
Journal of Telecommunications Systems manuscript No.
(will be inserted by the editor)

A streaming flow-based technique for traffic classification
applied to 12+1 years of Internet traffic

Valent́ın Carela-Español · Pere Barlet-Ros · Albert Bifet · Kensuke

Fukuda

Received: date / Accepted: date

Abstract The continuous evolution of Internet traffic

and its applications makes the classification of network

traffic a topic far from being completely solved. An es-

sential problem in this field is that most of proposed

techniques in the literature are based on a static view

of the network traffic (i.e. they build a model or a set

of patterns from a static, invariable dataset). However,

very little work has addressed the practical limitations

that arise when facing a more realistic scenario with an

infinite, continuously evolving stream of network traf-

fic flows. In this paper, we propose a streaming flow-

based classification solution based on Hoeffding Adap-

tive Tree, a machine learning technique specifically de-

signed for evolving data streams. The main novelty of

our proposal is that it is able to automatically adapt

to the continuous evolution of the network traffic with-
out storing any traffic data. We apply our solution to
a 12+1 year-long dataset from a transit link in Japan,
and show that it can sustain a very high accuracy over

the years, with significantly less cost and complexity

than existing alternatives based on static learning algo-

rithms, such as C4.5.

Valent́ın Carela-Español (B)
UPC BarcelonaTech, Barcelona, Spain
Tel.: +34 934017182
Fax: +34 934017055
E-mail: vcarela@ac.upc.edu

Pere Barlet-Ros
UPC BarcelonaTech, Barcelona, Spain
E-mail: pbarlet@ac.upc.edu

Albert Bifet
HUAWEI Noah’s Ark Lab, Hong Kong
E-mail: bifet.albert@huawei.com

Kensuke Fukuda
National Institute of Informatics (NII), Tokyo, Japan
E-mail: kensuke@nii.ac.jp

Keywords Traffic Classification · Machine Learning ·

Stream Classification · Hoeffding Adaptive Tree ·

Network Monitoring

1 Introduction

Napster, Edonkey, BitTorrent, Megaupload, Facebook

or YouTube are just a few examples of popular appli-

cations that suddenly emerged or disappeared from the

network, changing significantly the shape of Internet

traffic. The Internet is a quickly and continuously evolv-

ing ecosystem, which makes the task of traffic classifica-

tion more challenging year after year. As a consequence,

the research community has thrown itself into the so-

lution of this problem, but as pointed out in [1], this

problem is still far from being completely solved.

State-of-the-art proposals for traffic classification are

usually based on Deep Packet Inspection (DPI) or Ma-

chine Learning (ML) techniques [2–9]. These techniques

extract in an offline phase a set of patterns, rules or

models that capture a static view of a particular net-

work and moment of time from a training dataset. This

output is later used to classify the traffic of this partic-
ular network online. Although all these proposals theo-
retically achieve very good results in terms of accuracy,

their application has not been as prolific as expected.

This is arguably explained by the fact that these solu-

tions do not address several practical issues that arise

when they are deployed in real operational scenarios.

One of this unadressed issues is that these techniques

should be adapted not only to the particular scenario

where they are deployed, but also to the continuous

changes in the network traffic mix. This adaptation

involves a complex and costly training process, which

montse aragues
Texto escrito a máquina
The final publication is available at Springer via http://link.springer.com/article/10.1007%2Fs11235-015-0114-6

2 Valent́ın Carela-Español et al.

must be performed periodically and usually requires hu-

man intervention.
On the contrary, this paper proposes a flow-based

network traffic classification solution that can automat-

ically adapt to the continuous changes in the network

traffic. We introduce for the first time the use of Ho-

effding Adaptive Tree (HAT) for traffic classification.

In contrast to previous solutions that rely on static
datasets, this technique addresses the classification prob-
lem from a more realistic point of view, by considering

the network traffic as an evolving, infinite data stream.

This technique has very appealing features for network

traffic classification, including the following [10,11]:

– It processes a flow at a time and inspects it only once

(in a single pass), so it is not necessary to store any

traffic data.

– It uses a limited amount of memory that can be

configured to fit a pre-defined memory budget, in-

dependent of the length of the data stream, which

is considered infinite.

– It works in a limited and small amount of time. The

decision phase is lightweight enough to be used for

online classification (see Section 6.3).

– It is ready to predict at any time, so the model
is continuously updated and ready to classify with
an accuracy comparable to batch machine learning

techniques (see Section 6.2 and 6.5)

Our solution also has some interesting features that

simplify its deployment in operational networks com-

pared to other alternatives based on DPI or ML tech-

niques [12]. The main problem with DPI-based tech-

niques is that they rely on very powerful and expensive

hardware to deal with nowadays traffic loads, which

must be installed in every single link to obtain a full

coverage of a network. Similarly, traditional ML-based

techniques for traffic classification require access to in-

dividual packets, which involves the use of optical split-

ters or the configuration of span ports in switches. In

contrast, our solution works at the flow level and is

compatible with NetFlow v5, a widely extended proto-

col developed by Cisco to export IP flow information

from network devices [13], which has already been de-
ployed in most routers and switches. Although our so-

lution uses NetFlow v5 as input, it can easily work with

other similar exporting protocols (e.g., J-Flow, sFlow,

IPFIX).

In order to present sound conclusions about the
quality, simplicity and accuracy of our proposal we eval-

uate our traffic classification solution with the entire

MAWI dataset [14], a unique publicly available dataset

that covers a period of 13 years. The MAWI dataset

consists of daily collected traces from a transit link in

Japan since 2001. To the best of our knowledge, this is

the first work that deals with such amount of real traffic

data for traffic classification. Our results show that our

solution for traffic classification is able to automatically

adapt to the changes in the traffic over the years, while

sustaining very high accuracies. We show that our tech-

nique is not only as accurate as other state-of-the-art

techniques when dealing with evolving traffic, but it is

also less complex and easy to maintain and deploy in

operational networks.

The rest of this paper is organized as follows. The

related work is briefly presented in Section 2. The pro-
posed classification technique based on Hoeffding Adap-

tive Tree is described in Section 3. The methodology

and the MAWI dataset used for the evaluation of our

technique is presented in Section 4. Section 5 analyzes
the impact of different configuration parameters of HAT

when used for network traffic classification. Section 6

evaluates our solution based on HAT with the MAWI

dataset and compares it with the decision tree C4.5 [15],

a widely used supervised learning technique. Finally,

Section 7 concludes the paper.

2 Related Work

Machine learning techniques for evolving data streams
have been widely used in many fields during the last
years [10, 16]. However, their application in the field of

network traffic classification has been minimal despite

of their appealing features. To the best of our knowl-

edge just two works have applied similar techniques in

this field. Tian et al. in [17,18] presented an evaluation

of a tailor-made technique oriented to evolving data
streams. They compared it with different ML batch
techniques from the literature (i.e., C4.5, BayesNet,

Naive Bayes and Multilayer Perceptron). The results

obtained are aligned with our results, however the dataset

used was very limited for the evaluation of a stream

data technique (i.e., 2 000 instances per application).

Raahemi et al. introduced in [19] the use of Concept-
adapting Very Fast Decision Tree [20] for network traffic

classification. This technique, closely related to HAT,

achieves high accuracy. However, the study focused only

on the differentiation of P2P and non-P2P traffic. The

dataset was labeled using a port-based technique with

the problems of reliability it implies [9, 21, 22]. Unlike

these previous works, our solution is based on a more re-
liable labeling technique [2,3,7,8] and is evaluated with

a comprehensive dataset with evolving data streams

(i.e., 13 years of traffic, 4 billions of flows). We also per-

form a complete study of HAT in order to understand

the impact of its different parameters on the classifica-

tion of network traffic.

A streaming flow-based technique for traffic classification applied to 12+1 years of Internet traffic 3

The problems that arise when a technique is de-

ployed in an actual scenario have been scarcely studied
in the literature. To the best of our knowledge, only
our previous work [12] has addressed the problem of

automatically updating the classification models with-

out human intervention. In contrast, the features of this

new proposal considerably reduce the requirements of

[12]. Although it also needs a small sample of labeled
traffic to keep the model updated, no traffic data is

stored nor periodically retrainings are performed. These

novel features make our proposal a solution very easy

to maintain and deploy in operational networks.

3 Classification of evolving network data

streams

We propose a flow based traffic classification technique

for evolving data streams based on Hoeffding Adaptive

Tree. This technique has very interesting features for

network traffic classification, and addresses the classi-

fication problem from a more realistic point of view,

because it considers the network traffic as a stream of

data instead of as a static dataset. This way, we bet-

ter represent the actual streaming-nature of the net-

work traffic and address some practical problems that

arise when these techniques are deployed in operational

networks. We describe our proposal to classify network

traffic streams in this section. We first present the orig-

inal Hoeffding Tree (HT) technique oriented to data

streams and then we briefly describe the adaptation

to deal with evolving data streams, called Hoeffding
Adaptive Tree (HAT). Finally, we present the traffic
attributes selected to perform the classification of the
network traffic.

3.1 Hoeffding Tree

Hoeffding Tree (HT) is a decision tree-based technique

oriented to data streams originally introduced by Hul-

ten et al. in [20]. As already mentioned, stream-oriented

techniques have many appealing features for network

traffic classification: (i) they process an example at a

time and inspect it only once (i.e., they process the

input data in a single pass), (ii) they use a limited

amount of memory independent of the length of the

data stream, which is considered infinite, (iii) they work

in a limited amount of time, and (iv) they are ready

to predict at any time. However, these features con-

siderably complicate the induction of the classification

model. ML batch techniques (e.g., C4.5, Naive Bayes)

are usually performed over static datasets, and there-

fore, they have access to the whole training data to

build the model as many times as needed. On the con-

trary, models resulting from stream-oriented techniques
should be inducted incrementally from the data they
process just once and on-the-fly. Therefore, the tech-

nique cannot store any data related to the training,

which makes the decision-making a critical task.

As already mentioned, HT induces a model in the

form of a decision tree. The process of induction starts

with a single node, named root, that is recursively split

in more nodes creating different branches. The last nodes

of the branches are named leaves and contain the class

prediction. A key operation in the induction of a de-

cision tree is to decide when to split a node in new

branches. Batch techniques have access to all the data

in order to perform this operation and decide the most

discriminating attribute in each node. On the contrary,

stream-oriented techniques do not have access to all
the data because the input data is processed in a single
pass. To address this problem, HT uses the Hoeffding

bound [23] in order to incrementally induce the deci-

sion tree. Briefly, this bound guarantees that the differ-

ence of discriminating power between the best attribute

and the second best attribute in a node can be well es-

timated if enough instances are processed. The more
instances it processes the smaller is the error to decide
whether a node should be split. The method to compute

this discriminating power, which depends on the split

criteria (e.g., Information Gain), as well as other HT

parameters are later studied in Sec. 5. A detailed de-
scription of the Hoeffding Tree technique can be found

in [20].

3.2 Hoeffding Adaptive Tree

Hoeffding Tree allows the induction of a classification

model according to the requirements of a data stream

scenario. However, an important characteristic of the

Internet is that the stream of data continually changes

over time (i.e., it evolves). Batch models should be pe-

riodically retrained in order to adapt the classification

model to the variations of the network traffic, which is a

complex and very costly task [12]. Hoeffding Adaptive

Tree (HAT), proposed in [24], solves this problem by

implementing the Adaptive Sliding Window (ADWIN).

This sliding window technique is able to detect changes

in the stream (i.e., concept drift) and provide estima-

tors of some important parameters of the input distri-

bution using data saved in a limited and fixed amount

of memory, which is independent of the total size of the

data stream. The main characteristic of the ADWIN

technique is that the size of the sliding window is not

fixed, but it is continuously recomputed online based

4 Valent́ın Carela-Español et al.

on the rate of change observed in the data. The inter-

ested reader is referred to [25] for more details on how
ADWIN is implemented.

3.3 Inputs of our system

The implementation of our system can indistinctly re-

ceive two different types of instances: labeled and un-

labeled flows. Depending on the type of instance, our

solution will perform a classification (if the flow is not

labeled) or a training operation (if it is labeled). The

classification process labels a new unknown flow using

the HAT model. The input of the classification process

consists of a set of 16 flow features that can be directly

obtained from NetFlow v5 data: source and destination

port, protocol, ToS, # packets, # bytes, TCP flags,
average packet size, flow time, flow rate and flow inter-
arrival time. The choice of features is based on our pre-

vious work in [12]. Although it makes the classification

more challenging, the use of standard Netflow v5 data

considerably decreases the cost of deployment and com-

putation requirements of the solution, given that the

input is already provided directly by the routers.

The other type of instances our solution can receive

are the retraining flows. These flows will be labeled by
an external tool, as will be described later. In order to
automatically update the model, our technique should

receive training flows with the same set of 16 features

used by the classification process together with the la-

bel associated to them. Unlike batch techniques, the re-

training process is performed incrementally, which al-

lows the model to be ready to classify at any time.

Therefore, our solution can indistinctly deal with a mix

of instances and operate with them according to their

type (i.e., classification or retraining flows). The best

ratio between classification and retraining instances de-

pends on the scenario to be monitored. However, as

shown in [12], a very small ratio of retraining instances

(e.g., less than 1/400) is sufficient to keep a high ac-
curacy along time. This labeling process can be per-

formed with several techniques, including DPI, given
that only a small sample of the traffic needs to be la-
beled, and therefore it is computationally lightweight.
For instance, a common example would be the deploy-

ment of our solution in a network with several routers

exporting NetFlow v5 data. The labeling of the train-

ing flows could be done with NBAR2 [26], using a small

sample of the traffic from only one the routers. NBAR2

is a DPI-based technique implemented in the last ver-

sions of the CISCO IOS. Otherwise, activating NBAR2

in all the routers and with all the traffic is usually not

possible, given the high computational cost and impact

it would have on their performance. Another alterna-

tive is the use of the methodology presented in [12].

This consists of a small sample of data with full pay-
load, which is labeled using an external DPI tool. This

is the solution used in the evaluation presented in Sec. 6.

4 Methodology

This section describes the methodology used to evaluate

the performance of our proposal. First, the tool used for

the evaluation is presented and then, the dataset used

as ground-truth for the evaluation is described.

4.1 MOA: Massive Analysis Online

Massive Online Analysis (MOA) [11] is a Java open
source software for data stream mining. Unlike its well-

known predecessor WEKA [27], MOA is oriented to

the evaluation and implementation of machine learn-

ing techniques for data streams. It is specially designed

to compare the performance of stream oriented tech-

niques in streaming scenarios. MOA implements the

HAT technique with a set of configuration parameters.
In addition, it allows the use of batch techniques imple-
mented in WEKA, which simplifies the comparison of
traditional batch ML techniques like the decision tree

C4.5.

MOA implements different benchmark settings to
evaluate stream techniques. For our evaluation, we chose

Evaluate Interleaved Chunks among the different op-

tions available in MOA. Interleaved Chunks uses all

the instances dividing the stream in chunks (i.e., set

of instances). Every chunk is used first for testing (i.e.,

evaluation of the classification accuracy) and then for
training (i.e., the induction of the model).

We believe that this evaluation is the most represen-

tative because it uses the complete dataset (i.e., stream)
for both testing and training. However, similar conclu-

sions are drawn with other evaluations methods. In our
evaluation we first use the default configuration of their
parameters to simplify its comparison. We then study

the impact of the chunk size (i.e., number of instances

in each chunk) on its performance.

4.2 The MAWI Dataset

In order to obtain representative results for the eval-

uation of stream oriented techniques we need datasets
that are long enough to capture the evolution of In-
ternet traffic over time. We use the publicly available

MAWI dataset [14] to perform the evaluation because

A streaming flow-based technique for traffic classification applied to 12+1 years of Internet traffic 5

it has unique characteristics to study stream oriented

techniques for network traffic classification. The MAWI

dataset consists of 15-minutes traces daily collected in

a transit link since 2001 (i.e., 13 years). Although it is

a static dataset, its long duration and amount of data

makes it the perfect candidate for the evaluation of our

technique. Furthermore, its duration allows us to study

the ability of HAT to automatically adapt to the evo-
lution of the traffic.

To set the ground-truth of the MAWI dataset we

used a DPI technique. The packets in the private ver-
sion of this dataset are truncated after 96-bytes, which
considerably limits the amount of information available

for the DPI techniques. Because of this constraint we
rely our ground-truth labeling on Libprotoident [2]. The

most important feature of Libprotoident is that its pat-

terns are found just in the first 4 bytes of payload of

each direction of the traffic. Unexpectedly, that data is

enough to achieve very high accuracy classification as

shown in [2, 3]. However, the MAWI dataset is char-

acterized to have asymmetric traffic that can reduce

the effectiveness of the Libprotoident. We performed a

sanitization process and focused on the TCP and UDP

traffic from the MAWI dataset. Table 1 presents the

top ten applications by flow along the thirteen years
once the sanitization is applied. Also, we performed the
evaluation of HAT with unidirectional flows, this way

we are able to better classify the asymmetric traffic.

After the labeling and the sanitization process, the

MAWI dataset consists of almost 4 billions of unidirec-

tional labeled flows. To the best of our knowledge this

is the first paper in the network traffic classification

field that deals with this large amount of data, which is

necessary to extract sound conclusions from our evalu-

ation.

5 Hoeffding Adaptive Tree Parametrization

In this section, we study the parametrization of Ho-

effding Adaptive Tree for network traffic classification.

As described in Section 4 we use MOA and the MAWI

dataset to perform the evaluation. Since this is the first

work to use Hoeffding Adaptive Tree for network traf-

fic classification the configuration of the different pa-

rameters of HAT and their impact on network traffic
classification remain unknown. Because of this, we next
present a complete study of the impact of the different

parameters of HAT when applied to network traffic.

We have studied a total of ten parameters implemented

in MOA for HAT: numeric estimator, grace period, tie
threshold, split criteria, leaf prediction, stop memory

management, binary splits, remove poor attributes, no

preprune, and split confidence. To obtain a final config-

uration, we begin the parametrization using the default

values in MOA. Then, after the evaluation of each pa-

rameter, the best option is selected and used in the rest

of the evaluation. In this section we chose 40 million of

instances to perform the evaluation. We split them in

four different dates to ensure the representativeness of

the results, more exactly we have selected the first 10

million of instances from October 2001, January 2004,

July 2008 and March 2011. We perform a specific ex-

periment for each date and then compute the average

of them to present the results. After the parametriza-

tion Section 6 presents an evaluation with the com-
plete MAWI dataset. We briefly describe each parame-

ter, however, we refer the interested reader to [24] for a

detailed explanation.

Two main metrics are used in this evaluation in or-

der to show that HAT can be as accurate as batch tech-

niques but using less resources. Accuracy is the first

metric used and it measures the classification quality
of the models. This metric is computed by dividing the

total amount of correctly classified instances by the to-
tal amount of instances classified. Cost is the second

metric used and it evaluates the amount of memory and
computation time used by the models. The cost metric

is computed by multiplying the amount of RAM mem-

ory (Gb) and the amount of CPU time (hours) used by

the models.

5.1 Numeric Estimator

An important issue of ML techniques oriented to data

streams is how they deal with numeric attributes. Un-
like most batch ML techniques (e.g., C4.5, Naive Bayes),
the techniques for data streams can only pass one time

over the data. Because of that, the discretization of

the features (i.e., numeric attributes are transformed

into discrete attributes) is a more difficult task. MOA

implements 4 different numeric estimators for classifi-

cation using HAT: Exhaustive Binary Tree, Very Fast
Machine Learning (VFML), Gauss Approximation (i.e.,
default one) and Quantile Summaries (i.e., Greenwald-

Khanna). Figure 1 (top) presents the performance re-

sults of this criteria. We tested different values for each

numeric estimator, however, we studied more values of

the VFML numeric estimator given its better results.

These values correspond to the number of bins used
for discretization of the numeric attributes. Gauss Ap-
proximation as much as Greenwald-Khanna obtain very

poor results. The best numeric estimators in our sce-

nario are VFML and the Exhaustive Binary Tree (BT).

More specifically, VFML 1 000 and the Exhaustive Bi-

nary Tree are the most accurate. The good performance

6 Valent́ın Carela-Español et al.

Table 1: Top 10 Applications by Flow in the MAWI Dataset

Year Top 1 Top 2 Top 3 Top 4 Top 5

2001 HTTP (49.44%) DNS (42.11%) DEMONWARE (3.27%) SMTP (2.37%) FTP (0.52%)

2002 HTTP (41.30%) DNS (37.75%) OPASERV (11.81%) DEMONWARE (4.16%) SMTP (1.79%)

2003 HTTP (30.22%) DNS (22.55%) OPASERV (22.46%) SQL EXPLOIT (19.47%) SMTP (1.87%)

2004 HTTP (38.77%) DNS (26.45%) SQL EXPLOIT (12.11%) OPASERV (10.46%) SMTP (3.40%)

2005 HTTP (31.02%) DNS (30.80%) SQL EXPLOIT (13.85%) SKYPE (8.09%) MSN (3.91%)

2006 DNS (33.34%) HTTP (31.51%) SQL EXPLOIT (11.43%) SKYPE (6.28%) BITTORRENT (4.39%)

2007 DNS (50.42%) HTTP (31.61%) BITTORRENT (3.82%) SKYPE (3.37%) SMTP (2.81%)

2008 DNS (50.82%) HTTP (26.52%) BITTORRENT (5.27%) SKYPE (4.13%) SQL EXPLOIT (3.86%)

2009 DNS (44.31%) HTTP (22.04%) BITTORRENT (20.50%) SKYPE (4.27%) GNUTELLA (2.74%)

2010 DNS (48.67%) HTTP (26.75%) BITTORRENT (9.82%) TEREDO (4.29%) SKYPE (3.76%)

2011 DNS (39.91%) HTTP (29.55%) BITTORRENT (13.48%) SKYPE (5.48%) TEREDO (4.30%)

2012 DNS (44.93%) HTTP (31.30%) BITTORRENT (11.11%) TEREDO (4.17%) SKYPE (2.12%)

2013 DNS (54.87%) HTTP (26.78%) BITTORRENT (6.33%) NTP (5.16%) SIP (1.27%)

Year Top 6 Top 7 Top 8 Top 9 Top 10

2001 NETBIOS (0.43%) GNUTELLA (0.37%) CALL OF DUTY (0.28%) HALF LIFE (0.22%) IRC (0.19%)

2002 EMULE (0.62%) FTP (0.48%) GNUTELLA (0.43%) MSN (0.23%) IRC (0.21%)

2003 EMULE (1.22%) FTP (0.27%) NORTON (0.23%) GNUTELLA (0.2%) MSN (0.18%)

2004 MSN (2.74%) SKYPE (1.76%) NETBIOS (1.07%) GNUTELLA (0.51%) FTP (0.30%)

2005 OPASERV (3.11%) SMTP (2.41%) BITTORRENT (2.10%) TDS (1.21%) SMB (0.42%)

2006 SMTP (2.66%) OPASERV (1.73%) MSN (1.66%) PPLIVE (1.60%) SMB (0.58%)

2007 SQL EXPLOIT (2.74%) SSH (1.67%) MSN (0.84%) FTP (0.37%) EMULE (0.34%)

2008 SMTP (3.39%) SSH (2.04%) MSN (1.61%) QQ (0.26%) ORBIT (0.24%)

2009 SQL EXPLOIT (1.40%) SMTP (1.7%) SSH (0.83%) EMULE (0.76%) PPSTREAM (0.32%)

2010 SSH (1.89%) SMTP (1.17%) SQL EXPLOIT (0.68%) SIP (0.48%) NTP (0.41%)

2011 NTP (2.30%) SSH (1.01%) SMTP (0.59) EMULE (0.58%) SIP (0.43%)

2012 SSH (1.50%) NTP (1.31%) SIP (0.56%) SMTP (0.44%) CANON BJNP (0.36%)

2013 SKYPE (1.18%) SSH (1.11%) PANDO (0.93%) SMTP (0.47%) CANON BJNP (0.33%)

obtained by VFML can be related to the properties of

the features used for the classification (i.e, NetFlow v5

features).

Apart from the accuracy, another important feature

to take into account is the overhead every option im-
plies. Note that this technique should work online and

deal with a huge amount of data in a limited amount
of time. Because of this, it is important to keep the so-
lution as lightweight as possible while keeping a high

accuracy. Figure 1 (bottom) presents the model cost of

each numeric estimator in our evaluation. Greenwald-

Khanna, Gauss Approximation, and VFML 10 and 100

are hidden behind VFML 1 000. The huge difference of

load between the three most accurate techniques makes
the VFML 1 000 the best numeric estimator for our sce-
nario.

5.2 Grace Period

The next parameter studied is the grace period. This pa-

rameter configures how often (i.e., how many instances

between computations) the values in the leafs of HAT

are computed. This computation is performed in order

to decide if a further split is necessary. This computa-

tion is considerably costly and the impact of each in-

stance in the result of this computation is small. There-

fore, it is reasonable to perform this computation peri-

odically instead of repeating it for each instance. High

values would reduce the cost of the technique but slow

down the growth of the tree, thus decreasing its accu-

racy in theory. Figure 2 (top) presents the impact of

different grace values on the accuracy of the technique.

At first glance there are no huge differences between
the different values. As expected the lowest value is ini-
tially getting the best results since it is extracting the

knowledge by quickly splitting the leaves. However, we

are dealing with a data stream and making a decision

with few instances can sometimes produce inaccuracies

in the future. In Fig. 2 (top) the most accurate grace

periods are 1 000 and 200 (i.e., default one).
The negligible impact of this parameter on the ac-

curacy can be related to the nature of the traffic mix in

our dataset. However, the importance of this parameter

is its ability to decrease the overhead of the technique

without decreasing significantly its accuracy. Figure 2

(bottom) presents how the different values of the grace
period affects to the cost of the technique. We decided
to use 1 000 as grace period giving it is the best trade-off

between accuracy and load.

5.3 Tie Threshold

A well-known parameter from decision tree techniques
is the tie threshold. Sometimes two or more attributes in

a leaf cannot be separated because they have identical
values. If those attributes are the best option for split-

ting the node the decision would be postponed until

they differ and this can decrease the accuracy. Figure 3

(top) presents the accuracy obtained with different val-

ues of the tie threshold parameter. The most accurate
value is 1, closely followed by 0.5 and 0.25.

In order to decide between the most accurate tie

thresholds we rely on the cost of the model they pro-

duce. Figure 3 (bottom) shows that 0.25, and 1 are the

A streaming flow-based technique for traffic classification applied to 12+1 years of Internet traffic 7

0.0 0.2 0.4 0.6 0.8 1.0
Flows 1e7

0

20

40

60

80

100

%
Ac

cu
ra

cy

VFML 10
VFML 100
VFML 1000
VFML 10000
BT
GREEN (10,100)
GAUSS (10,100)

Evaluate Interleaved Chunks HAT

0.0 0.2 0.4 0.6 0.8 1.0
Flows 1e7

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Co
st

 (G
b

pe
r h

ou
r)

VFML 10
VFML 100
VFML 1000
VFML 10000
BT
GREEN (10,100)
GAUSS (10,100)

Evaluate Interleaved Chunks HAT

Fig. 1: Impact of the Numeric Estimator parameter

best options among the three more accurate values. We

decided to use 1 as tie threshold because, unexpect-

edly, although initially it achieves similar performance

to 0.25, the final cost follows a lower inclination.

5.4 Split Criteria

As mentioned before, the grace period indicates when

to compute the necessary values to decide if a node

should be split. This computation refers to the split

criteria. This parameter decides when an attribute is

enough discriminative to split a node. There are two

approaches implemented in MOA: Information Gain

and Gini. Figure 4 (top) presents the accuracy obtained

with the Gini split criteria and different values of the

Information Gain. These values correspond to the min-

imum fraction of weight required to down at least two

branches. The performance of the Gini option is con-

siderably poor in our scenario. Regarding the different

0.0 0.2 0.4 0.6 0.8 1.0
Flows 1e7

0

20

40

60

80

100

%
Ac

cu
ra

cy

Grace 5000
Grace 2000
Grace 1000
Grace 200
Grace 50

Evaluate Interleaved Chunks HAT

0.0 0.2 0.4 0.6 0.8 1.0
Flows 1e7

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
Co

st
 (G

b
pe

r h
ou

r)
Grace 5000
Grace 2000
Grace 1000
Grace 200
Grace 50

Evaluate Interleaved Chunks HAT

Fig. 2: Impact of the Grace Period parameter

values of the Information Gain, the values 0.001, 0.01

and 0.1 achieve the highest accuracies.

Figure 4 (bottom) shows how the cost of technique

is impacted by the different split criteria. We decided

to use the Information Gain value 0.001 because it is

the lightest among the most accurate.

5.5 Leaf Prediction

An important feature of HAT is that, since the model

is continuously being updated, it is always ready to

classify. The next parameter is related to this classi-

fication and describes how HAT performs the classifi-

cation decision at leaf nodes. MOA implements three

different approaches: Majority Class, Naive Bayes and

Naive Bayes Adaptive. The Majority Class approach

consists of assigning the most frequent label in that

leaf. Apart from the most frequent label in a leaf, we

have much information related to the instance (i.e., at-

8 Valent́ın Carela-Español et al.

0.0 0.2 0.4 0.6 0.8 1.0
Flows 1e7

0

20

40

60

80

100

%
Ac

cu
ra

cy

tie 1
tie 0.5
tie 0.25
tie 0.1
tie 0.05
tie 0.001

Evaluate Interleaved Chunks HAT

0.0 0.2 0.4 0.6 0.8 1.0
Flows 1e7

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Co
st

 (G
b

pe
r h

ou
r)

tie 1
tie 0.5
tie 0.25
tie 0.1
tie 0.05
tie 0.001

Evaluate Interleaved Chunks HAT

Fig. 3: Impact of the Tie Threshold parameter

tributes). The Naive Bayes approach tries to use this

extra information to make a more accurate prediction.

This approach computes the probability an instance be-

longs to the different possible labels from a leaf based
on its attributes. The most probable label is the one as-
signed. However, this technique can reduce the accuracy

depending on the scenario. The Naive Bayes Adaptive

approach tries to take advantage of both approaches

by combining them. It computes the error rate of the

Majority Class and Naive Bayes in every leaf, and use

for future predictions the approach that has been more

accurate so far. Figure 5 (top) presents the accuracy

obtained with the different approaches. Unexpectedly,

the Naive Bayes approach obtains very poor results. As

described in [28], the experimental implementation in

MOA does not change the memory management strat-

egy when Naive Bayes is enabled and this can impact

on its performance. On the other hand, the Majority

0.0 0.2 0.4 0.6 0.8 1.0
Flows 1e7

0

20

40

60

80

100

%
Ac

cu
ra

cy

InfoGain 0.001
InfoGain 0.01
InfoGain 0.1
InfoGain 0.25
InfoGain 0.5
Gini

Evaluate Interleaved Chunks HAT

0.0 0.2 0.4 0.6 0.8 1.0
Flows 1e7

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
Co

st
 (G

b
pe

r h
ou

r)
InfoGain 0.001
InfoGain 0.01
InfoGain 0.1
InfoGain 0.25
InfoGain 0.5
Gini

Evaluate Interleaved Chunks HAT

Fig. 4: Impact of the Split Criteria parameter

Class and the Naive Bayes Adaptive approaches obtain

similar high accuracies.

Figure 5 (bottom) shows how the different approaches

impact on the solution in terms of model cost. Tak-

ing into account these results we decided to use Major-

ity Class as the leaf prediction technique. Apart from

having a lower cost, while achieving similar high ac-

curacy, the Majority Class approach is not affected by

other parameters. Approaches based on Naive Bayes

can decrease its accuracy if parameters like removing

poor attributes or stopping memory management are

activated. The negligible impact of the Naive Bayes ap-

proach on the accuracy can be result of the traffic mix

and the features used for the classification (i.e, NetFlow
v5 features).

A streaming flow-based technique for traffic classification applied to 12+1 years of Internet traffic 9

0.0 0.2 0.4 0.6 0.8 1.0
Flows 1e7

0

20

40

60

80

100

%
Ac

cu
ra

cy

Majority Class
Naive Bayes
Naive Bayes Adaptive

Evaluate Interleaved Chunks HAT

0.0 0.2 0.4 0.6 0.8 1.0
Flows 1e7

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Co
st

 (G
b

pe
r h

ou
r)

Majority Class
Naive Bayes
Naive Bayes Adaptive

Evaluate Interleaved Chunks HAT

Fig. 5: Impact of the Leaf Prediction parameter

5.6 Other Parameters

So far, the parameters studied have substantially im-

pacted the accuracy or cost of HAT. However, we have

also evaluated some parameters with marginal impact.
This is the case of the Stop Memory Management pa-

rameter. When this parameter is activated HAT stops

growing as soon as the memory limit is reached. How-

ever, it seems that the default value of the memory

limit in MOA is never reached or this parameter is not

implemented for the HAT technique. The Binary Split

parameter, describing if the splits of a node have to be
binaries or not, has also a marginal impact. We truly
believe that this result is directly related to our sce-

nario characteristics. All our attributes are numerically

and hence all the splits performed are almost always bi-

nary splits. The last parameter studied with marginal

impact is the Remove Poor Attributes parameter. This

feature removes attributes in the leafs whose initial val-

Table 2: HAT parametrization

Parameter Value

Numeric Estimator VFML with 1 000 bins

Grace Period 1 000 instances (i.e., flows)

Tie Threshold 1

Split Criteria Information Gain with 0.001
as minimum fraction of weight

Leaf Prediction Majority Class

Stop Memory Management Activated

Binary Splits Activated

Remove Poor Attributes Activated

ues indicate their uselessness for the splitting decision.

In our scenario, these parameters have not impacted

on the accuracy of HAT. However, a marginal improve-

ment has been observed in terms of cost. Thus, we also

activated them in the final configuration.

We have also studied the parameters No PrePrune

and Split Confidence and no differences have been ob-

served. As a result, none of them are activated in our

final configuration.

Finally, similarly to other ML-based techniques, HAT

can be used in ensembles techniques. MOA implements

several ensembles methods (e.g., bagging, boosting) that

basically combine several models to improve the final

accuracy. However, this improvement comes with a higher

computational cost. Given that we already achieve a

very high accuracy with the current configuration we

dismissed the use of ensembles techniques in our sce-

nario.

Table 2 presents the final configuration of the pa-

rameters obtained in this section. We use this config-

uration for the evaluation of the HAT technique for

network traffic classification.

6 Hoeffding Adaptive Tree Evaluation

Once the best configuration is selected we compare the

HAT technique with a well-known technique from the

literature. The goal of this comparison is to show that

our solution can be as accurate as batch-oriented tech-
niques, but with the appealing features of those oriented
to streams. As mentioned in Sec. 1, batch techniques are

usually built from a static dataset and do not address

the ever-changing nature of the Internet traffic [29] or

rely on complex custom-made solutions [12]. However,
our solution can automatically adapt to changing traffic

conditions without storing any data and being always
ready to classify. For this comparison, we chose the J48
technique as a representative example of batch-oriented

techniques, which is an open source version of the C4.5

decision tree implemented in WEKA. We selected this

technique because it has been widely used for network

traffic classification [5,6,12,29], achieving very good re-

sults when compared with other techniques [4, 30].

10 Valent́ın Carela-Español et al.

 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Time

0

20

40

60

80

100

%
Ac

cu
ra

cy

HAT
J48

Single Training Evaluation

Fig. 6: Single training configuration

6.1 Single Training Evaluation

Usually ML-based network traffic classification solu-
tions presented in the literature are evaluated from a

static point of view using limited datasets. The first
evaluation performed pretends to show the temporal
obsolescence of the models produced with static datasets [12,

29]. To achieve this goal we performed an evaluation

applying just an initial training with 3 million of flows

in 2001 for the complete classification of the 13 years

of traffic of the MAWI dataset. The accuracy of both

techniques is substantially degraded in this evaluation

showing that the models should be periodically updated

to adapt to the changes in the traffic. The deep drops

in the accuracy are related to new applications that

are not present in the initial training dataset. The in-

crement of accuracy during the last years of the eval-

uation is due to the change of the traffic mix in the

MAWI dataset. As showed in Table 1, there is an in-
crement of traditional applications (i.e., DNS, HTTP

and NTP) and a decrease of novel applications (i.e.,

BitTorrent and Skype) during those years. Giving that

this evaluation is performed from a static point of view,

HAT is not able to make use of its interesting features

for streams.

6.2 Interleaved Chunk Evaluation

The second experiment consists of an Interleaved Chunk

evaluation with the default evaluation method of MOA.

That is, a stream-based evaluation where the 4 000 mil-
lion of flows from the 13 years of the MAWI dataset are
segmented in chunks of 1 000 instances that are first

used to classify and later to train. Figure 7 presents the

results regarding this evaluation. Our solution achieves

 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Flows

0

20

40

60

80

100

%
Ac

cu
ra

cy

HAT
J48

Interleaved Chunks Evaluation

Fig. 7: Interleaved Chunk evaluation with default con-

figuration

considerably better results than the J48 batch tech-

nique. This can be easily explained by the fact that

this evaluation methodology is oriented to evaluate in-

crementally inducted techniques. The J48 batch tech-

nique creates a new decision tree from scratch with ev-

ery chunk of 1 000 instances forgetting all the previous

knowledge extracted. In contrast, our solution updates

the classification model with the new information but

considering also all the information extracted so far,

which results in a more robust classification model.

6.3 Chunk Size Evaluation

As shown in the previous experiment, J48 is signifi-

cantly less accurate than HAT with the default stream-
based evaluation. However, that difference seems mainly
because of the small chunk size that produces very poor
J48 trees. In order to address this problem, we next

study the impact of the chunk size on both techniques.

We evaluate six different chunk sizes (i.e., 1, 100, 1 000,

10 000, 100 000, 1 000 000 flows) in the Interleaved

Chunk evaluation. Given the large number of execu-
tions involved, we decided to use a sample of more than

4 million of flows of the MAWI dataset in this experi-

ment. Figure 8 shows the accuracy of both techniques

for each chunk size. Given that HAT builds its tree
incrementally, it is barely affected by the chunk size,
achieving always a very high accuracy. Unlike HAT,

J48 is substantially impacted by the chunk size. As ex-

pected, the small values of the chunk size (i.e., 1, 100,

1 000) produce inaccurate J48 trees. Only the high-

est chunk sizes (i.e., 100 000 and 1 000 000) are able

to achieve similar accuracies to the HAT technique.

A streaming flow-based technique for traffic classification applied to 12+1 years of Internet traffic 11

100 101 102 103 104 105 106

Chunk Size

0

20

40

60

80

100

%
Ac

cu
ra

cy

HAT
J48

Interleaved Chunks by Chunk Size

Fig. 8: Accuracy by chunk size

Moreover, large chunk sizes imply the storage of large
amounts of traffic as we will discuss next.

As important as the accuracy is the cost of the tech-

niques. The J48 decision tree, as a batch technique,
needs to store first the data of each chunk to contin-
uously build the model from scratch, which results in

huge memory requirements. Figure 9 presents the cost

(i.e., Gb per hour) by flow in log scale directly obtained

from MOA. For clarity, only the extremes values (i.e.,

1, 1 000 000) and the default value (1 000) are plot.

The rest of values follow a similar behavior as the 1 000

chunk size. Initially, all the sizes have a high cost per

flow, especially the smallest and the highest chunk sizes

(i.e., 1 and 1 000 000). The cost quickly decreases af-

ter the initial peak. However, it decreases differently for

both techniques. After the initial peak, the cost of J48

remains more or less constant along time. The cost for

J48 among the different chunk sizes is similar but the

highest chunk size (i.e., 1 000 000), being more than five

times higher. In contrast, the cost of HAT rapidly de-
creases to very low values. Even with the highest chunk
size it is able to decrease the cost similarly to the lowest
values of the J48 technique. The constant cost of J48 is

related to the cost of the training of each model for each

chunk. Unlike J48, the model of HAT is incrementally

built. Once it is consistent (i.e., around 2 million in our

evaluation) only small modifications are applied in the
model for every chunk.

To better show the differences in the cost of both
techniques, Figure 10 presents the accumulated cost of

both techniques by chunk size. The growth of the cost

by the HAT technique is almost plain after 2 million of

flows. On the other hand, J48 has a continuous growth

along time. It is important to note that this evaluation

is done with a static dataset of 4 million. However, the

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Flows 1e7

10-11

10-10

10-9

10-8

Co
st

 (G
b

pe
r h

ou
r)

/#
 F

lo
w

s

Cost by Flow
HAT_1000000
HAT_1000
HAT_1
J48_1000000
J48_1000
J48_1

Interleaved Chunks by Chunk Size

Fig. 9: Cost by chunk size

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Flows 1e7

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Co

st
 (G

b
pe

r h
ou

r)
/#

 F
lo

w
s

Accumulated Cost
HAT_1000000
HAT_1000
HAT_1
J48_1000000
J48_1000
J48_1

Interleaved Chunks by Chunk Size

Fig. 10: Accumulated cost by chunk size

difference of cost between both techniques would con-
siderably increase in an infinite stream-based scenario

(e.g., network traffic classification).
In summary, in a stream-based scenario the HAT

technique is usually more accurate than J48. Only when

high chunk sizes are used J48 is able to be as accurate as

the HAT technique. Furthermore, HAT consumes less

resources than the J48 decision tree, especially when

those high chunk sizes (i.e., 100 000 and 1 000 000) are

used to increase the accuracy of J48.

6.4 Periodic Training Evaluation

In order to compare our results with other retraining

proposals from the literature, we modified the original

idea of the Interleaved Chunk evaluation by following

the configuration proposed in [12]. The new evaluation

consists of the use of chunks of 500 000 instances for

12 Valent́ın Carela-Español et al.

 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Time

0

20

40

60

80

100

%
Ac

cu
ra

cy

HAT
J48 [12]

Periodic Training Evaluation

Fig. 11: Interleaved Chunk comparison with [12] config-

uration

training and 500 000 000 for testing, using the last seen
chunk to train the next group. This evaluation repre-
sents the scenario presented in Section 3.3, where a sam-

ple of the traffic is labeled by a DPI-based technique to

retrain the model, while it is used to classify all the

traffic. Therefore, with the exception of the first chunk,

the complete MAWI dataset is classified. We selected

500 000 as chunk size derived from the results obtained

in [12]. However, in [12] the retrained decision is based

on a threshold accuracy while, in our evaluation, due

to software constraints, it is based on the amount of

instances processed (i.e., 500 000 000). Although the

evaluation has been changed, the operation to compute

the accuracy is maintained to make the comparison pos-

sible. Figure 11 presents the results of this evaluation.
The accuracy of the J48 technique has been improved

significantly. However, the stable accuracy seen in the

previous evaluation has changed to a more volatile one.

This is because the initial configuration is continuously

retrained and quickly adapting itself to the changes in

the traffic. The results suggest that in this particular

dataset, the retraining should be performed more often

in order to adapt faster to the changes in the traffic

with the related cost it would produce. Note however
that the choice of the chunk size for HAT is quite irrel-
evant as shown in Section 6.3

6.5 External evaluation

So far, we presented the parametrization and evalua-
tion of the HAT technique with the MAWI traffic. The
results show that the HAT technique is, at least, as

accurate as a state-of-the-art technique, such as C4.5

(i.e., J48 in MOA) but with considerably less costs. In

0 1 2 3 4 5 6
Flows 1e7

0

20

40

60

80

100

%
Ac

cu
ra

cy

HAT
J48

Interleaved Chunks Evaluation

Fig. 12: Interleaved Chunk evaluation with CESCA

dataset

order to show these results are not only related to the
MAWI dataset, we next evaluate the performance of
the HAT technique with a different dataset. We used

the CESCA dataset used in [12] to compare the perfor-

mance of HAT and J48 and make easier the comparison

between both works. The CESCA dataset is a fourteen-

days packet trace collected on February 2011 in the

10-Gigabit access link of the Anella Cient́ıfica, which

connects the Catalan Research and Education Network

with the Spanish Research and Education Network. A

1/400 flow sampling rate was applied accounting for

a total of 65 million of labeled flows. We use the de-

fault configuration of the Interleaved Chunk evaluation

and the parametrization obtained in Section 5 for the

HAT configuration. Although possible tuning could be
applied to this specific scenario, we show that the con-
figuration obtained in Section 5 seems suitable for other

scenarios. Figure 12 shows that, similar to Fig. 7, the

HAT technique is more accurate than J48 in a stream-

based scenario. The smaller differences in terms of ac-

curacy with the CESCA dataset can be related to a less

heterogeneous traffic mix and a shorter dataset (i.e., 14

days vs 13 years).

7 Conclusions

In this paper we propose a new stream-based classifi-

cation solution based on Hoeffding Adaptive Tree. This

technique has very appealing features for network traf-

fic classification: (i) processes an instance at a time and
inspects it only once, (ii) uses a predefined amount of

memory, (iii) works in a bounded amount of time and

(iv) is ready to predict at any time. Furthermore, our

technique is able to automatically adapt to the changes

A streaming flow-based technique for traffic classification applied to 12+1 years of Internet traffic 13

of the traffic with just a small sample of labeled data,

making our solution very easy to maintain. As a result,

we are able to accurately classify the traffic using only

Netflow v5 data, which is already provided by most

routers at no cost, making our solution very easy to

deploy.

We evaluate our technique using the publicly avail-

able MAWI dataset, 4 000 millions of flows from 15-

minutes traces daily collected in a transit link in Japan

since 2001 (13 years). We first evaluate the impact of

the different parameters on the HAT technique when

used for traffic classification and then compare it with
one of the state-of-the-art techniques most commonly
used in the literature (i.e., C4.5).

The results show that our technique is an excellent

solution for network traffic classification. It is not only
more accurate than traditional batch-based techniques,
but it also sustains this very high accuracy over the

years with less cost. Furthermore, our technique does

not require complex, ad-hoc retraining systems to keep

the system updated, which facilitates its deployment

and maintenance in operational networks.

Acknowledgements This research was funded by the NII
International Internship Program, by the Spanish Ministry
of Economy and Competitiveness under contract TEC2011-
27474 (NOMADS project) and by AGAUR (ref. 2014-SGR-
1427).

References

1. Dainotti, A., Pescapè, A., Claffy, K.C.: Issues and fu-
ture directions in traffic classification. IEEE Network
26(1), 35–40 (2012). URL http://dx.doi.org/10.1109/

MNET.2012.6135854

2. Alcock, S. and Nelson, R.: Libprotoident: Traffic Classi-
fication Using Lightweight Packet Inspection. Tech. rep.,
University of Waikato (2012). [Online]. Available: http:
//www.wand.net.nz/publications/lpireport, as of June
22, 2015

3. Carela-Español, V., Bujlow, T., Barlet-Ros, P.: Is our
ground-truth for traffic classification reliable? In: Pro-
ceedings of the 15th International Conference on Pas-
sive and Active Network Measurement, PAM’14, pp. 98–
108. Springer (2014). URL http://dx.doi.org/10.1007/

978-3-319-04918-2_10

4. Lim, Y.s., Kim, H.c., Jeong, J., Kim, C.k., Kwon, T.T.,
Choi, Y.: Internet traffic classification demystified: On
the sources of the discriminative power. In: Proceedings
of the 6th International COnference, Co-NEXT ’10, pp.
9:1–9:12. ACM, New York, NY, USA (2010). URL http:

//doi.acm.org/10.1145/1921168.1921180

5. Nguyen, T.T., Armitage, G.: A survey of techniques
for internet traffic classification using machine learn-
ing. Commun. Surveys Tuts. 10(4), 56–76 (2008). URL
http://dx.doi.org/10.1109/SURV.2008.080406

6. Carela-Español, V., Barlet-Ros, P., Cabellos-Aparicio,
A., Solé-Pareta, J.: Analysis of the impact of sampling on
netflow traffic classification. Computer Networks 55(5),

1083–1099 (2011). URL http://dx.doi.org/10.1016/j.

comnet.2010.11.002

7. Alcock, Shane and Nelson, Richard: Measuring the Ac-
curacy of Open-Source Payload-Based Traffic Classifiers
Using Popular Internet Applications. In: IEEE 38th
Conference on Local Computer Networks Workshops
(LCN Workshop on Network Measurements), pp. 956–
963 (2013). URL http://dx.doi.org/10.1109/LCNW.2013.

6758538

8. Bujlow, T., Carela-Espaol, V., Barlet-Ros, P.: Indepen-
dent comparison of popular dpi tools for traffic classifi-
cation. Computer Networks (76), 75–89 (2015). URL
http://dx.doi.org/10.1016/j.comnet.2014.11.001

9. de Donato, W., Pescape, A., Dainotti, A.: Traffic iden-
tification engine: an open platform for traffic classifica-
tion. Network, IEEE 28(2), 56–64 (2014). URL http:

//dx.doi.org/10.1109/MNET.2014.6786614

10. Gama, J.a., Sebastião, R., Rodrigues, P.P.: Issues in
evaluation of stream learning algorithms. In: Proceed-
ings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’09,
pp. 329–338. ACM, New York, NY, USA (2009). URL
http://doi.acm.org/10.1145/1557019.1557060

11. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: Moa:
Massive online analysis. Journal of Machine Learning
Research 11, 1601–1604 (2010). URL http://www.jmlr.

org/proceedings/papers/v11/bifet10a.html

12. Carela-Español, V., Barlet-Ros, P., Mula-Valls, O., Sole-
Pareta, J.: An automatic traffic classification system for
network operation and management. Journal of Net-
work and Systems Management (2013). URL http://

link.springer.com/article/10.1007/s10922-013-9293-1

13. Cisco IOS NetFlow: [Online]. Available: http://

www.cisco.com/c/en/us/products/ios-nx-os-software/

ios-netflow/index.html, as of June 22, 2015
14. MAWI Working Group Traffic Archive: [Online]. Avail-

able: http://mawi.wide.ad.jp/mawi/, as of June 22, 2015
15. Quinlan, J.: C4. 5: Programs for Machine Learning. Mor-

gan Kaufmann (1993)
16. Gama, J.: A survey on learning from data streams: cur-

rent and future trends. Progress in Artificial Intelli-
gence 1(1), 45–55 (2012). URL http://link.springer.

com/article/10.1007/s13748-011-0002-6

17. Tian, X., Sun, Q., Huang, X., Ma, Y.: Dynamic online
traffic classification using data stream mining. In: Pro-
ceedings of the 2008 International Conference on Multi-
Media and Information Technology, MMIT ’08, pp. 104–
107. IEEE Computer Society, Washington, DC, USA
(2008). URL http://dx.doi.org/10.1109/MMIT.2008.185

18. Tian, X., Sun, Q., Huang, X., Ma, Y.: A dynamic online
traffic classification methodology based on data stream
mining. In: Proceedings of the 2009 WRI World Congress
on Computer Science and Information Engineering - Vol-
ume 01, CSIE ’09, pp. 298–302. IEEE Computer Society,
Washington, DC, USA (2009). URL http://dx.doi.org/

10.1109/CSIE.2009.904

19. Raahemi, B., Zhong, W., Liu, J.: Peer-to-peer traffic iden-
tification by mining ip layer data streams using concept-
adapting very fast decision tree. In: Proceedings of the
2008 20th IEEE International Conference on Tools with
Artificial Intelligence - Volume 01, ICTAI ’08, pp. 525–
532. IEEE Computer Society, Washington, DC, USA
(2008). URL http://dx.doi.org/10.1109/ICTAI.2008.12

20. Hulten, G., Spencer, L., Domingos, P.: Mining time-
changing data streams. In: Proceedings of the Seventh
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’01, pp. 97–106. ACM,

http://dx.doi.org/10.1109/MNET.2012.6135854
http://dx.doi.org/10.1109/MNET.2012.6135854
http://www.wand.net.nz/publications/lpireport
http://www.wand.net.nz/publications/lpireport
http://dx.doi.org/10.1007/978-3-319-04918-2_10
http://dx.doi.org/10.1007/978-3-319-04918-2_10
http://doi.acm.org/10.1145/1921168.1921180
http://doi.acm.org/10.1145/1921168.1921180
http://dx.doi.org/10.1109/SURV.2008.080406
http://dx.doi.org/10.1016/j.comnet.2010.11.002
http://dx.doi.org/10.1016/j.comnet.2010.11.002
http://dx.doi.org/10.1109/LCNW.2013.6758538
http://dx.doi.org/10.1109/LCNW.2013.6758538
http://dx.doi.org/10.1016/j.comnet.2014.11.001
http://dx.doi.org/10.1109/MNET.2014.6786614
http://dx.doi.org/10.1109/MNET.2014.6786614
http://doi.acm.org/10.1145/1557019.1557060
http://www.jmlr.org/proceedings/papers/v11/bifet10a.html
http://www.jmlr.org/proceedings/papers/v11/bifet10a.html
http://link.springer.com/article/10.1007/s10922-013-9293-1
http://link.springer.com/article/10.1007/s10922-013-9293-1
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
http://mawi.wide.ad.jp/mawi/
http://link.springer.com/article/10.1007/s13748-011-0002-6
http://link.springer.com/article/10.1007/s13748-011-0002-6
http://dx.doi.org/10.1109/MMIT.2008.185
http://dx.doi.org/10.1109/CSIE.2009.904
http://dx.doi.org/10.1109/CSIE.2009.904
http://dx.doi.org/10.1109/ICTAI.2008.12

14 Valent́ın Carela-Español et al.

New York, NY, USA (2001). URL http://doi.acm.org/

10.1145/502512.502529

21. Moore, A.W., Papagiannaki, K.: Toward the accurate
identification of network applications. In: Proceedings of
the 6th International Conference on Passive and Active
Network Measurement, PAM’05, pp. 41–54. Springer-
Verlag, Berlin, Heidelberg (2005). URL http://dx.doi.

org/10.1007/978-3-540-31966-5_4

22. Dainotti, A., Gargiulo, F., Kuncheva, L.I., Pescape, A.,
Sansone, C.: Identification of traffic flows hiding behind
tcp port 80. In: Communications (ICC), IEEE Inter-
national Conference on, pp. 1–6 (2010). URL http:

//dx.doi.org/10.1109/ICC.2010.5502266

23. Hoeffding, W.: Probability inequalities for sums of
bounded random variables. Journal of the American sta-
tistical association 58(301), 13–30 (1963). URL http:

//dx.doi.org/10.2307/2282952

24. Bifet, A., Gavaldà, R.: Adaptive learning from evolv-
ing data streams. In: Proceedings of the 8th Interna-
tional Symposium on Intelligent Data Analysis: Advances
in Intelligent Data Analysis VIII, IDA ’09, pp. 249–
260. Springer-Verlag, Berlin, Heidelberg (2009). URL
http://dx.doi.org/10.1007/978-3-642-03915-7_22

25. Bifet, A., Gavaldà, R.: Learning from time-changing
data with adaptive windowing. In: Siam In-
ternational Data Mining Conference, pp. 443–448
(2007). URL http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.144.2279

26. NBAR2 or Next Generation NBAR - Cisco: [On-
line]. Available: http://www.cisco.com/en/US/prod/

collateral/iosswrel/ps6537/ps6558/ps6616/qa_

c67-697963.html, as of June 22, 2015
27. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reute-

mann, P., Witten, I.H.: The weka data mining software:
an update. SIGKDD Explorations 11(1), 10–18 (2009).
URL http://dx.doi.org/10.1145/1656274.1656278

28. Bifet, A., Kirkby, R.: Data stream mining a practical ap-
proach. Citeseer (2009). URL http://citeseerx.ist.psu.

edu/viewdoc/summary?doi=10.1.1.192.1957

29. Li, W., Canini, M., Moore, A.W., Bolla, R.: Efficient
application identification and the temporal and spatial
stability of classification schema. Computer Networks
53(6), 790–809 (2009). URL http://dx.doi.org/10.1016/

j.comnet.2008.11.016

30. Williams, N., Zander, S., Armitage, G.: A preliminary
performance comparison of five machine learning algo-
rithms for practical ip traffic flow classification. SIG-
COMM Comput. Commun. Rev. 36(5), 5–16 (2006).
URL http://doi.acm.org/10.1145/1163593.1163596

http://doi.acm.org/10.1145/502512.502529
http://doi.acm.org/10.1145/502512.502529
http://dx.doi.org/10.1007/978-3-540-31966-5_4
http://dx.doi.org/10.1007/978-3-540-31966-5_4
http://dx.doi.org/10.1109/ICC.2010.5502266
http://dx.doi.org/10.1109/ICC.2010.5502266
http://dx.doi.org/10.2307/2282952
http://dx.doi.org/10.2307/2282952
http://dx.doi.org/10.1007/978-3-642-03915-7_22
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.2279
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.2279
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6558/ps6616/qa_c67-697963.html
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6558/ps6616/qa_c67-697963.html
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6558/ps6616/qa_c67-697963.html
http://dx.doi.org/10.1145/1656274.1656278
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.192.1957
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.192.1957
http://dx.doi.org/10.1016/j.comnet.2008.11.016
http://dx.doi.org/10.1016/j.comnet.2008.11.016
http://doi.acm.org/10.1145/1163593.1163596

	1 Introduction
	2 Related Work
	3 Classification of evolving network data streams
	4 Methodology
	5 Hoeffding Adaptive Tree Parametrization
	6 Hoeffding Adaptive Tree Evaluation
	7 Conclusions

