
2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2894621, IEEE

Transactions on Cloud Computing

VOL. 13, NO. 9, MAR. 1, 2018 1

A Streaming Cloud Platform for Real-Time Video
Processing on Embedded Devices

Weishan Zhang∗, Haoyun Sun∗, Dehai Zhao†, Liang Xu‡, Xin Liu∗, Huansheng Ning‡, Jiehan Zhou¶‖, Yi

Guo ∗, Su Yang§

∗School of Computer and Communication Engineering, China University of Petroleum (East China),

Qingdao, China.
†Australian National University, Australia

‡College of Computer and Communication Engineering, Beijing University of Science and Technology,

Beijing, China
¶University of Oulu, Finland

‖University of Toronto, Canada
§College of Computer Science and Technology, Fudan University, Shanghai, China

Abstract—Real-time intelligent video processing on embedded devices with low power consumption can be useful for applications like

drone surveillance, smart cars, and more. However, the limited resources of embedded devices is a challenging issue for effective

embedded computing. Most of the existing work on this topic focuses on single device based solutions, without the use of cloud

computing mechanisms for parallel processing to boost performance. In this paper, we propose a cloud platform for real-time video

processing based on embedded devices. Eight NVIDIA Jetson TX1 and three Jetson TX2 GPUs are used to construct a streaming

embedded cloud platform (SECP), on which Apache Storm is deployed as the cloud computing environment for deep learning

algorithms (Convolutional Neural Networks - CNNs) to process video streams. Additionally, self-managing services are designed to

ensure that this platform can run smoothly and stably, in the form of a metric sensor, a bottleneck detector and a scheduler. This

platform is evaluated in terms of processing speed, power consumption, and network throughput by running various deep learning

algorithms for object detection. The results show the proposed platform can run deep learning algorithms on embedded devices while

meeting the high scalability and fault tolerance required for real-time video processing.

Index Terms—embedded devices, low power consumption, deep learning, video processing, convolutional neural networks

✦

1 INTRODUCTION

Embedded devices equipped with impressive comput-
ing capacities are being increasingly adopted in various
domains. For example, some drones can monitor public
places using aerial photography to help to maintain public
safety, or can be used for goods delivery, and even for power
grid monitoring to ensure their targets are working reliably.
For such applications, there are challenging issues in the
way of achieving good quality services for embedded video
or image processing in real-time:

• Low real-time recognition accuracy. Only light-
weight network structures [1] can run on drones
in real-time due to hardware limitations; this lim-
its the possibility of achieving high accuracy in a
complex environment compared with deep network
structures [2].

• Bad performance of on-line recognition. At this
time, usually only simple tasks such as video col-
lection and transferring are performed on board by
drones and robots, and then the collected video
is processed on a remote cloud server to conduct
analysis. This makes it difficult to fulfill real-time

Manuscript received July. 1, 2018; revised. Corresponding author: Weishan
Zhang (email: zhangws@upc.edu.cn); Xin Liu (lx@upc.edu.cn); Jiehan Zhou
(jiehan.zhou@oulu.fi)

requirements, and suffers latency that may cause loss
of both life and assets. For example, the real-time
recognition of an early stage fire around a power line
may help to reduce potential damages.

Deep learning is currently applied successfully in vari-
ous domains, such as natural language processing [3] and
computer vision [4], and can even exceed human perfor-
mance in some cases [5]. It has been applied for aerial video
analysis due to its high accuracy in many computer vision
tasks [6], [7], [8], [2]. However, these high-performance deep
neural networks have large-scale weight parameters and
require billions of floating point operations, which result in
high power consumption. For example, AlexNet has 61M
parameters (249MB of memory) and performs 1.5B high
precision operations to classify one image. These numbers
are even higher for deeper CNNs, e.g., VGG [7]. Even
though heavy-weight tasks can be migrated to cloud servers
[9], bandwidth, latency, and network availability are still
major factors hindering the responsiveness of near real-time
applications.

Efforts to address these issues have taken two direc-
tions: 1) network structure modification, and, 2) platform
construction.

Binarization is an effective approach to reduce neural



2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2894621, IEEE

Transactions on Cloud Computing

VOL. 13, NO. 9, MAR. 1, 2018 2

network size. In Binarized Neural Networks (BNNs) [10],
weights and activations are constrained to either +1 or -1,
which requires 32 times less memory but gives 7 times the
performance acceleration on MNIST data compared with
the non-optimized model. XNOR-Net [11] approximates
both weights and inputs to convolutional and fully con-
nected layers with binary values, which offers a 58 times
speed up in CPUs.

Google proposed MobileNets [12], which is a small, low
latency model which can be easily matched to requirements
of mobile and embedded vision applications. Apple’s Core
ML1is a foundational machine learning framework used by
Apple products, enabling developers to build smart applica-
tions on embedded devices. Despite successful network size
reduction, these models still cannot achieve as high accuracy
as 32-bit DNNs [6] in processing color images.

Other work has focused on building embedded plat-
forms and adopting deep learning algorithms. For exam-
ple, Mao et al. [13] ran the Fast R-CNN on a Jetson TK1
platform2. Although additional modifications on the Fast R-
CNN were made to fit TK1, the detection speed was very
low (1.85 frames per second; hereafter, fps). Another study
by Jagannathan et al. [14] ran a 7-layer CNN on TDA3x SoC
for object classification, and the overall system performance
was 15fps. The majority of existing work (Ratnayake et al.
[15], Bako et al. [16], Nikitakis et al. [17], Chen et al. [18],
Arva et al. [19]) used only a single embedded device to
conduct video processing, which is obviously not capable
of fulfilling real-time video processing (24fps). Gao et al.
[20] built an embedded cluster for video processing, but it
lacked a complete solution to address system stability and
fault tolerance. Therefore, a powerful software/hardware
platform is needed to support efficient embedded deep
learning based real-time video processing.

We propose a streaming embedded cloud platform
(SECP) for real-time intelligent video processing using em-
bedded GPUs, supported by cloud computing. We apply
both NVIDIA Jetson TX1 and TX23 to build the streaming
embedded cloud platform for real-time video intelligent
processing. On SECP, Apache Storm4 is deployed as the
runtime environment for deep learning algorithms to pro-
vide parallel processing. In order to make services both
stable and fault-tolerant, some self-managing services are
designed to conduct sensing, detecting, and scheduling
functionalities, including a metric sensor, a bottleneck de-
tector, and a scheduler. The metric sensor collects metrics
from Storm to monitor the health status of the platform.
The bottleneck detector finds computing bottlenecks, and
the scheduler executes the decision to manage resources.

We conducted comprehensive evaluations of an SECP,
including on-line video processing based on deep learning,
capability to find bottlenecks, and ability to make reasonable
decisions when there are abnormal situations. The contribu-
tions for this paper include:

• A novel streaming embedded cloud platform-SECP
for real-time intelligent video processing is proposed

1. https://developer.apple.com/machine-learning/
2. http://www.nvidia.com/object/jetson-tk1-embedded-dev-

kit.html
3. https://developer.nvidia.com/embedded-computing
4. http://storm.apache.org

that combines the power of stream processing and
embedded GPUs’ parallel processing capabilities,
which can run deep neural networks efficiently.

• Self-managing services are designed to ensure SECP
fault-tolerance for continuous stream processing by
monitoring CPUs, GPUs and network throughput of
the platform.

• A scheduler service applies a video frame emitting
strategy to respond to faults or failures while mini-
mizing data loss.

The rest of this paper is organized as follows. Section 2
gives a detailed description of the proposed SECP platform
and its implementation. Section 3 evaluates the SECP. Sec-
tion 4 presents related work. Conclusion and future work
are given in section 5.

2 SECP PLATFORM OVERVIEW

The SECP platform aims to build a streaming embedded
cloud for intelligent real-time video processing, consisting
of hardware, deep learning algorithms, and a streaming
processing framework. In addition, self-managing services
with a monitor and a scheduler are designed to ensure
appropriate decisions on faults.

2.1 Hardware design of SECP

2.1.1 Embedded GPUs used in SECP

Deep neural networks are computing intensive for their
heavy floating point calculation, which can be accelerated
by GPUs. To ensure the performance of SECP, we use
commercial embedded GPUs. The NVIDIA Jetson is an
industry-leading embedded computing device, which cur-
rently has two versions: TX1 and TX2. Table 1 lists their
main properties related to our work.

TABLE 1: Jetson TX1 versus Jetson TX2

Jetson TX1 Jetson TX2

GPU
NVIDIA Maxwell
256 CUDA cores

NVIDIA Pascal
256 CUDA cores

CPU 64-bit A57 CPUs
64-bit Denver 2
and A57 CPUs

Memory 4GB 64-bit LPDDDR4 8GB 128-bit LPDDR4
Storage 16GB eMMC 32GB eMMC

Video Encode 4K×2K 30Hz 4K×2K 60Hz
Video Decode 4K×2K 60Hz 4K×2K 60Hz

Camera
1.4Gpix/s

1.5Gbps per lane
1.4Gpix/s

2.5Gbps per lane
Connectivity 1 Gigabit Ethernet, 802.11ac WLAN

2.2 SECP Hardware Design

We designed two platforms for each version of NVIDIA
Jetson device. A baseboard is designed for each platform
to integrate three modules: power supply, communication,
and computing. Then TX1 or TX2 GPUs can be plugged into
the baseboard.

The computing module consists of three interfaces for
each of the TX1/TX2 cores. The computing module enables
horizontal scaling, as its computing cores can be added and
removed arbitrarily according to computing demands. The
communication module uses a Gigabit Ethernet RTL8370



2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2894621, IEEE

Transactions on Cloud Computing

VOL. 13, NO. 9, MAR. 1, 2018 3

switching chip to achieve rapid communication between
computing cores. We also include a separate USB3.0 in-
terface and a HDMI interface for platform debugging pur-
poses.

2.3 Designing the SECP Software Components

2.3.1 Choosing Deep Learning Algorithms

The platform runs video object detection algorithms to
process real-time videos. We compare a set of algorithms
in terms of accuracy and speed running on an NVIDIA
TITAN X using the Visual Object Classification Challenge
2007 (VOC2007) dataset. The results are listed in Table 2.

TABLE 2: Performance of various algorithms

Name mAP (VOC2007) fps (TITAN X)
R-CNN [21] 66.0% 0.02
SPPNet [22] 63.1% 0.43

Fast R-CNN [23] 66.9% 3.13
Faster R-CNN [24] 73.2% 7

YOLO [25] 63.4% 45
YOLOv2 [26] 76.8% 67

Tiny YOLO [25] 57.1% 207
SSD300 [27] 74.3% 46
SSD500 [27] 76.8% 19

The R-CNN (Girshick et al. [21]) based object detec-
tion algorithms are very slow because they have complex
steps: 1) coarse-grained region proposal generation; 2) CNN
feature extraction and object detection; and 3) fine-grained
bounding box compression and regression. Although they
fused multiple stages together and avoided redundant com-
putations in later works [22], [23], [24], these algorithms are
too slow to fulfill real-time requirements.

SSD [27] can achieve both high accuracy and high speed
using an NVIDIA TITAN X GPU. Although the TITAN X’s
computing capacity exceeds that of NVIDIA Jetson, it is not
practical to reproduce such performance on an embedded
platform.

YOLO [25] considers object detection as a regression
problem to spatially separated bounding boxes and asso-
ciated class probabilities. A single neural network is used
to predict bounding boxes and class probabilities directly
from full images in one evaluation. This method achieves
both good accuracy and high speed so that it is suitable to
be transformed in an embedded platform. In the rest of the
paper, we build the object detection algorithms based on
YOLO v2.

2.3.2 Parallel GPU processing using the Storm framework

In order to overcome the limitations of a single embedded
GPU, in our work we built an embedded cloud to overcome
the computing capacity on embedded devices so that de-
vices can process videos in parallel. In such an embedded
cloud, each device is responsible for only one portion of the
video data partitioned over the SECP, and the final results
from different devices are merged.

We utilize a real-time stream processing framework
(Apache Storm) to design the parallel video processing
capabilities for SECP. The reason we chose Storm as the un-
derlying cloud computing infrastructure is that it can handle
an event with a sub-second latency, which is much faster

than other options like Spark Streaming5 which can incur a
second-order delay. A Storm job called topology consists of
spouts, bolts, tuples, streams and grouping specifications.

In the SECP, spouts receive data and emit it to other
computing nodes called bolts. First, a spout pulls video
stream from a camera. Then a spout coverts the video stream
to video frames. A spout also has a message queue to emit
the video frames to other bolts. Bolts are computing nodes.
Since the processing time varies between different video
frames, by default, every bolt receives the next video frame
upon the completion of the current video frame. Video
frames are emitted from the message queue to three bolts
randomly. Then the video frames are processed in parallel
by three bolts. Finally, to reconstruct the video correctly we
add time stamps to every frame in the message queue to
maintain their order in the video. All processing steps on
Storm are called Storm tasks.

Given this architecture, we built a video object detection
job as a Storm topology. We deploy the YOLO v2 as our
object detection algorithm on three bolts, and the three bolts
are deployed on three computing GPUs respectively. Finally,
the results are merged on the bolt in the third layer. Please
refer to Figure 2 which demonstrates how this works.

2.3.3 SECP Metric Sensor

To monitor the status of a video processing job, we designed
a metric sensor to collect status of Storm tasks. The collected
measurement data are stored for analysis and decision mak-
ing. We mainly consider the following metrics:

• Latency
Latency represents the delay between the starting
time from the video frame emitted from a spout, and
the ending time when the results are output. Latency
measures our platform’s video processing speed.

• Queue length
The length of message queue indicates if the video
data collection speed matches the video processing
speed. An empty queue indicates the processing
platform is idle and waiting for video data to be
collected, and a long queue shows the processing
platform is overwhelmed and cannot cope with the
current speed of the data collection. Both situations
require the platform to be tuned.

• CPU utility
CPU utility is the ratio of the CPU time consumed in
one task to its total time interval.

• GPU utility
Similarly, GPU utility is the ratio of the GPU time
consumed in one task to its total time interval.

• Traffic
Traffic measures the data bulk passing through the
topology in a given time period.

Storm provides APIs for accessing topology-level and
cluster-level metrics. Hardware level metrics (such as GPU
utility) are obtained by Jetson’s APIs. To develop a general
metric sensor, for all the metrics at different levels, we
designed an API model of the metric sensor as shown in
Figure 1.

5. http://spark.apache.org/streaming/



2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2894621, IEEE

Transactions on Cloud Computing

VOL. 13, NO. 9, MAR. 1, 2018 4

First, an interface called IMetric is defined for collecting
metrics, which is implemented by GPUMetric, CPUMet-
ric, and TrafficMetric. CPUMetric and TrafficMetric extend
BaseRichBolt and BaseRichSpout of Storm APIs respectively.
GPUMetric extends TegraStates of the NVIDIA Jetson APIs.
Second, we set TopologyMetricConsumer as the default
metric consumer to receive metric messages in a time in-
terval. It calls TopologyMetricEvent that composes Compo-
nentMetricEvent to get metrics. All the metrics are collected
in an interval of one second.

2.3.4 The Bottleneck Detector

The bottleneck detector detects abnormal events. A self-
learning detection algorithm is ideal, but not practical for
two reasons. First, the detection algorithm needs to be
light-weight. Second, the training data requires a significant
sample size with manual labels of abnormal events. This
prevents use of a supervised learning algorithm. Instead,
we adopted a simple statistical method.

We calculate the mean value for each metric by equation
(1).

MetricMeank =

∑T

i=1

Metric
t

k

MaxMetricV aluek

T
(1)

Where k represents the k-th metric and t is the time
point. We conduct normalization that divides each metric
by its theoretical max value to make sure each metric has
the same scale. T is the number of time interval and usually
set to 10, which can achieve quick and accurate response.
Another statistic method is variance calculated by equation
(2).

σ2

k =

∑T

i=1
(Metrict

k
−MetricMeank)

2

T
(2)

We set two thresholds, MeanThreshold = 0.9 and
V arianceThreshold = 0.0025 for the bottleneck detec-
tor. Only when MetricMeank > MeanThreshold and
σ2

k
< V arianceThreshold, we determine the kth metric is

facing a bottleneck. σ2

k
> V arianceThreshold represents

the cluster is not stable enough. The platform should make
suitable decisions according to the bottleneck detection re-
sults.

2.3.5 Task Scheduler

The scheduler acts as the decision executor that calls Storm
APIs to configure Storm parameters and adjusts the video
frame emitting strategy under the situation of a bottleneck.
The aim is to keep the SECP available with the least loss of
data.

Figure 2 shows an example. In part (a), a computing core
crashes causing a bolt to shut down. The video frames in the
spout message queue are blocked and the latency increases.

More seriously, if the blocked video frames keep ac-
cumulating in the message queue, the spout will end up
with an ‘out of memory’ exception. Although a defender is
designed to empty the memory by force when the message
queue is full, video frames are lost. In this situation, the
bottleneck detector identifies the abnormalities in memory,
GPU utility, and traffic, and the scheduler drops one frame

while emitting two frames, as shown in part (b). The idea of
this strategy is that continuous frames contain more infor-
mation than single frames, especially in an object detection
task.

The schedule scheme is described in Algorithm 1. The
video frames are divided into blocks of fixed length. If
the computing nodes are powerful enough to process the
video data, we do not need to drop any frames. But for the
situation of low computing capacity (e.g. some computing
nodes crash), as the length of message queue increases, the
number of dropped frames will go up. When the crashed
computing nodes recovered, the dropped frames will de-
crease. This scheme can guarantee that SECP can run stably
with the lowest data loss using dynamic adjustment of
dropped frames.

Algorithm 1 Schedule algorithm of SECP

Require:
CL: Current length of message queue
MaxL: Maximum length of message queue
MinL: Minimum length of message queue
Block = Bn: A block is a set of video frames
BL: Length of a block
df = 0 : Number of dropped frames

Ensure:
for all Bn ∈ Block do

if CL > MaxL and df < BL then
df+ = 1

end if
if CL < MinL and df > 0 then

df− = 1
end if
for t = 0 to t = df do

Bn.delete()
end for
for t = 0 to t = BL− df do

VIDEO PROCESS(Bn.pop())
end for

end for

2.4 SECP platform

The SECP platform is shown as a component diagram in
Figure 3. The metric sensor and scheduler depend on Storm
directly. The metric sensor calls Storm APIs to get each
task’s metrics and the scheduler calls Storm configuration to
configure it. The bottleneck detector reads metrics obtained
by the metric sensor and provides an interface for the sched-
uler to decide on which strategy is to be executed. Storm
calls camera APIs to pull video streams from the camera.
A video processing interface is designed for Storm to call
video processing algorithms such as image recognition and
object detection.

The SECP platform has multiple nodes with the same
computing capability and configuration, which means that
it is easy to make these nodes work in parallel. When there
is a video input, the platform first clips it into frames and
each frame is given a unique time stamp to facilitate the
final result merging process. We use fn to denote the video
frames where n is the time stamp. The clipped video frames



2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2894621, IEEE

Transactions on Cloud Computing

VOL. 13, NO. 9, MAR. 1, 2018 5

Storm.metric.api

Storm.topology.base

<<interface>>

IMetric

+incBy(...):void

+getValueAndReset():object

<<interface>>

IMetricsConsumer

+handleDataPoints(...):void

TopologyMetricsConsumerGPUMetric CPUMetric TrafficMetric

TopologyMetricEvent

ComponentMetricEvent

BaseRichBolt BaseRichSpout

NVIDIA.JetPack

TegraStates

Fig. 1: The API model of the metric sensors

Spout

Bolt

Bolt

Bolt

Bolt

Message queue Topology

(a)

(b)

Spout

Bolt

Bolt

Bolt

Bolt

Message queue Topology

Fig. 2: A sample of decision execution
(a): a computing core is crashed. (b): our strategy to emit video frames in

message queue. Red grids represents the blocked and dropped video frames,
and green grids represents the video frames that will be emitted to other nodes.

are put into a queue and all computing nodes retrieve
video frames from this queue in parallel. Because of a tiny
time difference between different frames caused by network
fluctuation or image complexity, there would be variance
between the input order and the output order. For example,

the input is f1, f2, f3 and the output is r2, r1, r3. The time
stamp will help to correct this problem to have a result of
r1, r2, r3.

The SECP platform is designed for running deep learn-
ing algorithms, such as YOLO. The main computing of
YOLO is convolutional computing, which occupies over
90% of the whole process. Therefore, accelerating convo-
lutional computing can speed the running up. According
to our former experiments [28], GPU is suitable for com-
putation intensive tasks, which motivate us to use GPU-
accelerated approach for improving the processing perfor-
mance. The computing intensive portion (e.g. convolutional
computing) can run a large number of GPU cores in parallel
using CUDA6. The Jetson TX1 module has 256 CUDA cores.
This is able to dramatically speed up computing applica-
tions. In addition, we installed a deep learning environment
and deployed YOLO on each module, and made each mod-
ule run independently but able to run in parallel to boost
performance.

We further show the relation of these components as
a package diagram in Figure 4. The monitor package con-
tains three sub-package and uses the streaming processing
framework (Storm) APIs to get metrics. The Storm stream
processing framework depends on two packages directly.
One is a video capture package that contains camera class
and pre-processing class such as resize, and uses HIKVI-
SION camera APIs to pull video stream. The second is the
video processing package, which provides an intelligent
processing interface and a traditional processing interface.
These two interfaces are implemented by deep learning

6. https://developer.nvidia.com/cuda-zone



2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2894621, IEEE

Transactions on Cloud Computing

VOL. 13, NO. 9, MAR. 1, 2018 6

Storm
Video 

processing

Camera

Metric 

sensor

Bottleneck 

detector

Schedulor

Object 

detection

Image 

recognition
···

Fig. 3: Component diagram of overall architecture

algorithms, such as image recognition, and conventional
algorithms such as canny edge detection. We have applied
a set of toolkits on the algorithms including darknet7 and
OpenCV8.

Figure 5 shows the deployment of the platform architec-
ture. The platform has three computing cores and a switch.
Each computing core has a GPU and a CPU cluster, on
which we arrange different types of software, as shown in
Table 3.

Supervisor3, Supervisor4 and Supervisor5 run object
detection algorithms, so they are deployed on GPUs on
three computing cores. Supervisor1, deployed on the second
computing Core’s CPU, merges results and stores them.
Supervisor2 and Monitor are deployed on the other two
computing core’s CPUs respectively. The video capture
node is an IP camera. All the nodes are connected with a
switch to swap data.

TABLE 3: Software deployment

Computing core1
CPU Supervisor2, Nimbus
GPU Supervisor3

Computing core2
CPU Supervisor1
GPU Supervisor4

Computing core3
CPU Monitor
GPU Supervisor5

3 EVALUATION

In this section, we evaluate the performance of two types
of SECPs built with Jetson TX1 and Jetson TX2. And we
focus mainly on testing the scalability and fault tolerance of
the platforms using YOLO V2. All the network models are
trained on NVIDIA TITAN X in advance. The video stream

7. https://pjreddie.com/darknet/
8. http://opencv.org/

is pulled from HIKVISION IP camera with a resolution of
1920×1080. The running environment is given in Table 4.

TABLE 4: Running environment

Software Version
Storm 1.1.1

ZooKeeper 3.4.9
OpenCV 3.1.0

JDK 1.8
JetPack 3.1
CUDA 5.5

3.1 Jetson TX1 platform

In this experiment, we used eight Jetson TX1 cores to con-
struct the platform. This is bigger than the proposed three
cores platform because we aimed to explore the scalability
and the bottleneck of the SECP. Three kinds of YOLOs with
different network scales were running on the platform. Table
5 shows the properties of three kinds of YOLOs.

TABLE 5: Properties of three kinds of YOLOs

Name Tiny Medium Large
Convolutional layer 9 15 24

Fully connected layer 3 3 3
Weight 172M 357M 1036M

Accuracy 57.1% 60.7% 63.4%

When the platform is started, all the computing cores
are started in standby mode. Every computing core has one
worker, which is in charge of running tasks. We add these
running workers gradually and the three YOLOs’ results
are shown in Table 6, Table 7 and Table 8 respectively. The
SECP platform in standby mode has a power consumption
of approximate 20W, which is the running cost of basic
system. Figure 6 shows the processing speed of three YO-
LOs. Obviously, it goes up continuously as the numbers of



2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2894621, IEEE

Transactions on Cloud Computing

VOL. 13, NO. 9, MAR. 1, 2018 7

Streaming 

processing 

framework

Video processing

Monitor

Metric 

Sensor

Bottleneck 

detector
Scheduler

<<use>>

<<import>>

<<import>>

Video capture

<<interface>>

Intelligent processing

-model:weight

+test():void

+launch():void

Deep learning

Image 

recognition

Object 

detection

<<interface>>

Traditional processing

+process():void

Conventional processing

Canny

-threshold1:double

-threshold2:double

···

OpenCV

<<import>>

Camera

-IP:string

+capture():void

Pre-processing

+resize():void

HIKVISION<<import>>

Darknet

<<import>>

Fig. 4: Package diagram of overall architecture

workers increase, and Tiny YOLO is much faster than the
other two YOLOs. We can also get the same conclusion from
Figure 7 and Figure 8. However, in these three figures, Tiny
YOLO changes more significantly than Medium YOLO and
Large YOLO, and Medium YOLO’s measurements are very
similar with Large YOLO’s. In addition, we found that the
GPU utility was near 100% when running Medium YOLO.
That is to say, this platform cannot run larger network mod-
els than Medium YOLO without latency. This experiment
demonstrates that the platform has a high scalability, and
that the bottleneck results from its computing capability.

3.2 Jetson TX2 platform

We applied three Jetson TX2 cores to construct SECP and
ran Tiny YOLO on it. TX2 supports five kinds of running
modes for various applications and we can configure it
using NVIDIA’s command tool called NVPModel. Table 9
lists the details of the configuration of five modes. This tool
does not support hot switching, so we have to configure the
platform before launching tasks. The results are shown in
Table 10

Figure 9 and Figure 10 show the performance of the
platform in five modes. Mode 0 had the highest processing
speed because of its highest GPU frequency, but it also
consumes the most energy, so its energy efficiency is not
high. Mode 1 is the most power-saving mode, but the speed
is a little bit low. Mode 3 has the highest energy efficiency
with relative high processing speed, which is the best choice.

Another experiment on the Jetson TX2 platform evalu-
ates fault tolerance using three time intervals. In the first 1-
10 minutes, the platform runs normally. At the 11th minute,
core2 is shut down manually to simulate an accident. This
condition lasts 10 minutes until the scheduler executes the
repair strategy described in section 2.3.3 at 21th minute. We

configured Jetson TX2 to work in mode 0 and run Tiny
YOLO on the SECP.

As shown in Table 11, in the first 10 minutes, the average
latency to process a frame is 86.5ms, which means three
cores can reach a processing speed of 35fps. When core2 is
shut down, the average latency increased to 102.0ms due
to decreased computing resources. After 10 minutes, the
scheduler executes the repair strategy, bringing the average
latency down to 75ms, but the SECP could process only 2/3
of the data of a normal situation.

We can analyze the changes of three cores by the four
metrics (message queue, CPU utility, GPU utility, latency)
that are shown in Figures 11, 12, 13 and 14 respectively.
For normal status, the platform’s processing speed is faster
than the video frame pulling speed (30fps), so the message
queue is empty. Core1 is the data transfer node which pulls
video stream from the camera, decodes it and emits video
frames to the other two cores’ GPUs as well as to its own
GPU, and these operations run on CPU. Therefore, core1’s
CPU utility is always the highest but its processing latency
is always the lowest. When core2 is shut down, all the tasks
including data swap, object detection, result merging etc.
on it are moved to core3, causing core3 to have both high
CPU utility and high GPU utility scores. In addition, core3’s
processing latency increases because two object detection
tasks are competing for core3’s computing resources. The
reduced computing capacity causes video frames to block
the message queue and the length of the queue would keep
increasing if nothing is done to fix it. At the 20th minute,
when the scheduler executes the repair strategy, all core2’s
previous tasks on core3 are killed and the message queue
is emptied. According to this strategy, the frame emitting
method will be adjusted to make the platform run smoothly.
Although the computing capacity became weaker due to the
(simulated) hardware fault, the SECP platform recovers to a



2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2894621, IEEE

Transactions on Cloud Computing

VOL. 13, NO. 9, MAR. 1, 2018 8

Deployment Diagram 

Nimbus

Switch

Supervisor3

Object 

detection
Decoding

Supervisor4

Object 

detection
Decoding

Supervisor5

Object 

detection
Decoding

Supervisor1

Result 

merging

Result 

storing

Supervisor2

Video 

preprocessing
Encoding

Monitor

Metric 

sensor

Bottleneck 

detector
Scheduler

Video capture

Camera

Fig. 5: Deployment diagram of overall architecture

TABLE 6: Performance of tiny YOLO on TX1 platform

Number of cores 0 1 2 3 4 5 6 7 8
Processing speed (fps) 0 11 23 34 45 57 67 79 90

Power consumption (W) 19.3 28.4 37.1 46.1 54.7 62.5 69.5 76.2 83.3
Network throughput (M/s) 0 6.81 12.99 19.16 24.74 30.47 35.63 39.64 45.17

TABLE 7: Performance of medium YOLO on TX1 platform

Number of cores 0 1 2 3 4 5 6 7 8
Processing speed (fps) 0 4 8 12 15 19 23 27 31

Power consumption (W) 20.5 30.0 39.9 50.2 61.2 71.7 83.8 94.7 104.8
Network throughput (M/s) 0 2.48 4.95 7.04 9.27 11.35 13.60 15.62 17.92

TABLE 8: Performance of large YOLO on TX1 platform

Number of cores 0 1 2 3 4 5 6 7 8
Processing speed (fps) 0 3 6 9 12 16 19 22 25

Power consumption (W) 21.0 30.5 40.5 50.8 61.9 73.3 84.9 96.0 107.3
Network throughput (M/s) 0 1.86 3.71 5.57 7.43 9.26 11.12 12.98 14.63

normal status.

In order to verify that TX1 and TX2 are efficient for object
recognition, the YOLO v2 Tiny network and the VOC 2007
data set are used to test and compare the performance of the
three platforms (including GTX Titan X). The specific results
are shown in the following Figure 15:

As can be seen from Figure 15, although the performance
of GTX TITAN X is very good, its single high energy con-
sumption is very unsuitable for low power scenarios. TX1
and TX2 are more energy efficient with the same accuracy
as GTX TITAN X, and TX2 is the best.

3.3 Discussion

In the experiment on the Jetson TX1 SECP, three kinds of
YOLOs have different number of convolutional layers but
the same number of fully connected layers. Because the
main calculation overhead in CNNs comes from convolu-
tion, we modified only the convolutional layers of the YO-
LOs. In the experiment on the Jetson TX2 SECP, an abnormal
status lasted 10 minutes until the scheduler executes repair
strategy. This is too long for practical applications, but this
was adopted on purpose for this experiment so that we
could observe the results clearly. In practical applications,



2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2894621, IEEE

Transactions on Cloud Computing

VOL. 13, NO. 9, MAR. 1, 2018 9

TABLE 9: NVPModel mode definition

Mode Mode name Denver2 Frequency ARM A57 Frequency GPU frequency
0 Max-N 2 2.0GHz 4 2.0GHz 1.30GHz
1 Max-Q 0 - 4 1.2GHz 0.85GHz
2 Max-P Core-All 2 1.4GHz 4 1.4GHz 1.12GHz
3 Max-P ARM 0 - 4 2.0GHz 1.12GHz
4 Max-P Denver 2 2.0GHz 0 - 1.12GHz

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

S
p

e
e

d
 (

fp
s

)

Number of cores

Tiny Medium Large

Fig. 6: Processing speed of three kinds of YOLOs

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8

P
o

w
e

r 
c

o
n

s
u

m
p

ti
o

n
 (

W
)

Number of cores

Tiny Medium Large

Fig. 7: Power consumption of three kinds of YOLOs

the scheduler can execute the strategy as soon as possible
(i.e., within 10 seconds). We designed two kinds of system
architectures for two main reasons: 1) we demonstrate the
generalization ability of the platform because two kinds of
platforms have the same software environment and both
of them can run stably; 2) the experiment results can give
some guidance in choosing a suitable platform in practical
applications, since TX2 based platform is stronger but TX1

TABLE 10: Performance of SECP in five modes

Mode 0 1 2 3 4
Power consumption (W) 25.0 18.2 21.5 21.9 20.8

Speed (fps) 35 28 32 33 26
Energy efficiency (fps/W) 1.39 1.52 1.47 1.52 1.23

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8

N
e

tw
o

rk
 t

h
ro

u
g

h
p

u
t 

(M
/s

)

Number of cores

Tiny Medium Large

Fig. 8: Network throughput of three kinds of YOLOs

0

5

10

15

20

25

30

35

40

0 1 2 3 4

P
o

w
e

r 
c

o
n

s
u

m
p

ti
o

n
 (

W
)

S
p

e
e

d
 (

fp
s

)

Modes

Power consumption(W) Speed(fps)

Fig. 9: Power consumption and speed in five modes

based platform is more economical.

In the SECP platform, only limited number of bolts is
used to process video (one bolt on each node), and all
these bolts are running in full capacity from our tests. Our
results show the performance - speed, power consumption
and network throughput - increases linearly with increasing
module number, and the SECP platform has no bottleneck
issue with 8 modules. Theoretically, the most likely cause
of bottleneck is the network bandwidth. The last single bolt

TABLE 11: Overall performance of fault tolerance

Time interval (min) 1-10 11-20 21-30
Latency (ms/frame) 86.5 102.0 75.0
Data amount (frame) 18080 17640 12060



2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2894621, IEEE

Transactions on Cloud Computing

VOL. 13, NO. 9, MAR. 1, 2018 10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4

E
n

e
rg

y
 e

ff
ic

ie
n

c
y

 (
fp

s
/W

)

Modes

Fig. 10: Five modes’ energy efficiency (fps/W)

0

100

200

300

400

500

600

700

800

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Le
n

th
 o

f 
m

e
s

s
a

g
e

 q
u

e
u

e
 (

fr
a

m
e

)

Time (minute)

Fig. 11: Length of message queue (frame)

0

5

10

15

20

25

30

35

40

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

C
P

U
 u

ti
li

ty
 (

%
)

Time (minute)

Core1 Core2 Core3

Fig. 12: CPU utility (%)

in the SECP is used to collect all the video frame informa-
tion to organize the recognition results in the chronological
order of the original video frames, where one single bolt
is enough. The amount of calculation in this single bolt is
very small (which takes much less than 1 ms). Therefore,
the last single bolt will not be a bottleneck. In the real-

0

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

G
P

U
 u

ti
li

ty
 (

%
)

Time (minute)

Core1 Core2 Core3

Fig. 13: GPU utility (%)

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

P
ro

c
e

s
s

in
g

 l
a

te
n

c
y

 (
m

s
)

Time (minute)

Core1 Core2 Core3

Fig. 14: Processing latency (ms)

Fig. 15: Comparing TX1, TX2 and GTX Titan X

world environment, SECP must determine the number of
bolts doing parallel processing during deployment. Usually,
we reserve a standby node for fault recovery. The SECP is
monitoring the status of worker nodes and will reassign the



2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2894621, IEEE

Transactions on Cloud Computing

VOL. 13, NO. 9, MAR. 1, 2018 11

task to the standby node if a node is down.
In this research, a scale-out approach could be the right

answer because we have many small nodes. In addition,
object detection is not a simple task. It needs lots of memory
and computation at each node. This redundant deployment
of neural network models may add cost in higher power
consumption, but it does not need to pass copies of the
data, which involves additional network serialization and
de-serialization.

There are various kinds of deep neural network architec-
tures, such as CNNs, Recurrent Neural Networks (RNNs),
and Deep Belief Networks (DBNs), and many kinds of input
data (e.g. video, audio and text), but they are all essentially
tensor calculation. In this work, we take object detection as
an example to evaluate the performance of the platform,
and the results show the platform can support CUDA well,
which means the SECP platform can support a large variety
of deep learning algorithms, and other computing intensive
applications that require the corresponding software (e.g.
CUDA). Our work shows that SECP can be a general plat-
form for AI applications.

4 RELATED WORK

There is considerable research about embedded platforms
for video processing. Ratnayake et al. [15] proposed a
resource and power optimized FPGA-based configurable
architecture for video object detection by integrating noise
estimation, Mixture-of-Gaussian background modeling, mo-
tion detection and thresholding. Their Virtex-5 FPGA-based
embedded platform achieved real-time processing of HD-
1080p video streams at 30fps. However, their work was
actually video background subtraction instead of object
detection like YOLO as we used. Our platform can not only
support conventional video processing algorithms such as
background subtraction, but also support complex deep
learning algorithms.

Bako et al. [16] presented an embedded implementation
of a hardware-efficient method for motion information ex-
traction from video signal, using an FPGA circuit-based sys-
tem for on-line Sobel edge detection and edge displacement-
based optical flow computation. The total execution time on
a Xilinx Spartan-6 FPGA was approximately 1.6ms. This re-
search only used a single embedded device to conduct Sobel
edge detection, which is much simpler than the intelligent
video processing like the object detection that we are doing.

Mao et al. [13] transferred and tailored deep neural
networks to embedded devices by using an embedded
Jetson TK1 CPU+GPU platform to conduct real-time object
detection. They paid much attention to improving Fast R-
CNN to accelerate the algorithm. However, the hardware
they used was too weak to support real-time object detection
and they did not use multiple TK1s to construct a platform
as we did, and so they achieved a performance of only 1.85
fps. Our SECP is both more powerful and more flexible
because it can not only run deep neural networks efficiently
but also has high scalability and fault tolerance, making it
suitable for practical applications.

Jagannathan et al. [14] introduced TI’s low power TDA3x
Soc which was based on a heterogeneous, scalable architec-
ture to detect objects from images. They used HOG features

and AdaBoost cascade classifier to detect objects, and CNN
to classify the detected objects. Compared with our work,
this research had two main drawbacks: 1) the object detec-
tion method was multi-step rather than end-to-end, and, 2)
their single computing core was not powerful. The overall
system performance was 15fps, but the input images were
very low resolution (32×32). Our platform can solve HD-
1080p video with the highest speed of 79 fps running on
three TX2s.

Gao et al. [20] proposed a scalable distributed object
detection framework based on an embedded manycore
cluster architecture. The basic object detection algorithm
was parallel process images by cascade classifier and local
binary pattern operator. The framework was implemented
on a Xilinx Zynq SoC and Adapteva Epiphany combined
heterogeneous manycore platform named Parallella. The ap-
plication of an embedded cluster made the object detection
algorithm run in parallel, providing 7.8 times speedup over
a dual-core ARM. However, they could only achieve 2 fps
when solving 1920×1080 resolution images. In addition,
they did not consider fault tolerance and stability of the
system as we have done in this paper.

There is also work that took advantage of cell phones
to build mobile clouds called Mobile Storm [29], in which
the work flow of a real-time stream processing job was
modeled, then decomposed into several tasks so that the job
can be executed concurrently and in a distributed manner
on multiple mobile devices. It was implemented on Android
phones and conducted on real-time HD video processing
applications. This work is very similar with ours as it
deployed Storm on embedded devices for real-time video
processing. In addition, it also has high scalability by adding
worker nodes. The results showed that the cluster with 5
nodes could handle a high resolution video stream at 19
fps. However, this cluster was evaluated using only face
detection.

Some work is targeting elastic management of cloud
resources. For example, Aljawarneh et al. [30] optimized the
performance of big spatial data queries on top of Apache
Spark, which also supported advanced management func-
tions including a self-adaptable load-balancing service to
self-tune framework execution. A comprehensive survey is
conducted for stream processing by Assuno et al. [31] for
achieving efficient resource management decisions based
on current load, especially for edge and cloud computing,
where our proposed SECP can serve as edge nodes. These
works motivate our design of the self-management services
in order to improve the reliability of SECP.

Kang et al. [32] proposed NOSCOPE targeting querying
large scale of videos. It can reduce the cost of neural network
video analysis by up to three orders of magnitude via an
inference-optimized model search. Its purpose is to scale
to thousands of hours of video, possibly from thousands
of data feeds, for the purposes of large-scale video classi-
fication, but real-time performance is not its target. It used
powerful GPUs to achieve good performance, which is not
possible for the embedded devices we are testing.

Han et al. [33] demonstrated that they can achieve even
higher accuracy while significantly reducing the compu-
tation and the size of models. However, this approach is
not flexible enough. Some domain specific models have



2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2894621, IEEE

Transactions on Cloud Computing

VOL. 13, NO. 9, MAR. 1, 2018 12

performed well and could be used directly on the proposed
platform. It is unwise to rewrite every model using a com-
pression way. We used a simple but effective method to
find bottlenecks of our SECP, which calculates the mean
and variance of each metric, rather than adopting complex
methods as the work by Zhang et al. [34] and Chen et
al. [35]. Because the Storm cluster is small, light-weight
algorithms are best for achieving energy efficiency.

5 CONCLUSIONS AND FUTURE WORK

Real-time video processing on embedded devices can be
applied to many domains, including drones and smart cars.
However, the limited resources of embedded devices make
this a big challenge. The existing work usually use a single
device without the support of cloud computing technolo-
gies. In this paper, we design a deep learning platform on
embedded devices using stream processing cloud comput-
ing, which is called streaming embedded cloud platform,
where NVIDIA Jetson TX1 and TX2 development boards are
used, and Apache Storm is deployed as cloud computing
environment for deep learning algorithms (Convolutional
Neural Networks) to process video streams. Some self-
managing services are designed to make sure the platform
can run smoothly and stably. When facing accidents such as
a computing core crash, a strategy can be executed to keep
the platform running continuously with the least data loss.

We have evaluated the SECP platform in terms of pro-
cessing speed, power consumption, and network through-
put by running different kinds of deep learning algorithms
for object detection. The results show the proposed platform
can meet the requirement of real-time video processing with
high scalability and fault tolerance, and is usable for running
deep learning algorithms on embedded devices to realize
real-time video processing.

In the future, we will pay more attention to video pro-
cessing algorithm modification rather than using existing al-
gorithms directly. We are considering designing algorithms
specifically for the platform in order to take full advantage
of computing resources to achieve higher speeds. Further-
more, it is advantageous that the SECP can communicate
with cloud servers, where more tasks and decisions can be
made.

ACKNOWLEDGMENTS

This research is supported by the Program on Innovation
Method Fund of China (Grant No. 2015010300), the Key Re-
search Program of Shandong Province (No. 2017GGX10140)
and also supported by Fundamental Research Funds for the
Central Universities.

REFERENCES

[1] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer, “Squeezenet: Alexnet-level accuracy with
50x fewer parameters and¡ 0.5 mb model size,” arXiv preprint
arXiv:1602.07360, 2016.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[3] C. D. Manning, “Computational linguistics and deep learning,”
Computational Linguistics, 2016.

[4] V. Kustikova and P. Druzhkov, “A survey of deep learning meth-
ods and software for image classification and object detection,”
OGRW2014, p. 5, 2014.

[5] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural
networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489,
2016.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Advances in
neural information processing systems, 2012, pp. 1097–1105.

[7] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[8] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 1–9.

[9] L. Zhu, S. Tan, W. Zhang, Y. Wang, and X. Xu, “Validation of
pervasive cloud task migration with colored petri net,” Tsinghua
Science and Technology, vol. 21, no. 1, pp. 89–101, 2016.

[10] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1,” arXiv preprint
arXiv:1602.02830, 2016.

[11] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-
net: Imagenet classification using binary convolutional neural
networks,” in European Conference on Computer Vision. Springer,
2016, pp. 525–542.

[12] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,”
arXiv preprint arXiv:1704.04861, 2017.

[13] H. Mao, S. Yao, T. Tang, B. Li, J. Yao, and Y. Wang, “Towards real-
time object detection on embedded systems,” IEEE Transactions on
Emerging Topics in Computing, 2016.

[14] S. Jagannathan, K. Desappan, P. Swami, M. Mathew, S. Nagori,
K. Chitnis, Y. Marathe, D. Poddar, and S. Narayanan, “Efficient ob-
ject detection and classification on low power embedded systems,”
in Consumer Electronics (ICCE), 2017 IEEE International Conference
on. IEEE, 2017, pp. 233–234.

[15] K. Ratnayake and A. Amer, “Embedded architecture for noise-
adaptive video object detection using parameter-compressed
background modeling,” Journal of Real-Time Image Processing,
vol. 13, no. 2, pp. 397–414, 2017.

[16] L. Bako, S. Hajdu, S.-T. Brassai, F. Morgan, and C. Enachescu, “Em-
bedded implementation of a real-time motion estimation method
in video sequences,” Procedia Technology, vol. 22, pp. 897–904, 2016.

[17] A. Nikitakis, S. Papaioannou, and I. Papaefstathiou, “A novel
low-power embedded object recognition system working at multi-
frames per second,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 12, no. 1s, p. 33, 2013.

[18] X. Chen, W. Li-Feng, and M. Qing-Lei, “A video sensing oriented
format-compliant entropy coding encryption scheme and embed-
ded video processing system,” DEStech Transactions on Computer
Science and Engineering, no. aice-ncs, 2016.

[19] G. Arva and T. Fryza, “Embedded video processing on raspberry
pi,” in Radioelektronika (RADIOELEKTRONIKA), 2017 27th Interna-
tional Conference. IEEE, 2017, pp. 1–4.

[20] F. Gao, Z. Huang, S. Wang, and X. Ji, “A scalable object detec-
tion framework based on embedded manycore cluster,” in Cyber-
Enabled Distributed Computing and Knowledge Discovery (CyberC),
2016 International Conference on. IEEE, 2016, pp. 142–145.

[21] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Region-based
convolutional networks for accurate object detection and segmen-
tation,” IEEE transactions on pattern analysis and machine intelligence,
vol. 38, no. 1, pp. 142–158, 2016.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in
deep convolutional networks for visual recognition,” in European
Conference on Computer Vision. Springer, 2014, pp. 346–361.

[23] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440–1448.

[24] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” in Advances
in neural information processing systems, 2015, pp. 91–99.

[25] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only
look once: Unified, real-time object detection,” in Proceedings of the



2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2894621, IEEE

Transactions on Cloud Computing

VOL. 13, NO. 9, MAR. 1, 2018 13

IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 779–788.

[26] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,”
arXiv preprint arXiv:1612.08242, 2016.

[27] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu,
and A. C. Berg, “Ssd: Single shot multibox detector,” in European
conference on computer vision. Springer, 2016, pp. 21–37.

[28] W. Zhang, P. Duan, W. Gong, Q. Lu, and S. Yang, “A load-aware
pluggable cloud framework for real-time video processing,” IEEE
Trans. Industrial Informatics, vol. 12, no. 6, pp. 2166–2176, 2016.
[Online]. Available: https://doi.org/10.1109/TII.2016.2560802

[29] Q. Ning, C.-A. Chen, R. Stoleru, and C. Chen, “Mobile storm:
Distributed real-time stream processing for mobile clouds,” in
Cloud Networking (CloudNet), 2015 IEEE 4th International Conference
on. IEEE, 2015, pp. 139–145.

[30] I. M. Aljawarneh, P. Bellavista, A. Corradi, R. Montanari,
L. Foschini, and A. Zanotti, “Efficient spark-based framework
for big geospatial data query processing and analysis,” in 2017
IEEE Symposium on Computers and Communications, ISCC 2017,
Heraklion, Greece, July 3-6, 2017, 2017, pp. 851–856. [Online].
Available: https://doi.org/10.1109/ISCC.2017.8024633

[31] M. D. de Assuno, A. da Silva Veith, and R. Buyya, “Distributed
data stream processing and edge computing: A survey on resource
elasticity and future directions,” Journal of Network and Computer
Applications, vol. 103, pp. 1 – 17, 2018. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S1084804517303971

[32] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia,
“Noscope: Optimizing neural network queries over video
at scale,” Proc. VLDB Endow., vol. 10, no. 11, pp. 1586–
1597, Aug. 2017. [Online]. Available: https://doi.org/10.14778/
3137628.3137664

[33] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and
huffman coding,” arXiv preprint arXiv:1510.00149, 2015.

[34] W. Zhang, P. Duan, L. T. Yang, F. Xia, Z. Li, Q. Lu, W. Gong, and
S. Yang, “Resource requests prediction in the cloud computing
environment with a deep belief network,” Software: Practice and
Experience, vol. 47, no. 3, pp. 473–488, 2017.

[35] S. Chen, M. Ghorbani, Y. Wang, P. Bogdan, and M. Pedram, “Trace-
based analysis and prediction of cloud computing user behav-
ior using the fractal modeling technique,” in Big Data (BigData
Congress), 2014 IEEE International Congress on. IEEE, 2014, pp.
733–739.

PLACE
PHOTO
HERE

Weishan Zhang Weishan Zhang is a full pro-
fessor, deputy head for research of Department
of Software Engineering, China University of
Petroleum. He got PhD from Northwestern Poly-
technical University, China in 2001. His current
research interests are big data platforms, perva-
sive cloud computing, and service oriented com-
puting. Weishan has published over 100 papers
and his current H-index according to Google
scholar is 16.

Dehai Zhao Dehai Zhao has obtained master degree at China Univer-
sity of Petroleum, majoring in software engineering. Now he is studying
at Australian National University for Ph.D. His main research interests
include deep learning, software engineering and big data processing,
and he has published over 10 papers in these fields.

Haoyun Sun Haoyun Sun is a master student working on big data pro-
cessing, computer vision, and software engineering. He has published
two papers in these areas.

Yi Guo Yi Guo is a master student working on big data processing
platforms, and software engineering. She has published two papers in
these areas.

PLACE
PHOTO
HERE

Xin Liu Xin Liu is an associate professor at
College of Computer and Communication En-
gineering, China University of Petroleum, Qing-
dao, China. She received her PhD from Nankai
University, China in 2012. Her research interests
include social networks, data mining, big data
processing.

Jiehan Zhou Jiehan Zhou is currently a senior researcher in University
of Oulu. He got his PhD in computer engineering from University of Oulu,
Finland and PhD in Manufacturing Automation from Huazhong Univer-
sity of Science and Technology, China. His current research interests
are big data platforms, Internet of Things, pervasive cloud computing,
He has published over 100 papers.

Su Yang Su Yang is a professor with Dept. of Computer Science and
Engineering, Fudan University. His research interests are mainly pattern
recognition, social computing, machine vision, and data mining. He
is the PI of a number of NSFC projects including “Graphical Symbol
recognition in natural scenes” and “Detection of abnormal collective
behaviors via movement and communication pattern analysis”.

PLACE
PHOTO
HERE

Huansheng Ning Huansheng Ning received a
B.S. degree from Anhui University in 1996 and
Ph.D. degree in Beihang University in 2001.
Now, he is a professor and vice dean of School
of Computer and Communication Engineering,
University of Science and Technology Beijing,
China. His current research focuses on Internet
of Things, cyber-physical modeling. He is the
founder of Cyberspace and Cybermatics and
Cyberspace International Science and Technol-
ogy Cooperation Base. He serves as an asso-

ciate editor of IEEE System Journal. He gained the IEEE Computer
Society Meritorious Service Award in 2013, IEEE Computer Society
Golden Core Award in 2014.


