring
that a node’s radio is active for reception of each individ-
ual asynchronous packet. Thus, power management is
typically tightly integrated with the MAC protocol. These
protocols waste energy through radio switching, idle lis-
tening, and unnecessarily achieving short response laten-
cies. Radio switching is especially wasteful when an ap-
plication knows there will be no traffic. For example, if a
FabApp node running on top of B-MAC with a standard
sleep period of 100 ms only needs to return data once
every 10 minutes, B-MAC will still turn the radio on 6000
times during that 10 minute period.

Packet-based protocols also waste energy through
neighbor overhearing because they continue to wake up
surrounding nodes, even during multi-fragment unicast
streams. Using BMAC as an example again, if a node is
unicasting a multifragment data sample, neighboring
nodes will wake up to hear part or all of the preamble be-

fore determining the packet is not for them and going back
to sleep. For long or frequent packet transmissions, or
densely packed nodes, these lengthy wake up periods sig-
nificantly increase energy consumption.

We introduce AppSleep, an application layer power
management protocol that minimizes energy consumption
for applications such as FabApp. AppSleep extends sleep
periods by leveraging knowledge of pre-scheduled trans-
missions while still meeting the application’s latency re-
quirements. AppSleep moves the power management
functionality up the stack from the MAC in order to lever-
age minimal application characteristics and manage sleep
schedules based on streams instead of packets. As a
stream-oriented protocol, AppSleep prioritizes energy ef-
ficiency over latency, enables scheduling across multiple
packets to reduce neighbor overhearing, and facilitates
multi-hop communication during a single wake period.
We also present Adaptive AppSleep, which handles time-
varying latency requirements. Adaptive AppSleep gives
applications such as FabApp the flexibility to efficiently
and effectively trade latency for energy when desired.

We demonstrate that AppSleep can outperform a ge-
neric energy efficient MAC by over 3x. Our evaluation is
based on both theoretical evaluation and experimental runs
of B-MAC and AppSleep on a Mica2 testbed.

2. Related work

Power saving techniques have been proposed in wire-
less research that operate at almost every layer in the
communication stack. To categorize them and present
their relationship with our contributions, we develop an
informal taxonomy. We define application classes (Table
1) based on traffic and latency characteristics and briefly
discuss existing power management protocols designed to
address these applications.

We utilize these terms in the taxonomy:
• Synchronous Data: Pre-scheduled sample delivery
• Asynchronous Data: Unscheduled data, i.e. de-

tected events / queries
• Synchronous Latency: Time to return pre-scheduled

data once it has been obtained
• Asynchronous Latency: Time to return an event

once it has been detected, or the time between a
query and the corresponding response.

We specify a power management protocol that best
suits each class of applications. In summary:

• S-MAC and B-MAC are both designed to handle
mostly asynchronous data.

• S-MAC is best suited for the Frequent Monitoring
class of applications because it constantly expends
energy to synchronize the network, which is useful
only when there is a lot of traffic.

• B-MAC is best suited for the Casual/Emergency
Event Detection classes of applications because of
its low network maintenance cost. Furthermore,
because communication has such a high cost when
using B-MAC, it is not suitable for applications
with frequent, bursty or bulk data transfers.

S-MAC conserves energy by synchronizing clusters of
nodes to the same sleep/wake schedule [5]. Nodes in a
cluster send frequent SYNCH packets to maintain cluster
synchronization and obtain link characteristics. Nodes at
cluster borders allow inter-cluster communication by op-
erating on a super-set of cluster schedules. S-MAC has
numerous drawbacks in our application. For example, S-
MAC sleep schedules operate on a per-packet basis, result-
ing in extended multi-hop latency as nodes delay forward-
ing packets until their neighbor wakes up. Buffering is
also required to store delayed packets.

T-MAC is based on S-MAC but seeks to eliminate idle
energy further by adaptively varying the length of time
over which frames are transmitted [6]. In T-MAC the data
frames are sent in a burst in the beginning of the wake
period and thus the nodes can go to sleep if no transmis-
sion occurs in the beginning of the wake period. Thus, T-
MAC is somewhat more stream-oriented than S-MAC. In
general, however, the disadvantages of T-MAC in Infre-
quent Monitoring applications are similar to S-MAC.

B-MAC is an energy efficient MAC protocol that puts
nodes to sleep for tens or hundreds of milliseconds [7]. A
node precedes each packet with a preamble corresponding
to the maximum sleep time of neighbor nodes, ensuring
that one-hop neighbors will receive the packet. The result
is a significant penalty for each packet transmission. For
example, for a sleeping duration of 160 ms, a node must
transmit continually for 20 ms (for the packet) + 160 ms
(for the preamble), adding an 8x additional overhead to the
packet transmission. Furthermore, network density im-
pacts the global energy efficiency because nodes hear
some or all of each neighbor’s lengthy preamble.

Both S-MAC and B-MAC are geared towards applica-
tions with mostly asynchronous traffic. In [8], Schurgers,
et al. propose a topology management protocol that puts

Table 1. Informal Application Taxonomy

Application class Example Min Synchronous
Data Frequency

Min A/Synchronous
Data Latency

Bandwidth Budget Optimal Energy
Saving

Infrequent Monitoring FabApp [3] Minutes Several minutes Bursty AppSleep
Frequent Monitoring Habitat Monitoring Seconds Several minutes Small bursts S-MAC
Casual Event Detection Conference Room App N/A <= 1 minute Small bursts B-MAC
Emergency Event Detection Fire Detection N/A <= 1 second 1/lifetime B-MAC

the entire network to sleep (unlike other topology man-
agement protocols that attempt to minimize redundancy).
When a node wants to send a packet it continually trans-
mits beacons until a neighboring node wakes up. This
research assumes an event tracking application model, and
does not leverage application related information.

In all of these power management approaches, sched-
uled data transmissions consume the same energy over-
head as unscheduled data. No previous power manage-
ment protocol effectively addresses the Infrequent Moni-
toring class of applications. This class distinguishes itself
based on frequent synchronous transmissions and toler-
ance for latency in asynchronous transmissions. To ad-
dress these applications, AppSleep integrates the power
saving function with the application layer, rather than with
the MAC-layer as in the above approaches.

While application driven techniques have also been
proposed in [4], this work applies to general purpose wire-
less networks. Sensor networks are application specific,
and solutions that leverage application knowledge can
often outperform general purpose approaches. AppSleep
attains the benefits by leveraging limited application
knowledge to maximize energy savings over other proto-
cols for this class of applications.

Because AppSleep is stream-oriented, it can enable en-
ergy efficient multi-fragment transfers by only keeping the
active route between a source and receiver awake, while
all other nodes sleep. This approach minimizes the over-
hearing caused by packet-based protocols that repeatedly
wake surrounding nodes during a single transfer between a
sender and receiver. In addition, because all nodes on a
path are guaranteed to be awake in AppSleep, nodes do
not need to buffer packets while waiting for a next-hop
neighbor to wake up as required in S-MAC or B-MAC.

3. FabApp architecture

The FabApp uses a multi-hop, cluster-based architec-
ture, with a gateway node acting as each cluster head. The
communication stack and components of the FabApp are
illustrated in Figure 1.

The cluster head operates in a polling mode, creating a
global data gathering schedule and initiating data transfer
requests from each node. Requests typically occur daily,
and each data transfer lasts a few minutes.

To start, let us assume that the cluster is in the wake
state. The gateway initiates a sleep cycle by sending out a
packet that puts the entire cluster to sleep for a specified
duration of time (typically several hours or a day). When
the nodes wake up, the gateway initiates a metric-based
DSDV [13] routing protocol to establish communication
paths in the network, during which, nodes within the clus-
ter send out trace routes to the gateway. The traceroutes
provide nodes with a reverse path, allowing down-stream
communication for control messages. Each node joins the

cluster for which it has the lowest cost route to the cluster
head. Given the size of each cluster (typically 30-100
nodes) and the routing protocol used, the cluster stabilizes
in a few minutes (route_stability_time).

Once the routes have stabilized, the gateway polls each
sensor node one at a time to initiate data gathering. The
data gathering request is simply flooded into the network
multiple times until the data gathering begins. When data
gathering begins, nodes that are not in the data path simply
go to sleep for shorter durations, as the data transfer sizes
are known a priori (typically a few minutes). When the
cluster head has gathered data from all nodes in a cluster,
the cluster goes to deep sleep.

4. AppSleep design and operation

AppSleep is a generic protocol designed to control the
sleep/wake behavior of the cluster to enable the applica-
tion behavior described above. AppSleep contains com-
ponents to handle sleep/wake control, time synchroniza-
tion (needed for the synchronized cluster sleep/wake),
bulk data transfer, SYNCH packet loss, and adaptive sleep
(discussed in Section 6). Detailed design of the clustering,
routing and data scheduling components are out of scope
of this paper. In this section we describe the operation of
AppSleep and its interaction with the other layers.

4.1. Sleep/wake control

The goal of the sleep/wake module is to ensure that all
nodes in the cluster sleep and wake at the same time. This
single schedule reduces idle listening and minimizes wake
time. The wake period of each node has to be at least as
long as it takes a packet to traverse the cluster. If a node
needs to send data packets to a destination, then in addi-
tion to the wake period, the nodes should remain awake
for setting up an active path to transmit data and the nodes
in the active transmitting path need to be awake for the
duration of the data transfer.

In AppSleep, the mechanism for the sleep/wake control
relies on an initial SYNCH packet (Figure 2), flooded by

Routing & Flood Layer

Radio UART

Packet QueueOn/Off

App

Topology
Finder
Master

Cluster Head

Bulk
Transfer

Sleep/
Wake

Master

Data
Scheduler

Master

MAC

Routing & Flood Layer

Radio UART

App

Topology
Finder
Slave

Sensor Node

Bulk
Transfer

Sleep/
Wake
Slave

Data
Scheduler

Slave

MAC

Figure 1. Cluster head and sensor node software
stacks.

the cluster head. As specified in the SYNCH packet,
nodes go to sleep relative_time_to_sleep seconds after
receiving the packet, then sleep for sleep_period seconds.
Nodes then stay awake long enough for a packet to trav-
erse the cluster. This packet could be a SYNCH packet, or
a single control or data packet. The node calculates the
wake period using the network_diameter field in the
SYNCH packet. Nodes continue this sleep-wake cycle
until the next SYNCH packet is received. These parame-
ters will be discussed in greater detail in Section 4.5.

If the payload is larger than a single packet, the bulk
data transfer module is utilized (discussed in Section 4.3).

4.2. Time synchronization

A lightweight time synchronization protocol handles
the synchronization between the nodes in order to ensure
that all nodes wake up at the same time and stay awake
long enough to hear multi-hop transmissions during a sin-
gle wake period.

Related work for time synchronization [9] [10] [11],
aims to maximize accuracy. While these approaches could
be used, AppSleep only requires course grained synchro-
nization and therefore can avoid needless overhead. The
goal of AppSleep’s time synchronization protocol is to
minimize energy consumption while ensuring that nodes
go to sleep and wake up within milliseconds of each other.
In order to minimize the energy consumption, nodes use
relative rather than pair-wise synchronization, sacrificing
accuracy for lower packet overhead. This lower packet
overhead also enables scalability, requiring on average one
message per node for each time-synchronization period.

In order to achieve cluster synchronization, the protocol
compensates for several factors: packet delay, packet loss,
and clock drift [9]. The cluster head periodically floods a
SYNCH packet containing the relative time for the cluster
to go back to sleep and the length of the subsequent
SYNCH period (length of time between SYNCH packet
transmissions). Nodes use the relative time to go to sleep
to synchronize with the cluster sleep schedule in order to
compensate for accumulated clock drift since the last
SYNCH packet. Nodes expect the next SYNCH packet in
time_until_SYNCH seconds.

4.3. Bulk data transfer

AppSleep includes a bulk data transfer module to han-
dle multi-fragment data transfers. This stream-oriented
protocol puts nodes to sleep for the duration of a stream as
opposed to packet-based protocols which sleep based on
the contents of individual packets. Single packet data
transfers can occur during the regular cluster wake period.

We begin by assuming that a route exists and is known
between the sending and receiving node. A node unicasts
the first fragment of the packet along this route to its des-

tination, commanding the nodes along this path to stay
awake by setting the WAKE bit in the packet header. The
node continues to send the rest of the packets, and only
sets the FIN bit in the packet header of the final fragment,
indicating the nodes on the path should go back to sleep.

A timer can be used to ensure that nodes return to the
sleep state if the packet with the FIN bit is lost. If a node
does not forward any packets within a set time period, the
node automatically returns to the sleep state. The timer
must be larger than normal packet latencies but small
enough to achieve the desired lifetime goal.

If the packet with the WAKE bit is lost in transit, the
path will be partially awake, and the transmission will fail.
To increase system reliability, the cluster wake period can
be set long enough for an end-to-end acknowledgement of
the initial packet and subsequent retransmissions.

4.4. SYNCH packet loss

Nodes know when to expect the next SYNCH packet
because the cluster head specifies this time in each
SYNCH packet. Nodes stay awake for several seconds
when expecting a SYNCH packet. If a node does not re-
ceive a SYNCH packet when expected, it waits a period of
time before broadcasting a SYNCH-REQ message. Any
node that hears a SYNCH-REQ broadcasts an updated
SYNCH packet. A node stays in this state until it hears a
SYNCH packet; if it hears another node transmitting, it
can broadcast another SYNCH-REQ packet. Once a node
has received a SYNCH packet, it ignores subsequent
SYNCH packets received during that wake period.

If a node does not hear a SYNCH packet after sending
several (four in our implementation) SYNCH-REQ mes-
sages, it remains on. Nodes that join the network, or have
rebooted also begin in this state. In this case, running on
top of an energy efficient MAC layer can minimize the
energy consumed by the radio while it waits for a SYNCH
packet. This issue is discussed further in Section 7.

4.5. AppSleep parameters

There are several parameters in AppSleep that impact
its energy consumption and latency characteristics.

Parameters specified/derived from the application:
• Sleep Period (tsleep): Duration a node’s radio proces-

sor is asleep before waking up

typedef struct {
uint16_t relative_time_to_sleep;
uint32_t time_until_SYNCH;
uint32_t sleep_period;
uint8_t network_diameter;

} SYNCH;

Figure 2. Data structure for a SYNCH packet.

• Network Diameter (Ndiameter): Longest path in the
cluster

Parameters calculated by AppSleep:
• Time synchronization frequency: Frequency of

SYNCH packets; optimized with respect to energy
• Wake period (tawake): Duration a node’s ra-

dio/processor is awake before going to sleep
• Guardband (tguardband): Delay at packet initiator to

ensure cluster is awake
The sleep period is set to the application’s minimum

tolerated response latency. The guardband depends on
time synchronization frequency; as time synchronization
frequency increases, the accrued clock drift is lessened,
allowing a shorter guardband. The wake period depends
on time synchronization frequency (which affects clock
drift) and the cluster diameter as defined in Equation 1.

 tawake = Ndiameter*tper_hop_delay + tmax_clock_drift + tguardband (1)

The optimal time synchronization frequency minimizes
energy consumption, based on a trade off between 1) the
time the receiver is on and 2) the energy due to transmit-
ting SYNCH packets. Increasing the time synchronization
frequency reduces the clock drift and the receiver on time.
Decreasing the SYNCH frequency reduces transmission
energy. As seen in Figure 3, the optimal time synchroni-
zation frequency depends on the sleep period, which is
determined by the latency constraints of the application.

New values for the sleep period and cluster diameter
are propagated in a SYNCH packet. To allow nodes to
join the edge of the cluster between SYNCH packets, a
guardband of several hops is added to the cluster diameter.

5. Evaluation

Our performance evaluation of AppSleep consists of
energy model evaluations and testbed experiments using
an implementation of AppSleep in TinyOS on the mica2
motes. We compare AppSleep with B-MAC1 [7] and S-
MAC2 [5]. While AppSleep is not a MAC protocol, we
only compare the performance of the power management
function of each approach. Thus, we evaluate the merit of
a stream-oriented approach to power conservation.

We used network traffic that might occur in the Infre-
quent Monitoring class of applications as specified in
Table 1. For streams, the energy model makes the opti-
mistic assumption that B-MAC only uses the long pream-
ble for the first fragment.

In both theoretical evaluation and experimental runs, an
8-node network with a fixed linear topology was used,
providing a constant 7-hop network diameter. In experi-
mental runs, nodes were placed 6 inches apart, and while a
low transmit power was used, no attempt was made to

1 tinyos-1.x/contrib/ucb/CC1000Pulse as of 9/20/2004
2 tinyos-1.x/contrib/s-mac as of 9/20/2004

ensure that nodes could only receive packets from their
direct linear neighbor. Data traffic was sent from one end
of the network to the other at a rate of one packet every 10
min. Samples are 60 bytes long and fit in a single packet.

We first present our energy model used for the theoreti-
cal evaluation. We then discuss results from our testbed,
and finally we use these results in the energy model to
explore scenarios for which experiments were not feasible.

5.1. Energy model

Our energy model is based on that designed by Polastre
et al. [7], and models the energy consumed by the radio by
estimating the time it spends in each state. The radio is
modeled as being either awake—in which case the only
states are transmitting or receiving—or asleep. The model
is based on a mica2 with a 19.2 kbps radio, transmission
current of 20 mA, receive/idle current of 15 mA, and sleep
current of 0.03 mA. The model includes control packet
overhead and assumes overhearing of 5 neighbors in the
topology described above. We use 5 neighbors in order to
not disadvantage B-MAC, which is negatively impacted
by dense neighborhoods as discussed in Subsection 5.3.3.

For AppSleep we set the SYNCH period to two hours.
For SMAC we used a SYNC period of 12 sec, an awake
time of 115 ms, and a duty cycle of 1%, as specified in the
code. For B-MAC we used the parameters provided in
[7], and validated our energy model by recreating the re-
sults offered by Polastre, et al. [7]. We validate the
BMAC and AppSleep energy models by comparing the
results with those gathered in actual runs.

5.2. Experimental evaluation

To measure the energy consumption in a testbed, we
measured the time the radio was on at full power, the time
spent transmitting, and the number of radio state switches.
The sampling period was 10 min, and AppSleep sent a

Figure 3. The energy consumed by the network
as a function of SYNCH packet frequency. The
data is derived from the energy model.

SYNCH packet every 2 hours. We performed two runs for
each test. Figure 4 shows that B-MAC consumes more
than twice as much energy as AppSleep. Surprisingly, B-
MAC consumed more energy in practice than estimated by
the energy model, while AppSleep’s actual energy con-
sumed was deterministic (no visible error bars) and almost
exactly equivalent to the energy model’s estimate. This
behavior is expected because AppSleep is not impacted by
overhearing or neighborhood density changes, while B-
MAC’s energy consumption depends on the number of
nodes it overhears. This comparison also holds for the
time the radio spends awake as seen in Figure 5.

5.3. Theoretical evaluation

We next use the experimental results and energy model
to evaluate tradeoffs between power conservation ap-
proaches. We varied the sleep periods from 20 ms to
12000 sec, kept other parameters constant (as described
above), and evaluated energy consumption at different
neighborhood densities, sampling rates, and network di-
ameters. We also consider the energy required for net-
work maintenance, radio duty cycle, and latency.

5.3.1. Latency
The best case scenario for AppSleep is all synchronous

traffic because AppSleep wakes the nodes at the previ-
ously scheduled transmission time. In this case, AppSleep
has an average latency of 40 ms/hop (all transmission
time), B-MAC has an average latency of 290 ms/hop if we
assume an optimal sleep period of 250 ms (transmission of
packet plus preamble), and S-MAC has an average latency
of 2.04 sec/hop (without adaptive listening; if adaptive
listening were used, the latency would be reduced).

With asynchronous traffic, the worst case scenario for
AppSleep is bounded by its sleep period. In this case, B-
MAC provides the best latency response (Figure 6). How-
ever, Infrequent Monitoring applications can often trade
latency for energy efficiency, and hence AppSleep’s rela-
tively high latency response is often acceptable.

In order to calculate average latency of response we use
the following equations:

 tbmac_latency = (1.5*tsleep + tawake)
 + (Nhops - 1)*(tsleep + tawake) (2)

 tsmac_latency = (tsleep/2 + tawake)
 + (Nhops - 1)*(tsleep + tawake) (3)

 tAppSleep_latency = tsleep/2 + tawake (4)

Where tsleep is the sleep period, and tawake is the period of
time a node stays awake during the wake period. Notice
that in B-MAC and S-MAC, each packet in a stream can
incur a per-hop latency, since the next hop may be asleep.
In AppSleep, after the first packet, no additional latency is
incurred, since the bulk transfer mechanism ensures that
all nodes along the path will be awake.

5.3.2. Sampling rate
AppSleep achieves a 3x improvement over S-MAC and

B-MAC for a sampling period of 22 min, but with an av-
erage latency of 375 sec compared to SMAC’s 78 sec or
B-MAC’s 77 ms (Figure 7). To surpass the lifetime of S-Figure 4. Experimental testbed and theoretical

radio energy consumption.

Figure 5. Experimental and theoretical radio ac-
tivity.

Figure 6. Average response latency as a function
of sleep period. In Infrequent Monitoring applica-
tions, low latency is traded for energy efficiency.

MAC or B-MAC, AppSleep provides an average latency
of 46 sec for the 22 min sampling period.

While the performance of B-MAC levels off, and S-
MAC is implementation limited, AppSleep’s performance
increases with the average response latency constraint (i.e.
the sleep period). As the sampling period increases to 1
day, AppSleep still outperforms B-MAC and S-MAC.
However, the performance gap between B-MAC and
AppSleep shrinks because this scenario minimizes trans-
mission and is thus increasingly favorable for B-MAC.

5.3.3. Energy / latency tradeoff
AppSleep provides a tradeoff between latency and en-

ergy consumption, as shown in Figure 8. For S-MAC and
B-MAC, the y-axis represents the average response la-
tency provided at the minimal energy settings. For App-
Sleep, the y-axis shows the average response latency pro-
vided by AppSleep settings required to surpass the per-
formance of B-MAC and S-MAC. While AppSleep mini-
mizes energy consumption, it provides exponentially
greater response latencies compared to B-MAC.

5.3.4. Neighborhood density
Neither S-MAC nor AppSleep is affected by neighbor

density. However, BMAC’s lifetime is nearly halved
when the number of neighbors is changed from 5 to 20
(Figure 9). This lifetime reduction occurs for BMAC be-
cause as the number of neighbors increases, the amount of
preamble overhearing dramatically increases.

For 20 neighbors, AppSleep shows a 9x lifetime in-
crease over B-MAC with an average latency of 375 sec
compared to B-MAC’s 35 ms. Furthermore, for 20
neighbors, AppSleep surpasses B-MAC’s performance
with an average latency of only 5.9 sec.

Interestingly, B-MAC’s optimal sleep period also
changes with the number of neighbors, while AppSleep’s
remains constant. So, for networks with unstable links, B-
MAC may not always perform in its optimal operating
range, while AppSleep’s optimal sleep period remains
constant regardless of neighborhood density.

5.3.5. Network diameter
As the network diameter increases, each node must stay

awake for a longer period of time to ensure that multi-hop
communication along the longest path can occur during a
single wake period. As a result, lifetime degrades with
AppSleep as the network diameter increases (Figure 10).
Neither S-MAC nor B-MAC’s energy consumption are
impacted by the network diameter.

5.3.6. Network maintenance
Figure 11 shows the energy consumed to simply main-

tain network connectivity for the different protocols.
When there is no traffic in the network, B-MAC consumes
the least energy. This minimal energy consumption occurs
because B-MAC trades reduced receiver “on” time for
increased transmission time. For example, in order to con-
sume less energy than B-MAC sleeping for 100 ms peri-
ods, AppSleep must put the application to sleep for at least
100 sec at a time. This difference occurs because App-
Sleep requires periodic time synchronization and, during
each wake period, stays awake almost 1000 times longer
than B-MAC for a 7-hop network.

Figure 7. Theoretical lifetime as a function of
sleep period (sampling period is 22 min).

Figure 8. Response latency as a function of sam-
pling period. Minimal energy settings used for B-
MAC and S-MAC; AppSleep’s parameters set to
surpass B-MAC and S-MAC energy performance.

Figure 9. The theoretical lifetime as a function of
the sleep period, for various neighbor densities.

6. Adaptive behavior

Adaptive AppSleep handles time varying latency con-
straints. It is based on the assumption that the shortest
sleep periods should be scheduled immediately after
scheduled sample returns because during this period un-
scheduled requests are most likely to happen.

Based on this assumption, Adaptive AppSleep main-
tains a state machine that increases the sleep period at a
user specified rate after a sample has been returned. This
mechanism supports the notion that latency increases in
asynchronous query responses can be tolerated as time
elapses since a sample return.

For example, in the FabApp application, the system re-
turns samples once a day. If an imminent machine failure
was indicated in a recent sample, a user may want to im-
mediately query the network for additional information.
However, this kind of emergency response is only neces-
sary immediately after a sample has been returned. Sub-
sequent requests are more likely to be informational, and
can tradeoff response latency for increased energy savings.

The number of states, the time spent in each state, and
the initial sleep period can be specified by the user. The
cluster head handles changing response latencies and state
changes by modifying the sleep_period field in the
SYNCH message. Consider, for example, an initial sleep
period of 30 sec and a duration of one hour in each state.
Once a sample return is complete, the cluster head broad-
casts a SYNCH packet indicating that the next SYNCH
packet should be expected in one hour, and the current
sleep period is 30 sec. After an hour, the cluster head
floods a SYNCH packet, again indicating that the next
SYNCH packet should be expected in one hour, and the
current sleep period is 60 seconds. This cycle continues
until the delivery of the next sample.

The state changes for Adaptive AppSleep must also be
coordinated with the time synchronization protocol. With
every new change in the sleep period, the cluster head

must recalculate its optimal time synchronization period,
because this value depends on the sleep period (as shown
in Figure 3). An application may utilize multiple energy-
saving states, each distinguished by the sleep period.

Figure 12 demonstrates the energy consumption of
AppSleep and Adaptive AppSleep. This simple imple-
mentation of Adaptive AppSleep in the energy model
moves the cluster to a query-ready state for a period of
time equivalent to 15 sampling periods immediately after a
sample has been returned. For the remainder of time,
nodes remain in a minimum-power state where their sleep
periods are fixed at 10 min. The figure demonstrates the
intuitive conclusion that Adaptive AppSleep saves signifi-
cant energy over AppSleep by minimizing the time the
network operates in the ”query-ready” state and provides
low latency responses to asynchronous queries.

7. Discussion

7.1. Incorporating an energy efficient MAC

There are several advantages to running this protocol on
top of B-MAC. If a node fails, then it must stay awake
until it hears a SYNCH packet. In this case, B-MAC is a
much more efficient way to “fail on” because it will still
spend most of its time sleeping and still be ensured to re-
ceive a packet from a neighbor when one is sent. Because
B-MAC is a relatively cheap way to stay awake for ex-
tended periods of time, AppSleep can minimize the energy
cost of extended wake periods.

To use B-MAC in this scenario, the sleep period must
be very short in order to avoid large packet preambles.
This approach leverages the advantage of B-MAC while
avoiding the extensive switching energy usually associated
with short sleeping periods in B-MAC.

7.2. Integration with and dependency on routing

Before data transfer can begin, routes must be estab-
lished. To establish routes, the cluster head simply runs a

Figure 10. AppSleep’s theoretical network lifetime
as a function of the sleep period, for various net-
work diameters (sampling period is 22 min).

Figure 11. The power consumed to maintain the
network protocol as a function of sleep period.

routing protocol, such as Intel’s metric-enabled DSDV
[13] before initiating data transfer. Our empirical observa-
tion in networks of up to 100 nodes indicates the routes are
discovered in a few minutes. The cluster head ensures that
the SYNCH period supports establishment of routes.

While AppSleep avoids dependencies on the MAC
layer, certain functional and performance aspects are im-
pacted by the routing layer. Three issues must be ad-
dressed. First, during long cluster sleep periods, optimal
routes may change. When this occurs, routes must be re-
established at the start of the wake period.

Second, data must flow along the selected path during
the entire wake period. AppSleep’s bulk data transfer pro-
tocol relies on a route remaining locked down between the
time the initial WAKE bit is set requesting a route to stay
awake until the final FIN packet is sent to end the transfer.

Finally an optimal routing strategy should be chosen
based on AppSleep and application characteristics. For
example, if AppSleep puts an application to sleep for ex-
tended periods of time, then continually updating a routing
table may be a waste of energy. In this instance, a dy-
namic source routing protocol ideal for low traffic applica-
tions may be more appropriate. Furthermore, static time-
outs that retire an entry if a node has not been heard from
must take sleeping cycles into account.

8. Conclusion

We demonstrate that different energy efficient ap-
proaches address different types of applications. App-
Sleep is a power management protocol that addresses In-
frequent Monitoring applications, a class previously ig-
nored by energy efficient protocols.

AppSleep trades off latency for energy, and demon-
strates greater than 3x energy savings over B-MAC and S-
MAC for the Infrequent Monitoring class of applications.
Furthermore, AppSleep is not impacted by changes in
neighbor density. It also provides a solution for bulk data

transfer, ensuring that surrounding nodes do not needlessly
expend energy overhearing a neighbor’s unicast transmis-
sion. In order to leverage the energy savings of this
scheme, an application must be able to tolerate communi-
cation latencies for extended periods of time.

Adaptive AppSleep maximizes energy savings while
handling time varying latency requirements.

References

[1] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan,
“An Application-Specific Protocol Architecture for
Wireless Microsensor Networks,” IEEE Transactions on
Wireless Communications, Vol. 1, No. 4, October 2002,
pp. 660-670.

[2] P. Lerou, “Application-driven power management for
mobile devices,” Embedded Control Europe, pp. 16–19,
June 2003.

[3] L. Krishnamurty, J. Chhabra, N. Kushalnagar, and M.
Yarvis, “Wireless Sensor Networks in Intel Fabrication
Plants (poster),” Research at Intel Day, May 2004.

[4] R. Kravets, and P. Krishnan, “Application-Driven Power
Management for Mobile Communication,” The Fourth
Annual ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom), Dallas, TX,
October 1998.

[5] W. Ye, J. Heidemann, and D. Estrin, “Medium access
control with coordinated, adaptive sleeping for wireless
sensor networks,” ACM/IEEE Transactions on Networking,
vol. 12, no. 3, pp. 493 – 506, June 2004.

[6] T. van Dam and K. Langendoen, “An adaptive energy-
efficient mac protocol for wireless sensor networks,” In
The ACM Conference on Embedded Networked Sensor
Systems (SenSys), Los Angeles, CA, November 2003.

[7] J. Polastre, J. Hill, and D. Culler, “Versatile low power
media access for wireless sensor networks,” The 2nd
International Conference on Embedded Networked Sensor
Systems, Baltimore, MD, November 2004.

[8] C. Schurgers, V. Tsiatsis, and M. Srivastava, “Stem:
Topology management for energy efficient sensor
networks,” IEEE Aerospace Conference, Big Sky, MT,
March 2002.

[9] J. Elson, L. Girod, and D. Estrin, “Fine–grained network
time synchronization using reference broadcasts,” The
Fifth Symposium on Operating Systems Design and
Implementation (OSDI), Boston, MA, December 2002.

[10] J. van Greunen and J. Rabaey, “Lightweight time
synchronization for sensor networks,” WSNA 2003, San
Diego, CA, September 2003.

[11] S. Ping, “Delay measurement time synchronization for
wireless sensor networks,” Tech. Rep., Intel-Research IRB-
TR-03-013, June 2003.

[12] “Digikey cmr200t clock-crystal oscillator data-sheet,”
April 2003.

[13] M.D. Yarvis, W.S. Conner, L. Krishnamurthy, J. Chhabra,
B. Elliott, and A. Mainwaring, "Real-World Experiences
with an Interactive Ad Hoc Sensor Network," Proceedings
of the International Workshop on Ad Hoc Networking, pp.
143-151, Vancouver, BC, Canada, August, 2002.

Figure 12. The theoretical lifetime of a node as a
function of sleep period for two different sam-
pling periods. The sleep period is kept at a con-
stant of 10 min for the minimum-power state.

