
UCLA
Papers

Title
A Stream-Oriented Power Management Protocol for Low Duty Cycle Sensor Network 
Applications

Permalink
https://escholarship.org/uc/item/198055mj

Authors
Ramanathan, Nithya
Yarvis, Mark D
Chhabra, Jasmeet
et al.

Publication Date
2005-05-05

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/198055mj
https://escholarship.org/uc/item/198055mj#author
https://escholarship.org
http://www.cdlib.org/


A Stream-Oriented Power Management Protocol for Low Duty Cycle Sensor Network 
Applications 

Nithya Ramanathan†�, Mark Yarvis�, Jasmeet Chhabra�, Nandakishore Kushalnagar�,
Lakshman Krishnamurthy�, Deborah Estrin† 

� Intel Corporation 
2111 N.E. 25th Ave, Portland, OR 
{mark.d.yarvis, jasmeet.chhabra,  

nandakishore.kushalnagar, 
lakshman.krishtnamurthy}@intel.com 

† UCLA, Center for Embedded Network Sensing 
3563 Boelter Hall 
Los Angeles, CA 

{nithya, destrin}@cs.ucla.edu 

Abstract 

Most power management protocols are packet-based and op-
timize for applications with mostly asynchronous (i.e. unex-
pected) traffic.  We present AppSleep, a stream-oriented power 
management protocol for latency tolerant sensor network appli-
cations.  For this class of applications, AppSleep demonstrates 
an over 3x lifetime gain over B-MAC and SMAC.  AppSleep lev-
erages application characteristics in order to take advantage of 
periods of high latency tolerance to put the network to sleep for 
extended periods of time, while still facilitating low latency re-
sponses when required.  AppSleep also gives applications the 
flexibility to efficiently and effectively trade latency for energy 
when desired, and enables energy efficient multi-fragment uni-
cast communication by only keeping the active route awake.  We 
also present Adaptive AppSleep, an application driven addition 
to AppSleep which supports varying latency requirements while 
still maximizing energy efficiency.  Our evaluation demonstrates 
that for an overlooked class of applications, stream-oriented 
power management protocols such as AppSleep outperform 
packet-based protocols such as B-MAC and S-MAC. ∗∗∗∗

1. Introduction 

Many energy efficient protocols have been developed 
in order to address the power management needs of wire-
less sensor network (WSN) applications.  However, as 
WSN applications diversify and distinguish themselves 
based on bandwidth and latency requirements, no single 
protocol can optimally address all scenarios.  For the class 
of latency-tolerant, non-realtime applications, leveraging 
an application’s characteristics provides greater energy 
savings over traditional approaches [1] [2]. 

Our motivating application is Intel’s FabApp [3], an 
application that monitors the vibration signatures of indus-
trial equipment in a fabrication plant to predict mechanical 
failures.  In a typical production installation, motes trans-
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mit samples once a day from approximately 4000 sensors. 
This data is archived in a data center and analyzed offline 
for trends over multiple time scales.  In this application, 
asynchronous queries typically occur shortly after pre-
scheduled sample collection at the data center, and a re-
sponse latency on the order of several minutes can be tol-
erated.  Due to the lax latency constraints, nodes need not 
wake up with fine granularity.  FabApp represents a broad 
class of latency tolerant applications with bursty data 
transmission.  

Existing power management approaches do not address 
applications, such as FabApp, with low sampling frequen-
cies and latency-tolerant, asynchronous traffic.  These 
power management techniques do not take advantage of 
scheduled data transmissions or latency tolerance on un-
scheduled data transmissions to reduce power consump-
tion.  The hypothesis of this paper is that, for the class of 
applications represented by the FabApp, moving the 
power saving functionality closer to the application and 
tying it to transport and data collection patterns results in 
much higher performance. 

Most power management protocols focus on ensuring 
that a node’s radio is active for reception of each individ-
ual asynchronous packet.  Thus, power management is 
typically tightly integrated with the MAC protocol.  These 
protocols waste energy through radio switching, idle lis-
tening, and unnecessarily achieving short response laten-
cies.  Radio switching is especially wasteful when an ap-
plication knows there will be no traffic.  For example, if a 
FabApp node running on top of B-MAC with a standard 
sleep period of 100 ms only needs to return data once 
every 10 minutes, B-MAC will still turn the radio on 6000 
times during that 10 minute period. 

Packet-based protocols also waste energy through 
neighbor overhearing because they continue to wake up 
surrounding nodes, even during multi-fragment unicast 
streams.  Using BMAC as an example again, if a node is 
unicasting a multifragment data sample, neighboring 
nodes will wake up to hear part or all of the preamble be-



fore determining the packet is not for them and going back 
to sleep.  For long or frequent packet transmissions, or 
densely packed nodes, these lengthy wake up periods sig-
nificantly increase energy consumption.   

We introduce AppSleep, an application layer power 
management protocol that minimizes energy consumption 
for applications such as FabApp. AppSleep extends sleep 
periods by leveraging knowledge of pre-scheduled trans-
missions while still meeting the application’s latency re-
quirements.  AppSleep moves the power management 
functionality up the stack from the MAC in order to lever-
age minimal application characteristics and manage sleep 
schedules based on streams instead of packets.  As a 
stream-oriented protocol, AppSleep prioritizes energy ef-
ficiency over latency, enables scheduling across multiple 
packets to reduce neighbor overhearing, and facilitates 
multi-hop communication during a single wake period.  
We also present Adaptive AppSleep, which handles time-
varying latency requirements.  Adaptive AppSleep gives 
applications such as FabApp the flexibility to efficiently 
and effectively trade latency for energy when desired.   

We demonstrate that AppSleep can outperform a ge-
neric energy efficient MAC by over 3x.  Our evaluation is 
based on both theoretical evaluation and experimental runs 
of B-MAC and AppSleep on a Mica2 testbed. 

2. Related work 

Power saving techniques have been proposed in wire-
less research that operate at almost every layer in the 
communication stack.  To categorize them and present 
their relationship with our contributions, we develop an 
informal taxonomy.  We define application classes (Table 
1) based on traffic and latency characteristics and briefly 
discuss existing power management protocols designed to 
address these applications. 

We utilize these terms in the taxonomy: 
• Synchronous Data:  Pre-scheduled sample delivery 
• Asynchronous Data: Unscheduled data, i.e. de-

tected events / queries 
• Synchronous Latency: Time to return pre-scheduled 

data once it has been obtained 
• Asynchronous Latency:  Time to return an event 

once it has been detected, or the time between a 
query and the corresponding response.  

We specify a power management protocol that best 
suits each class of applications.  In summary: 

• S-MAC and B-MAC are both designed to handle 
mostly asynchronous data.   

• S-MAC is best suited for the Frequent Monitoring 
class of applications because it constantly expends 
energy to synchronize the network, which is useful 
only when there is a lot of traffic.   

• B-MAC is best suited for the Casual/Emergency 
Event Detection classes of applications because of 
its low network maintenance cost.  Furthermore, 
because communication has such a high cost when 
using B-MAC, it is not suitable for applications 
with frequent, bursty or bulk data transfers. 

S-MAC conserves energy by synchronizing clusters of 
nodes to the same sleep/wake schedule [5].  Nodes in a 
cluster send frequent SYNCH packets to maintain cluster 
synchronization and obtain link characteristics.  Nodes at 
cluster borders allow inter-cluster communication by op-
erating on a super-set of cluster schedules.  S-MAC has 
numerous drawbacks in our application.  For example, S-
MAC sleep schedules operate on a per-packet basis, result-
ing in extended multi-hop latency as nodes delay forward-
ing packets until their neighbor wakes up.  Buffering is 
also required to store delayed packets. 

T-MAC is based on S-MAC but seeks to eliminate idle 
energy further by adaptively varying the length of time 
over which frames are transmitted [6].  In T-MAC the data 
frames are sent in a burst in the beginning of the wake 
period and thus the nodes can go to sleep if no transmis-
sion occurs in the beginning of the wake period.  Thus, T-
MAC is somewhat more stream-oriented than S-MAC.  In 
general, however, the disadvantages of T-MAC in Infre-
quent Monitoring applications are similar to S-MAC. 

B-MAC is an energy efficient MAC protocol that puts 
nodes to sleep for tens or hundreds of milliseconds [7].  A 
node precedes each packet with a preamble corresponding 
to the maximum sleep time of neighbor nodes, ensuring 
that one-hop neighbors will receive the packet.  The result 
is a significant penalty for each packet transmission.  For 
example, for a sleeping duration of 160 ms, a node must 
transmit continually for 20 ms (for the packet) + 160 ms 
(for the preamble), adding an 8x additional overhead to the 
packet transmission.  Furthermore, network density im-
pacts the global energy efficiency because nodes hear 
some or all of each neighbor’s lengthy preamble. 

Both S-MAC and B-MAC are geared towards applica-
tions with mostly asynchronous traffic.  In [8], Schurgers, 
et al. propose a topology management protocol that puts 

Table 1. Informal Application Taxonomy

Application class Example Min Synchronous 
Data Frequency 

Min A/Synchronous 
Data Latency 

Bandwidth Budget Optimal Energy 
Saving 

Infrequent Monitoring FabApp [3] Minutes Several minutes Bursty AppSleep 
Frequent Monitoring Habitat Monitoring Seconds Several minutes Small bursts S-MAC 
Casual Event Detection Conference Room App N/A <= 1 minute Small bursts B-MAC 
Emergency Event Detection Fire Detection N/A <= 1 second 1/lifetime B-MAC 



the entire network to sleep (unlike other topology man-
agement protocols that attempt to minimize redundancy).  
When a node wants to send a packet it continually trans-
mits beacons until a neighboring node wakes up.  This 
research assumes an event tracking application model, and 
does not leverage application related information. 

In all of these power management approaches, sched-
uled data transmissions consume the same energy over-
head as unscheduled data.  No previous power manage-
ment protocol effectively addresses the Infrequent Moni-
toring class of applications. This class distinguishes itself 
based on frequent synchronous transmissions and toler-
ance for latency in asynchronous transmissions.  To ad-
dress these applications, AppSleep integrates the power 
saving function with the application layer, rather than with 
the MAC-layer as in the above approaches. 

While application driven techniques have also been 
proposed in [4], this work applies to general purpose wire-
less networks.  Sensor networks are application specific, 
and solutions that leverage application knowledge can 
often outperform general purpose approaches.  AppSleep 
attains the benefits by leveraging limited application 
knowledge to maximize energy savings over other proto-
cols for this class of applications.  

Because AppSleep is stream-oriented, it can enable en-
ergy efficient multi-fragment transfers by only keeping the 
active route between a source and receiver awake, while 
all other nodes sleep.  This approach minimizes the over-
hearing caused by packet-based protocols that repeatedly 
wake surrounding nodes during a single transfer between a 
sender and receiver.  In addition, because all nodes on a 
path are guaranteed to be awake in AppSleep, nodes do 
not need to buffer packets while waiting for a next-hop 
neighbor to wake up as required in S-MAC or B-MAC. 

3. FabApp architecture 

The FabApp uses a multi-hop, cluster-based architec-
ture, with a gateway node acting as each cluster head.  The 
communication stack and components of the FabApp are 
illustrated in Figure 1. 

The cluster head operates in a polling mode, creating a 
global data gathering schedule and initiating data transfer 
requests from each node.  Requests typically occur daily, 
and each data transfer lasts a few minutes. 

To start, let us assume that the cluster is in the wake 
state.  The gateway initiates a sleep cycle by sending out a 
packet that puts the entire cluster to sleep for a specified 
duration of time (typically several hours or a day).  When 
the nodes wake up, the gateway initiates a metric-based 
DSDV [13] routing protocol to establish communication 
paths in the network, during which, nodes within the clus-
ter send out trace routes to the gateway.  The traceroutes 
provide nodes with a reverse path, allowing down-stream 
communication for control messages.   Each node joins the 

cluster for which it has the lowest cost route to the cluster 
head.  Given the size of each cluster (typically 30-100 
nodes) and the routing protocol used, the cluster stabilizes 
in a few minutes (route_stability_time).   

Once the routes have stabilized, the gateway polls each 
sensor node one at a time to initiate data gathering.  The 
data gathering request is simply flooded into the network 
multiple times until the data gathering begins.  When data 
gathering begins, nodes that are not in the data path simply 
go to sleep for shorter durations, as the data transfer sizes 
are known a priori (typically a few minutes).  When the 
cluster head has gathered data from all nodes in a cluster, 
the cluster goes to deep sleep. 

4. AppSleep design and operation 

AppSleep is a generic protocol designed to control the 
sleep/wake behavior of the cluster to enable the applica-
tion behavior described above.  AppSleep contains com-
ponents to handle sleep/wake control, time synchroniza-
tion (needed for the synchronized cluster sleep/wake), 
bulk data transfer, SYNCH packet loss, and adaptive sleep 
(discussed in Section 6).  Detailed design of the clustering, 
routing and data scheduling components are out of scope 
of this paper.  In this section we describe the operation of 
AppSleep and its interaction with the other layers.  

4.1. Sleep/wake control 

The goal of the sleep/wake module is to ensure that all 
nodes in the cluster sleep and wake at the same time.  This 
single schedule reduces idle listening and minimizes wake 
time.  The wake period of each node has to be at least as 
long as it takes a packet to traverse the cluster.  If a node 
needs to send data packets to a destination, then in addi-
tion to the wake period, the nodes should remain awake 
for setting up an active path to transmit data and the nodes 
in the active transmitting path need to be awake for the 
duration of the data transfer.  

In AppSleep, the mechanism for the sleep/wake control 
relies on an initial SYNCH packet (Figure 2), flooded by 
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the cluster head.  As specified in the SYNCH packet, 
nodes go to sleep relative_time_to_sleep seconds after 
receiving the packet, then sleep for sleep_period seconds.  
Nodes then stay awake long enough for a packet to trav-
erse the cluster.  This packet could be a SYNCH packet, or 
a single control or data packet.  The node calculates the 
wake period using the network_diameter field in the 
SYNCH packet.  Nodes continue this sleep-wake cycle 
until the next SYNCH packet is received.  These parame-
ters will be discussed in greater detail in Section 4.5. 

If the payload is larger than a single packet, the bulk 
data transfer module is utilized (discussed in Section 4.3). 

4.2. Time synchronization 

A lightweight time synchronization protocol handles 
the synchronization between the nodes in order to ensure 
that all nodes wake up at the same time and stay awake 
long enough to hear multi-hop transmissions during a sin-
gle wake period. 

Related work for time synchronization [9] [10] [11], 
aims to maximize accuracy.  While these approaches could 
be used, AppSleep only requires course grained synchro-
nization and therefore can avoid needless overhead.  The 
goal of AppSleep’s time synchronization protocol is to 
minimize energy consumption while ensuring that nodes 
go to sleep and wake up within milliseconds of each other.  
In order to minimize the energy consumption, nodes use 
relative rather than pair-wise synchronization, sacrificing 
accuracy for lower packet overhead.  This lower packet 
overhead also enables scalability, requiring on average one 
message per node for each time-synchronization period.    

In order to achieve cluster synchronization, the protocol 
compensates for several factors: packet delay, packet loss, 
and clock drift [9]. The cluster head periodically floods a 
SYNCH packet containing the relative time for the cluster 
to go back to sleep and the length of the subsequent 
SYNCH period (length of time between SYNCH packet 
transmissions).  Nodes use the relative time to go to sleep 
to synchronize with the cluster sleep schedule in order to 
compensate for accumulated clock drift since the last 
SYNCH packet.  Nodes expect the next SYNCH packet in 
time_until_SYNCH seconds. 

4.3. Bulk data transfer 

AppSleep includes a bulk data transfer module to han-
dle multi-fragment data transfers.  This stream-oriented 
protocol puts nodes to sleep for the duration of a stream as 
opposed to packet-based protocols which sleep based on 
the contents of individual packets.  Single packet data 
transfers can occur during the regular cluster wake period. 

We begin by assuming that a route exists and is known 
between the sending and receiving node.  A node unicasts 
the first fragment of the packet along this route to its des-

tination, commanding the nodes along this path to stay 
awake by setting the WAKE bit in the packet header.  The 
node continues to send the rest of the packets, and only 
sets the FIN bit in the packet header of the final fragment, 
indicating the nodes on the path should go back to sleep. 

A timer can be used to ensure that nodes return to the 
sleep state if the packet with the FIN bit is lost.  If a node 
does not forward any packets within a set time period, the 
node automatically returns to the sleep state.  The timer 
must be larger than normal packet latencies but small 
enough to achieve the desired lifetime goal. 

If the packet with the WAKE bit is lost in transit, the 
path will be partially awake, and the transmission will fail.  
To increase system reliability, the cluster wake period can 
be set long enough for an end-to-end acknowledgement of 
the initial packet and subsequent retransmissions. 

4.4. SYNCH packet loss 

Nodes know when to expect the next SYNCH packet 
because the cluster head specifies this time in each 
SYNCH packet.  Nodes stay awake for several seconds 
when expecting a SYNCH packet.  If a node does not re-
ceive a SYNCH packet when expected, it waits a period of 
time before broadcasting a SYNCH-REQ message.  Any 
node that hears a SYNCH-REQ broadcasts an updated 
SYNCH packet.  A node stays in this state until it hears a 
SYNCH packet; if it hears another node transmitting, it 
can broadcast another SYNCH-REQ packet.  Once a node 
has received a SYNCH packet, it ignores subsequent 
SYNCH packets received during that wake period. 

If a node does not hear a SYNCH packet after sending 
several (four in our implementation) SYNCH-REQ mes-
sages, it remains on.  Nodes that join the network, or have 
rebooted also begin in this state.  In this case, running on 
top of an energy efficient MAC layer can minimize the 
energy consumed by the radio while it waits for a SYNCH 
packet.  This issue is discussed further in Section 7. 

4.5. AppSleep parameters 

There are several parameters in AppSleep that impact 
its energy consumption and latency characteristics.

Parameters specified/derived from the application: 
• Sleep Period (tsleep): Duration a node’s radio proces-

sor is asleep before waking up 

typedef struct { 
uint16_t relative_time_to_sleep; 
uint32_t time_until_SYNCH; 
uint32_t sleep_period; 
uint8_t network_diameter; 

} SYNCH; 

Figure 2. Data structure for a SYNCH packet. 



• Network Diameter (Ndiameter): Longest path in the 
cluster 

Parameters calculated by AppSleep: 
• Time synchronization frequency: Frequency of 

SYNCH packets; optimized with respect to energy 
• Wake period (tawake): Duration a node’s ra-

dio/processor is awake before going to sleep 
• Guardband (tguardband): Delay at packet initiator to 

ensure cluster is awake 
The sleep period is set to the application’s minimum 

tolerated response latency.  The guardband depends on 
time synchronization frequency; as time synchronization 
frequency increases, the accrued clock drift is lessened, 
allowing a shorter guardband.  The wake period depends 
on time synchronization frequency (which affects clock 
drift) and the cluster diameter as defined in Equation 1. 

  tawake = Ndiameter*tper_hop_delay + tmax_clock_drift + tguardband (1) 

The optimal time synchronization frequency minimizes 
energy consumption, based on a trade off between 1) the 
time the receiver is on and 2) the energy due to transmit-
ting SYNCH packets.  Increasing the time synchronization 
frequency reduces the clock drift and the receiver on time.  
Decreasing the SYNCH frequency reduces transmission 
energy.  As seen in Figure 3, the optimal time synchroni-
zation frequency depends on the sleep period, which is 
determined by the latency constraints of the application. 

New values for the sleep period and cluster diameter 
are propagated in a SYNCH packet.  To allow nodes to 
join the edge of the cluster between SYNCH packets, a 
guardband of several hops is added to the cluster diameter. 

5. Evaluation 

Our performance evaluation of AppSleep consists of 
energy model evaluations and testbed experiments using 
an implementation of AppSleep in TinyOS on the mica2 
motes.  We compare AppSleep with B-MAC1 [7] and S-
MAC2 [5].  While AppSleep is not a MAC protocol, we 
only compare the performance of the power management 
function of each approach.  Thus, we evaluate the merit of 
a stream-oriented approach to power conservation.  

We used network traffic that might occur in the Infre-
quent Monitoring class of applications as specified in 
Table 1.  For streams, the energy model makes the opti-
mistic assumption that B-MAC only uses the long pream-
ble for the first fragment.   

In both theoretical evaluation and experimental runs, an 
8-node network with a fixed linear topology was used, 
providing a constant 7-hop network diameter.  In experi-
mental runs, nodes were placed 6 inches apart, and while a 
low transmit power was used, no attempt was made to 

                                                
1 tinyos-1.x/contrib/ucb/CC1000Pulse as of 9/20/2004
2 tinyos-1.x/contrib/s-mac as of 9/20/2004 

ensure that nodes could only receive packets from their 
direct linear neighbor.  Data traffic was sent from one end 
of the network to the other at a rate of one packet every 10 
min. Samples are 60 bytes long and fit in a single packet. 

We first present our energy model used for the theoreti-
cal evaluation.  We then discuss results from our testbed, 
and finally we use these results in the energy model to 
explore scenarios for which experiments were not feasible. 

5.1. Energy model 

Our energy model is based on that designed by Polastre 
et al. [7], and models the energy consumed by the radio by 
estimating the time it spends in each state.  The radio is 
modeled as being either awake—in which case the only 
states are transmitting or receiving—or asleep.  The model 
is based on a mica2 with a 19.2 kbps radio, transmission 
current of 20 mA, receive/idle current of 15 mA, and sleep 
current of 0.03 mA.  The model includes control packet 
overhead and assumes overhearing of 5 neighbors in the 
topology described above.  We use 5 neighbors in order to 
not disadvantage B-MAC, which is negatively impacted 
by dense neighborhoods as discussed in Subsection 5.3.3. 

For AppSleep we set the SYNCH period to two hours.  
For SMAC we used a SYNC period of 12 sec, an awake 
time of 115 ms, and a duty cycle of 1%, as specified in the 
code.  For B-MAC we used the parameters provided in 
[7], and validated our energy model by recreating the re-
sults offered by Polastre, et al. [7].  We validate the 
BMAC and AppSleep energy models by comparing the 
results with those gathered in actual runs. 

5.2. Experimental evaluation 

To measure the energy consumption in a testbed, we 
measured the time the radio was on at full power, the time 
spent transmitting, and the number of radio state switches.  
The sampling period was 10 min, and AppSleep sent a

Figure 3. The energy consumed by the network 
as a function of SYNCH packet frequency.  The 
data is derived from the energy model. 



SYNCH packet every 2 hours.  We performed two runs for 
each test.  Figure 4 shows that B-MAC consumes more 
than twice as much energy as AppSleep.  Surprisingly, B-
MAC consumed more energy in practice than estimated by 
the energy model, while AppSleep’s actual energy con-
sumed was deterministic (no visible error bars) and almost 
exactly equivalent to the energy model’s estimate.  This 
behavior is expected because AppSleep is not impacted by 
overhearing or neighborhood density changes, while B-
MAC’s energy consumption depends on the number of 
nodes it overhears.  This comparison also holds for the 
time the radio spends awake as seen in Figure 5. 

5.3. Theoretical evaluation 

We next use the experimental results and energy model 
to evaluate tradeoffs between power conservation ap-
proaches.  We varied the sleep periods from 20 ms to 
12000 sec, kept other parameters constant (as described 
above), and evaluated energy consumption at different 
neighborhood densities, sampling rates, and network di-
ameters.  We also consider the energy required for net-
work maintenance, radio duty cycle, and latency. 

5.3.1. Latency  
The best case scenario for AppSleep is all synchronous 

traffic because AppSleep wakes the nodes at the previ-
ously scheduled transmission time.  In this case, AppSleep 
has an average latency of 40 ms/hop (all transmission 
time), B-MAC has an average latency of 290 ms/hop if we 
assume an optimal sleep period of 250 ms (transmission of 
packet plus preamble), and S-MAC has an average latency 
of 2.04 sec/hop (without adaptive listening; if adaptive 
listening were used, the latency would be reduced).

With asynchronous traffic, the worst case scenario for 
AppSleep is bounded by its sleep period.  In this case, B-
MAC provides the best latency response (Figure 6).  How-
ever, Infrequent Monitoring applications can often trade 
latency for energy efficiency, and hence AppSleep’s rela-
tively high latency response is often acceptable. 

In order to calculate average latency of response we use 
the following equations: 

  tbmac_latency = (1.5*tsleep + tawake) 
                      + (Nhops - 1)*(tsleep + tawake)  (2)

  tsmac_latency = ( tsleep/2 + tawake)  
                        + (Nhops - 1)*(tsleep + tawake)  (3) 

  tAppSleep_latency = tsleep/2 + tawake   (4) 

Where tsleep is the sleep period, and tawake is the period of 
time a node stays awake during the wake period.  Notice 
that in B-MAC and S-MAC, each packet in a stream can 
incur a per-hop latency, since the next hop may be asleep.  
In AppSleep, after the first packet, no additional latency is 
incurred, since the bulk transfer mechanism ensures that 
all nodes along the path will be awake.  

5.3.2. Sampling rate 
AppSleep achieves a 3x improvement over S-MAC and 

B-MAC for a sampling period of 22 min, but with an av-
erage latency of 375 sec compared to SMAC’s 78 sec or 
B-MAC’s 77 ms (Figure 7).  To surpass the lifetime of S-Figure 4. Experimental testbed and theoretical 

radio energy consumption.   

Figure 5. Experimental and theoretical radio ac-
tivity.   

Figure 6. Average response latency as a function 
of sleep period.  In Infrequent Monitoring applica-
tions, low latency is traded for energy efficiency.



MAC or B-MAC, AppSleep provides an average latency 
of 46 sec for the 22 min sampling period. 

While the performance of B-MAC levels off, and S-
MAC is implementation limited, AppSleep’s performance 
increases with the average response latency constraint (i.e. 
the sleep period). As the sampling period increases to 1 
day, AppSleep still outperforms B-MAC and S-MAC.  
However, the performance gap between B-MAC and 
AppSleep shrinks because this scenario minimizes trans-
mission and is thus increasingly favorable for B-MAC. 

5.3.3. Energy / latency tradeoff 
AppSleep provides a tradeoff between latency and en-

ergy consumption, as shown in Figure 8.  For S-MAC and 
B-MAC, the y-axis represents the average response la-
tency provided at the minimal energy settings.  For App-
Sleep, the y-axis shows the average response latency pro-
vided by AppSleep settings required to surpass the per-
formance of B-MAC and S-MAC. While AppSleep mini-
mizes energy consumption, it provides exponentially 
greater response latencies compared to B-MAC.   

5.3.4. Neighborhood density 
Neither S-MAC nor AppSleep is affected by neighbor 

density.  However, BMAC’s lifetime is nearly halved
when the number of neighbors is changed from 5 to 20 
(Figure 9).  This lifetime reduction occurs for BMAC be-
cause as the number of neighbors increases, the amount of 
preamble overhearing dramatically increases.  

For 20 neighbors, AppSleep shows a 9x lifetime in-
crease over B-MAC with an average latency of 375 sec 
compared to B-MAC’s 35 ms.  Furthermore, for 20 
neighbors, AppSleep surpasses B-MAC’s performance 
with an average latency of only 5.9 sec. 

Interestingly, B-MAC’s optimal sleep period also 
changes with the number of neighbors, while AppSleep’s 
remains constant.  So, for networks with unstable links, B-
MAC may not always perform in its optimal operating 
range, while AppSleep’s optimal sleep period remains 
constant regardless of neighborhood density. 

5.3.5. Network diameter 
As the network diameter increases, each node must stay 

awake for a longer period of time to ensure that multi-hop 
communication along the longest path can occur during a 
single wake period.  As a result, lifetime degrades with 
AppSleep as the network diameter increases (Figure 10).  
Neither S-MAC nor B-MAC’s energy consumption are 
impacted by the network diameter. 

5.3.6. Network maintenance 
Figure 11 shows the energy consumed to simply main-

tain network connectivity for the different protocols.  
When there is no traffic in the network, B-MAC consumes 
the least energy.  This minimal energy consumption occurs 
because B-MAC trades reduced receiver “on” time for 
increased transmission time.  For example, in order to con-
sume less energy than B-MAC sleeping for 100 ms peri-
ods, AppSleep must put the application to sleep for at least 
100 sec at a time.  This difference occurs because App-
Sleep requires periodic time synchronization and, during 
each wake period, stays awake almost 1000 times longer 
than B-MAC for a 7-hop network. 

Figure 7. Theoretical lifetime as a function of 
sleep period  (sampling period is 22 min). 

Figure 8. Response latency as a function of sam-
pling period. Minimal energy settings used for B-
MAC and S-MAC; AppSleep’s parameters set to 
surpass B-MAC and S-MAC energy performance. 

Figure 9. The theoretical lifetime as a function of 
the sleep period, for various neighbor densities. 



6. Adaptive behavior 

Adaptive AppSleep handles time varying latency con-
straints.  It is based on the assumption that the shortest 
sleep periods should be scheduled immediately after 
scheduled sample returns because during this period un-
scheduled requests are most likely to happen. 

Based on this assumption, Adaptive AppSleep main-
tains a state machine that increases the sleep period at a 
user specified rate after a sample has been returned.  This 
mechanism supports the notion that latency increases in 
asynchronous query responses can be tolerated as time 
elapses since a sample return. 

For example, in the FabApp application, the system re-
turns samples once a day.  If an imminent machine failure 
was indicated in a recent sample, a user may want to im-
mediately query the network for additional information.  
However, this kind of emergency response is only neces-
sary immediately after a sample has been returned.  Sub-
sequent requests are more likely to be informational, and 
can tradeoff response latency for increased energy savings. 

The number of states, the time spent in each state, and 
the initial sleep period can be specified by the user.  The 
cluster head handles changing response latencies and state 
changes by modifying the sleep_period field in the 
SYNCH message.  Consider, for example, an initial sleep 
period of 30 sec and a duration of one hour in each state.  
Once a sample return is complete, the cluster head broad-
casts a SYNCH packet indicating that the next SYNCH
packet should be expected in one hour, and the current 
sleep period is 30 sec.  After an hour, the cluster head 
floods a SYNCH packet, again indicating that the next 
SYNCH packet should be expected in one hour, and the 
current sleep period is 60 seconds.  This cycle continues 
until the delivery of the next sample. 

The state changes for Adaptive AppSleep must also be 
coordinated with the time synchronization protocol.  With 
every new change in the sleep period, the cluster head 

must recalculate its optimal time synchronization period, 
because this value depends on the sleep period (as shown 
in Figure 3).  An application may utilize multiple energy-
saving states, each distinguished by the sleep period. 

Figure 12 demonstrates the energy consumption of 
AppSleep and Adaptive AppSleep.  This simple imple-
mentation of Adaptive AppSleep in the energy model 
moves the cluster to a query-ready state for a period of 
time equivalent to 15 sampling periods immediately after a 
sample has been returned.  For the remainder of time, 
nodes remain in a minimum-power state where their sleep 
periods are fixed at 10 min.  The figure demonstrates the 
intuitive conclusion that Adaptive AppSleep saves signifi-
cant energy over AppSleep by minimizing the time the 
network operates in the ”query-ready” state and provides 
low latency responses to asynchronous queries. 

7. Discussion 

7.1. Incorporating an energy efficient MAC 

There are several advantages to running this protocol on 
top of B-MAC.  If a node fails, then it must stay awake 
until it hears a SYNCH packet.  In this case, B-MAC is a 
much more efficient way to “fail on” because it will still 
spend most of its time sleeping and still be ensured to re-
ceive a packet from a neighbor when one is sent.  Because 
B-MAC is a relatively cheap way to stay awake for ex-
tended periods of time, AppSleep can minimize the energy 
cost of extended wake periods. 

To use B-MAC in this scenario, the sleep period must 
be very short in order to avoid large packet preambles.  
This approach leverages the advantage of B-MAC while 
avoiding the extensive switching energy usually associated 
with short sleeping periods in B-MAC. 

7.2. Integration with and dependency on routing 

Before data transfer can begin, routes must be estab-
lished.  To establish routes, the cluster head simply runs a 

Figure 10. AppSleep’s theoretical network lifetime 
as a function of the sleep period, for various net-
work diameters (sampling period is 22 min).   

Figure 11. The power consumed to maintain the 
network protocol as a function of sleep period. 



routing protocol, such as Intel’s metric-enabled DSDV 
[13] before initiating data transfer.  Our empirical observa-
tion in networks of up to 100 nodes indicates the routes are 
discovered in a few minutes.  The cluster head ensures that 
the SYNCH period supports establishment of routes. 

While AppSleep avoids dependencies on the MAC 
layer, certain functional and performance aspects are im-
pacted by the routing layer.  Three issues must be ad-
dressed.  First, during long cluster sleep periods, optimal 
routes may change.  When this occurs, routes must be re-
established at the start of the wake period.   

Second, data must flow along the selected path during 
the entire wake period.  AppSleep’s bulk data transfer pro-
tocol relies on a route remaining locked down between the 
time the initial WAKE bit is set requesting a route to stay 
awake until the final FIN packet is sent to end the transfer. 

Finally an optimal routing strategy should be chosen 
based on AppSleep and application characteristics.  For 
example, if AppSleep puts an application to sleep for ex-
tended periods of time, then continually updating a routing 
table may be a waste of energy.  In this instance, a dy-
namic source routing protocol ideal for low traffic applica-
tions may be more appropriate.  Furthermore, static time-
outs that retire an entry if a node has not been heard from 
must take sleeping cycles into account. 

8. Conclusion 

We demonstrate that different energy efficient ap-
proaches address different types of applications.  App-
Sleep is a power management protocol that addresses In-
frequent Monitoring applications, a class previously ig-
nored by energy efficient protocols. 

AppSleep trades off latency for energy, and demon-
strates greater than 3x energy savings over B-MAC and S-
MAC for the Infrequent Monitoring class of applications.  
Furthermore, AppSleep is not impacted by changes in 
neighbor density.  It also provides a solution for bulk data 

transfer, ensuring that surrounding nodes do not needlessly 
expend energy overhearing a neighbor’s unicast transmis-
sion.  In order to leverage the energy savings of this 
scheme, an application must be able to tolerate communi-
cation latencies for extended periods of time. 

Adaptive AppSleep maximizes energy savings while 
handling time varying latency requirements. 
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