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A stress-based topology optimization method for heterogeneous structures

Cian Conlan-Smith1 · Kai A. James2

Abstract In this work we introduce a method to incorporate stress considerations in the topology optimization of

heterogeneous structures. More specifically we focus on using functionally graded materials (FGMs) to produce

compliant mechanism designs that are not susceptible to failure. Local material properties are achieved through

interpolating between material properties of two or more base materials. Taking advantage of this method, we

develop relationships between local Young’s modulus and local yield stress, and apply stress criterion within

the optimization problem. A solid isotropic material with penalization (SIMP) based method is applied where

topology and local element material properties are optimized simultaneously. Sensitivities are calculated using an

adjoint method, and derived in detail. Stress formulations implement the von Mises stress criterion, are relaxed in

void regions, and are aggregated into a global form using a p-norm function to represent the maximum stress in

the structure. For stress-constrained problems we maintain local stress control by imposing m p-norm constraints

on m regions rather than a global constraint. Our method is first verified by solving the stress minimization of

an L-bracket problem, and then multiple stress-constrained compliant mechanism problems are presented. Re-

sults suggest that good designs can be produced with the proposed method and that heterogeneous designs can

outperform their homogeneous counterparts with respect to both mechanical advantage and reduced stress con-

centrations.

Keywords Topology Optimization · Functionally Graded Materials · Stress-Based design · Compliant

Mechanism · Heterogeneous Structures

1 Introduction

Compliant mechanisms are commonly used as alternatives to traditional rigid link and pin joint mechanisms

due to their various advantages such as reduced weight, reduced wear, and built-in restoring force. They also

require no lubrication and no assembly. Compliant mechanisms achieve movement through bending of flexural

members rather than rotation about pin joints, and as such they often comprise a single body. However to achieve

this movement these mechanisms require the use of thin hinge-like compliant joints. These regions produce stress

concentrations which limit the applicability of compliant mechanisms to low-load applications [32].

Topology optimization has been used extensively for compliant mechanism design since it was first proposed

in [3]. This study used a Solid Isotropic Material with Penalization (SIMP) method but there has since been nu-

merous compliant mechanism studies using different formulations such as the level set method [13,14,15], and

sequential element rejection and admission (SERA) method [12]. There has also been a focus on heterogeneous

material mechanisms where multiple materials are used to create a desired performance. Sigmund [17] used a

SIMP based approach where each element in the design domain has two independent design variables which
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formulate a power-law with Hashin-Shtrikman interpolation scheme. Later Gaynor et al. [20] used a similar muti-

phase SIMP method to produce two-material designs that were prototyped via 3D printing and experimentally

verified. Yin et al. [18] used a density based peak function interpolation which requires only one design variable

per element. Wang et al. and Alonso et al. implemented a level-set method [19] and a SERA method [16], respec-

tively which were both applied to multi-material compliant mechanism designs.

By using multiple materials it is possible to reduce stress concentrations, however when discrete materials

are used a stress concentration can be produced across the interface between materials [21]. Functionally graded

materials (FGMs) are an alternative to using multiple discrete materials. FGMs are heterogeneous materials whose

properties can vary based on spatial position, and can create a tailored gradation between two different materials

[34]. This gradation is created by varying composition and microstructure with position, which can be represented

as the mixing of two (or more) materials with different material properties [24]. By tailoring the gradation between

materials in a structure, one can also tailor the material properties of the structure at a local level. This versatility

of FGM designs makes them a perfect candidate for optimization problems. However, stress criteria are often not

considered in the optimization of FGM design problems. As the material properties and micro-structure vary at a

local level, yield stress in the structure will also vary at a local level.

In the literature there are some examples of topology optimization for FGM compliant mechanisms. Carbonari

et al. [25,26] produced piezoelectric actuator designs using FGMs modelled as a mix of piezoelectric and non-

piezoelectric materials. This study used a density based material interpolation scheme for heterogeneous materials

based on finite element shape functions, a method first introduced by Matsui and Terada [27]. Conlan-Smith et

al. [1] developed a SIMP-based formulation for modelling FGMs in topology optimization problems. Here each

element in the domain had two variables – one for topology optimization and another for material optimization.

The local Young’s modulus was derived from an equation relating the two independent variables and was similar

to 3-phase topology optimization for discrete material distribution presented in [22,23].

There has been significant work in the past to develop methods of topology optimization that account for

stress considerations. Duysinx and Bendsøe [4] implemented relaxed local stress constraints for porous composite

materials based on the SIMP method. Implementing local stress constraints requires a large number of constraint

functions which results in a high computational cost. Duysinx and Sigmund [5] extended this method into a single

global constraint function using p-norm and p-mean functions. Parı̀s et al. [30] and Le et al. [6] presented methods

that imposed regional stress constraints to maintain control over local stresses without the increased computa-

tional cost. Lee et al. [7] applied stress-based topology optimization to design dependant loading problems. Stump

et al. [28] introduced a method of topology optimization for creating FGM distributions with a tailored von Mises

stress field. Lipton has applied homogenization-based methods to the design of functionally graded and composite

structures subject to stress constraints [46,47]. De Leon et al. [36] implemented a SIMP approach with a projec-

tion method and p-norm function to design compliant mechanisms which are not susceptible to failure. Chu et al.

[35] developed a stress-based level set method for designing multi-material compliant mechanisms. These prob-

lems were solved using a multi-objective optimization method incorporating output displacement and compliance.

The authors previously found that FGM mechanisms can produce higher mechanical/geometric advantages

compared to homogeneous and two material mechanisms as outlined in [1]. Additionally, this study compared the

stress distributions in each design and found that increased mechanical performance also incurred higher stresses

in the design. However, when formulating the optimization problem there were no considerations for stress. The

current research will expand on previous work to develop a novel method for implementing stress-based design

criteria in FGM structures. As material properties vary within the structure of FGMs, the yield stress will also vary

at a local level. This paper outlines a novel framework to model the variation in local yield stress of heterogeneous

structures where we interpolate between the properties of a number of base materials. Our method is employed

in the topology optimization of FGM structures subject to stress considerations. The method is verified with the

stress minimization of an L-Bracket problem which is compared to results present in the literature. We then extend

this method to the design of compliant mechanisms subject to stress constraints. We hypothesise that by specifi-

cally selecting a range of materials with a favourable relationship between Young’s modulus and yield stress we

can produce compliant mechanism designs with the same or improved performance that are less susceptible to

failure.

The subsequent sections are outlined as follows: topology optimization methods are covered in Section 2.

Stress-based formulations will be presented in Section 3, including details on sensitivity analysis. Results are

presented in Section 4 which includes a model verification by studying a stress minimization L-bracket problem,
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and studies on two design domains for compliant mechanisms subject constraints on local stresses. Two yield

stress interpolation functions are studied in each case with the two resource constraints introduced in [1]. For

comparison purposes all design problems are also solved using a homogeneous material distribution. Section 5

provides additional examples which give more insight into the methods presented.

2 Topology Optimization

The purpose of topology optimization is to distribute material within a given design domain in order to pro-

duce an optimal structure. Optimality of the structure is defined by a given objective function which is subject to

a number of constraints. The design domain, Ω is discretized into Ne elements each with a set number of design

variables xe. All design variables can be compiled into a global vector represented as xxx throughout.

2.1 SIMP formulation

In this work, design problems will be solved using (a) homogeneous, and (b) functionally graded structures.

The homogeneous method will follow a standard SIMP method where each element has one design variable

representing a relative material density such that 0 ≤ xe ≤ 1. An element is part of the structure for xe = 1 and void

for xe = 0. In order to achieve a clear 1-0 (solid-void) converged solution the local Young’s modulus is penalized

such that

Ee = xe
pE0 (1)

where E0 is the Young’s modulus of a solid element and p is the penalization parameter. To converge to 1-0

designs, p must be sufficiently large (p ≥ 3), however if p is too large the optimizer has a tendency to converge

to local minima [40,39]. Throughout this work, we take p = 3. In actual practice a value of xe = 0 will result in 0

stiffness and cause singularities in the FEA solution. To overcome this problem we choose a minimum value of xe

close to, but not equal to zero, such that xmin ≤ xe ≤ 1. Throughout this work xmin = 10−3.

2.2 FGM formulation

For the FGM design problems we adopt a SIMP-based method introduced previously in [1]. Here, each

element has two design variables x0,e and x1,e, which independently control the material density (solid-void) and

solid material stiffness respectively. Local Young’s modulus in FGM designs is calculated using (2).

Ee = x0,e
p(El + x1,e(Eu −El)) (2)

where El and Eu represent the lower and upper limits of the Young’s modulus. The material density, x0,e, is much

like the design variables used in the homogeneous case (1) and as such is penalized (also with p = 3) to pro-

mote a solid-void distribution. They also have the same bounds xmin ≤ x0,e ≤ 1, where xmin ensures there is some

stiffness in void regions to avoid bad conditioning of the stiffness matrix. The material stiffness variable, x1,e, is

not penalized and is bounded by 0≤ x1,e ≤ 1, such that the optimizer is free to use any x1,e distribution without bias.

The most compliant material studied is lead and the stiffest is iron, whose Young’s modulus values give the

bounds El and Eu respectively. Lead and iron have yield stresses of 14 MPa and 50 MPa respectively [33]. In this

work we will study two material relationships between Young’s modulus and yield stress. Using these relation-

ships, we can approximate the local yield stress as a function of the local Young’s modulus, which is calculated

in (2). We require sensitivities of these relationships in order to solve the optimization problem and as such it is

necessary for Ee −σy relationships to be smooth, continuous and differentiable for all Ee. Hence, a least squares

method was used to interpolate between yield stress values of known materials. These relationships are shown in

Figure 1. The relationships used in this study are taken as examples to show how the proposed methods can be

applied. However, these methods can be applied to any relationship that is expressed as a continuous function.

Note also that as a SIMP-based method is used it is necessary for the relationships to extend as low as the Young’s

modulus for void regions, Emin = xmin
pEl .

Relationship A is an almost linear interpolation. Relationship B is based off a number of materials with a wide

range of properties in order to show the versatility of the method. This gives rise to two distinctively different
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Fig. 1: Relationships between yield stress and Young’s modulus for the FGM formulation.

relationships where both allow the optimizer to select material from the same range of Young’s modulus values.

The upper and lower bounds of the Young’s modulus also have the same yield stress for relationships A and

B, however the yield stress of intermediate materials is drastically different between the two. Our hypothesis

formulated in this study allows us to select material properties with a specific combination of Young’s modulus

and yield strength such that it can improve the stress distribution and performance of the structure.

2.3 Density Filtering

Filtering methods are used to achieve mesh independence, i.e. coarse and fine meshes should produce the

same solution. We adopt a method of density filtering introduced by Bruns and Tortorelli [2]. Here, we define a

filtering matrix, WWW , such that

x̃ =WWWx (3a)

x̃xx0 =WWWxxx0

x̃xx1 =WWWxxx1

(3b)

where (3a) and (3b) correspond to homogeneous and FGM cases respectively, and x̃, x̃xx0, and x̃xx1 are the filtered

design variables. The entries in WWW are calculated as

Wi j =
1

Nr

∑
k=1

wik

wi j where wi j = max[0,r−di j] (4)

such that element e j contributes to the filtered value of element ei’s design variable at a weighting inversely pro-

portional to the distance between centroids, di j, providing that the centroid of element e j is within a given filter

radius, r, whose centre is coincident to ei’s centroid. For each centroid outside of r the weighting is equal to zero.

The rows of the matrix are then normalized such that the weights for each element within r sum to 1. Note that for

the FGM formulation xxx0 and xxx1 are filtered independently and WWW is the same in each case.

2.4 Finite Element Analysis

Linear finite element analysis is the standard for solving problems with metallic materials. These materials

experience a linear elastic force-displacement relationship provided the material does not yield. This condition

can be enforced with the use of a stress constraint such that the maximum stress in the structure does not exceed

a prescribed value. The stress formulation adopted in this work is discussed in detail in the next section. Given

an external force distribution in the form a vector, f, a nodal displacement vector, u, can be determined via the

following governing equation

R = K(x)u− f = 0 (5)
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where K is the global stiffness matrix, which is a function of the design variables, x, and is a global assembly of

element stiffness matrices ke. Element stiffness matrices are calculated as follows

ke =
∫

Ωe

BT DBdΩe (6)

where B is a strain-displacement matrix containing spatial derivatives of the shape functions, N, with respect to

the deformed nodal coordinates, x, and expressed in Voigt form. The constitutive matrix assumes plane stress and

is represented by D. The expression
∫

Ωe
dΩe represents an integral over the element volume. Matrices B and D are

calculated in as

B =
∂N

∂x
(7)

D =
Ee

1−ν2





1 ν 0

ν 1 0

0 0 1
2
(1−ν)



 (8)

where Ee is the Young’s modulus of the element and ν is the Poisson’s ratio. Poisson’s ratio was taken to be 0.35

throughout. Element stresses can then be determined using the strains, εεε .

σσσ = Dεεε = DBue (9)

3 Stress Based Design

Compliant mechanisms incorporate thin compliant joints to achieve movement, however, these thin members

also create stress concentrations in the design. Stress concentrations are areas of increased stress caused by irreg-

ular geometry such as sudden changes in thickness, holes or sharp corners. For this work we will implement stress

formulations based on the von Mises yield criterion.

3.1 The von Mises Stress Formulation

The von Mises yield criterion is an empirical method of determining whether a material will yield when subjected

to complex loading. Von Mises proposed the method in 1913 [8] and in 1931 Taylor and Quinney [9] found that the

method is a more accurate predictor for yielding in metals than any previous suggested methods, such as Tresca’s

maximum yield stress criterion [10]. The von Mises stress criterion states that a material will yield if the von Mises

stress attains the material’s yield stress. The von Mises stress for plane stress conditions is defined as

σV M =
√

σxx
2 −σxxσyy +σyy

2 +3σxy
2 (10)

where σxx, σyy, σxy are calculated as the entries in (9). The von Mises stress is calculated at the four Gauss points

of an element and averaged to obtain the average von Mises stress within the element, σ̄V M .

3.2 The Consistent Stress Formulation

The von Mises stress criterion states that a material will yield if the von Mises stress attains the yield stress. Hence,

to avoid yielding we must ensure the von Mises stress for each element in the design domain is less than the local

yield stress.

σ̄V M ≤ σy (11a)

σ̄V M ≤ σy,Ee (11b)

where (11a) represents the homogeneous case with a constant yield stress, σy, and (11b) represents the FGM case

where σy,Ee is the local yield stress evaluated at the Young’s modulus, Ee, as defined in Figure 1. In this way we
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account for the fact that the different base materials have different yield limits.

Constraint relaxation techniques are employed to circumvent the singularity problem associated with stress

constraints. This problem has been studied extensively for truss structures [41, 42, 43, 44] but has equal importance

for the continuum case [4, 5, 29]. The problem arises if the design space contains a degenerate region within

which the global optimum is located. By relaxing the stress constraint we generate a smooth, continuous design

space. This is similar to the approach adopted in the SIMP-method to create a smooth design space by allowing

intermediate element densities in place of a discrete 1-0 distribution. Stresses are relaxed as follows

σ̄ = xe
η σ̄V M

σy

(12a)

σ̄ = x0,e
η σ̄V M

σy,Ee

(12b)

where σ̄ ≤ 1 to satisfy the von Mises yield criterion. In using this formulation, stresses are relaxed in the element

by multiplying by the material density raised to the exponential η , which is chosen to be 0.5. By relaxing the von

Mises stress in this manner, high stresses in void regions do not lead to high values of σ̄ .

The function in (12) is calculated for each element in the design mesh. However, we are only interested in the

element where stress is highest and to enforce (12) as a constraint on each element will be computationally ex-

pensive. Hence we use an aggregation technique based on the p-norm function to find the element with maximum

stress which gives the final expression for homogeneous (13a) and FGM (13b) designs as

σmax = max(σ̄)≃

[ Ne

∑
e=1

(

xe
η σ̄V M

σy

)ζ] 1
ζ

(13a)

σmax = max(σ̄)≃

[ Ne

∑
e=1

(

x0,e
η σ̄V M

σy,Ee

)ζ] 1
ζ

. (13b)

In this work, we formulate stress-based design in two ways – to minimize the maximum stress, and to impose

stress constraints such that σmax does not exceed the yield stress. For minimizing the stress the objective function

is to minimize the function given in (13). When a stress constraint is applied, one wants to ensure the maximum

von Mises stress in the solid region is less than σy and hence the constraint is defined as

σmax −1 ≤ 0. (14)

In (13), ζ is a constant used to evaluate the p-norm. As ζ → ∞, σmax tends to the maximum relaxed stress

ratio and the function remains unsmoothed. In contrast, when ζ → 1 the function is over-smoothed and σmax gives

a poor approximate of the maximum stress ratio. Hence, a good choice of ζ is necessary to create an adequate

balance between the two extremes. For our analysis, we use a continuation method on ζ which is initially equal

to 1 and increased over the first 10 iterations to a value of 10. Continuation on ζ is commonly adopted for stress

constraints in topology optimization [7, 28] as it prevents early convergence at a local minima. A final value of

10 was chosen because it had proved to create viable results which is in agreement with similar works [6, 36]. A

discussion on the choice ζ and its effect on results is included in section 5.1.

For design problems which require stress constraints we introduce regional stress measures. Stress constraints

cannot be imposed on each element individually as the number of constraints will become very large, creating a

large computational requirement. This issue is solved by imposing a global stress measure using a p-norm function

(13). This method reduces computational expenses but provides poor local control over the stress distribution. As

a compromise one may subdivide the design domain into m regions and impose a stress constraint on each region.

There are multiple examples of regional stress measures in the literature [6, 30, 45] showing that regional stress

measures can be used to improve local stress control with a low number of constraints.
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We adopt a method of defining m regions from previous studies by Le et al. [6]. Here, the regions are defined

based on the element’s stress ratio (13) during the current iteration, i, by first sorting element indices in descending

order of their corresponding value of σ̄ .

{e1,e2, ...,eNe : σ̄ i
e1
≥ σ̄ i

e2
≥ ...≥ σ̄ i

eNe
} (15)

Regions are then defined as follows

Ωk = {ek,em+k,e2m+k, ...} , k = 1,2, ...,m. (16)

In this manner, elements in a single region need not be connected to one another, and the elements that are

contained within a region, k, are subject to change on each iteration. It is worth noting that as the proposed method

can allow evolving of the regions the function may become non-differentiable. This would be most likely to

occur in early stages of optimization as when the design converges the regions remain predominately unchanged.

However, we experienced no adverse effects in using this method.

3.3 Sensitivity Analysis

Sensitivity analysis is conducted to determine how each design variable should change between iterations in

order to move towards an optimal design. We require sensitivities of the objective function and all the constraint

functions. In these design problems there are many more design variables than constraint functions. This makes

the adjoint method ideal for calculating the sensitivities. Taking F to represent our objective/constraint function,

we can express F in Lagrangian form as follows

Π = F +λλλ
T

R = F +
[

λλλ f
T

λλλ p
T
]

[

R f

Rp

]

(17)

where λλλ is a Lagrangen multiplier, whose values must be determined. However, note that for any λλλ , Π = F as

we know the residual, R, is equal to 0 (refer to (5)). This equation can also be represented in terms of free and

prescribed degrees of freedom (DOF) denoted by the subscripts f and p respectively. We require the sensitivities

of the function with respect to each design variable, which is represented in vector form as the derivative of Π
with respect to x. Using the chain rule and simplifying we obtain the expression

dΠ

dx

=
∂F

∂x

+
∂F

∂u f

du f

dx

+λλλ f
T

[

∂R f

∂x

+
∂R f

∂u f

du f

dx

]

+λλλ p
T

[

∂Rp

∂x

+
∂Rp

∂u f

du f

dx

+
dfp

dx

]

.

(18)

Together, u f and fp are the solutions to the finite element analysis. Note the difference between ∂
∂x

and d
dx

operators, which represent explicit and implicit derivatives respectively. Explicit derivatives capture only direct

dependence of the function, whereas the implicit derivatives also capture indirect dependence due to the solution

of the equilibrium equation (5). We seek a λλλ that causes all implicit terms to vanish.

This paper will detail the derivation of sensitivities for the stress function, derivations of sensitivities for other

objective functions used can be found in previous work [1]. Here, our function is (13) where F = σmax. The

explicit derivative of σmax is calculated in (19) while the Lagrangian multipliers are calculated in (20), utilizing

the derivative of the stress function with respect to the displacement of free DOFs expressed in (21). Note that in

(19) and (21) the suffixes a and b represent homogeneous and FGM cases respectively, and σy,Ee is the yield stress

for an element evaluated using its local Young’s modulus, Ee.

∂σmax

∂x
=

(

xη σ̄V M

σy

)ζ( Ne

∑
e=1

(

xe
η σ̄V M

σy

)ζ
)

1
ζ
−1

.

(

η

x
+

1

σ̄V M

∂ σ̄V M

∂x

)

(19a)
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∂σmax

∂x
=

(

x0
η σ̄V M

σy,Ee

)ζ( Ne

∑
e=1

(

x0,e
η σ̄V M

σy,Ee

)ζ
)

1
ζ
−1

.

(

η

x0
+

1

σ̄V M

∂ σ̄V M

∂Ee

∂Ee

∂x0
−

1

σy,Ee

∂σy,Ee

∂Ee

∂Ee

∂x0

)

for x ∈ x0

=

(

x0
η σ̄V M

σy,Ee

)ζ( Ne

∑
e=1

(

x0,e
η σ̄V M

σy,Ee

)ζ
)

1
ζ
−1

.

(

1

σ̄V M

∂ σ̄V M

∂Ee

∂Ee

∂x1
−

1

σy,Ee

∂σy,Ee

∂Ee

∂Ee

∂x1

)

for x ∈ x1

(19b)

λλλ p
T = 0

λλλ f
T =−

∂σmax

∂u f

[

∂R f

∂u f

]−1

=−
∂σmax

∂u f

K−1
f f

(20)

∂σmax

∂u f

=
1

σy
ζ

( Ne

∑
e=1

(

xe
η σ̄V M

σy

)ζ
)

1
ζ
−1

.

( Ne

∑
e=1

xe
ζ η σ̄

ζ−1
V M

∂ σ̄V M

∂u f

)

(21a)

∂σmax

∂u f

=
1

σy,Ee
ζ

( Ne

∑
e=1

(

x0,e
η σ̄V M

σy,Ee

)ζ
)

1
ζ
−1

.

( Ne

∑
e=1

x0,e
ζ η σ̄

ζ−1
V M

∂ σ̄V M

∂u f

)

(21b)

We can now represent (18) as follows

dΠ

dx

=
∂σmax

∂x

+λλλ p
T ∂Rp

∂x

+λλλ f
T ∂R f

∂x

=⇒
dΠ

dxe

=
∂σmax

∂xe

+λλλ e
T

(

∂R

∂x

)

e

(22)

4 Results and Discussion

This section will detail three topology optimization examples – an L-bracket, a gripper, and a force inverter. All

homogeneous problems presented in this study are modelled using the highest modulus material where E0 = 200

GPa and σy = 50 MPa. Optimization problems are solved using the method of moving asymptotes (MMA) [11].
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Fig. 2: (a) L-Bracket design domain, (b) topology solution for compliance minimization problem, and (c) average

von Mises stress distribution for compliance minimization problem.

4.1 L-Bracket

The first topology optimization problem we will solve is the L-bracket. The L-bracket problem has become the

benchmark problem for stress-based topology optimization [4,5,38,31,29,6,37]. The design domain is shown in

Figure 2a. For comparison purposes we will first solve this as a compliance minimization problem – the most

common formulation in topology optimization. The compliance minimization problem is defined as:

min
x

: C(x) = uT Ku

subject to :

∫

Ω

M(x)

M0
dΩ − M̄ ≤ 0

: 0 < xmin ≤ x ≤ 1

(23)

where u and K are the global displacement vector and stiffness matrix respectively;
∫

Ω
M
M0

dΩ is the resource

fraction which is constrained by the maximum value M̄. The meaning of the resource fraction will be explained

in more detail later, but for now we can treat it as a volume fraction where M is the local contribution to the total

volume of the design and M0 is the volume of the design domain.

The result of the compliance minimization problem is shown in Figure 2 with a 20 N/mm distributed load, the

resource fraction constrained at 0.3, and a filter radius of 1.5 mm. The optimized structure is pictured in Figure

2b contains a right angle at the corner of the domain which produces a stress concentration as can be seen in

the stress distribution pictured in Figure 2c. The maximum stress in this design was 100.4 MPa, roughly double

the material’s yield strength. The converged structure produced a compliance, C∗, of 11.39, this value will help

formulate the stress minimization problem.

Our stress minimization problem is defined in (24) where the suffixes (a) and (b) correspond to homogeneous

and FGM models respectively.

min
x

: σmax(x) =

[ Ne

∑
e=1

(

xe
η σ̄V M

σy

)ζ] 1
ζ

(a)

=

[ Ne

∑
e=1

(

x0,e
η σ̄V M

σy,Ee

)ζ] 1
ζ

(b)

subject to :

∫

Ω

M(x)

M0
dΩ − M̄ ≤ 0

: C−C̄ ≤ 0

: 0 < xmin ≤ x ≤ 1 (a)

0 < xmin ≤ x0 ≤ 1 , 0 ≤ x1 ≤ 1 (b)

(24)
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Fig. 3: Homogeneous L-Bracket stress minimization results: (a) topology solution, and (b) ratio of relaxed stress

to yield stress where the maximum relaxed stress is 51.9 MPa.

For the stress minimization problem the compliance of the structure, C, is constrained by a maximum value of

C̄. As stress relaxation methods are used we must ensure there is some stiffness in the structure to prevent the opti-

mizer forcing all elements to void in an effort to reduce the stress function. We also want to ensure that the design

will perform (with respect to stiffness) to a satisfactory standard, and so the value of the maximum compliance is

constrained to 120% of converged solution to the compliance minimization problem, C∗.

The resource constraint is treated as a cost function which can be defined in two ways for the FGM designs –

a volume constraint or a Young’s modulus constraint. For the volume constraint M(x) is the local volume of the

structure which is a function of the x0 variables only, and M0 is the volume of the design domain. The assumption

with the modulus constraint is that stiffer materials come at a higher cost either due to increased mass or higher

procurement cost. Here M(x) is the local modulus which is a function of the x0 and x1 variables, and M0 is the

sum of local moduli for the entire domain if each element were to have a maximum stiffness, Eu. For continuity, it

is important to note that volume and modulus constraints are equal for homogeneous designs, thus creating a fair

basis for comparison. The volume and modulus fractions are calculated using (25) and (26) respectively. Note that

(25) and (26) assume a uniform mesh where all elements have an equal volume, as is the case in each example

presented.
∫

Ω

M(x)

M0
dΩ =

1

Ne

Ne

∑
e=1

x0,e (25)

∫

Ω

M(x)

M0
dΩ =

1

NeEu

Ne

∑
e=1

Ee(x0,e,x1,e) (26)

Stress minimization results for the homogeneous L-bracket problem are presented in Figure 3. We can see

that the right angle present in the compliance minimization problem has been avoided and instead the topology

includes a curved member which eliminates the stress concentration from the design (as seen in Figure 3b). This

finding was expected and is in keeping with those presented the literature, thus validating our model. The change

in topology of the structure reduces the maximum stress to 51.9 MPa. In order to compare stress distributions in

the homogeneous design to FGM designs we present distributions of von Mises stress and the relaxed stress ratio

with the same contour limits. Our FGM L-bracket problem was solved using a volume constraint where topologies

and stress distributions are presented in Figure 4.

FGM designs have a similar topology to the homogeneous compliance minimization problem which ensures

the compliance constraint is satisfied, however, more compliant material has been distributed throughout the struc-

ture to ensure stress constraints are satisfied. The differences in the σy −Ee relationships also affect the Young’s

modulus distribution. Relationship A (RA), has a near-linear σy −Ee interpolation which means more compliant

materials are needed to reduce to stresses (refer to Figure 4a). This is because compliant materials are generally

able to experience larger strains before reaching before yielding. RA designs have concentrated stiffer material in

the two vertical trusses extending from the fixed edge of the design domain, and has distributed lower modulus

materials in the rest of the structure. Low-range modulus materials are concentrated towards connections between

structural members. To reduce the maximum stress the optimizer has used compliant material immediately below

the design domain’s right-angle (indicated by the arrow in figure 4a). Compared to the homogeneous design, the

maximum ratio of von Mises stress to yield stress has been reduced from 1.04 to 0.86.
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(d) Vol. constrained Rel. B Topology
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(e) Vol. constrained Rel. B σ̄V M
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(f) Vol. constrained Rel. B σ̄

Fig. 4: FGM L-Bracket results. The red arrow in (a) highlights compliant material concentrated at the corner in

order to reduce stresses.

Relationship B (RB) is tailored such that midrange modulus materials have high yield strengths and are not

susceptible to failure. This gives the optimizer a bias towards mid to high modulus materials. Compared to RA

designs, RB designs have opted for more compliant material in structural members but have less variance in

Young’s modulus throughout the structure. RB designs do not require any low-range modulus materials as stress

constraints are easily satisfied. The RB design has greatly improved how the stress is distributed throughout the

structure, eliminated stress concentrations, and produced a maximum ratio of relaxed von Mises stress to yield

stress of 1.02.

4.2 Compliant Mechanisms

Compliant mechanism designs are produced by maximizing the mechanical advantage. The two design domains

studied were: (1) a gripper, and (2) a force inverter. These design domains are shown in Figures 5a and 8a. The

optimization problem is defined in (27) where the suffixes (a) and (b) correspond to homogeneous and FGM mod-

els respectively.
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Fig. 5: (a) Gripper design domain, (b) topology solution with red arrow highlighting a 90◦ corner leading to a

stress concentration, and (c) average von Mises stress distribution without stress constraints.

min
x

: f (x) =−
Fout

Fin

subject to :

∫

Ω

M(x)

M0
dΩ − M̄ ≤ 0

: C−C̄ ≤ 0

:

[

∑
e∈Ωk

(

xe
η σ̄V M

σy

)ζ] 1
ζ

≤ 1 ,

k = 1,2,3, ...,m (a)

[

∑
e∈Ωk

(

x0,e
η σ̄V M

σy,Ee

)ζ] 1
ζ

≤ 1 ,

k = 1,2,3, ...,m (b)

: 0 < xmin ≤ x ≤ 1 (a)

0 < xmin ≤ x0 ≤ 1 , 0 ≤ x1 ≤ 1 (b)

(27)

Compliant mechanism designs are solved with both volume and Young’s modulus constraints (as defined in

(25) and (26)) for comparison between the approaches. All compliant mechanisms have a maximum allowable re-

source fraction, M̄, of 0.2. The second constraint is on the compliance at the input port which ensures a continuous

path of material from input to output locations. Without this constraint, the optimizer will push densities to void in

an effort to reduce the objective function. The maximum value of compliance, C̄, is equal to the compliance of the

initial design where all element densities are equal to M̄, and x1 = 1 (for the FGM problems). The third constraint

is on the max local stresses in m regions as defined in (16), where m = 4 and m = 5 for the gripper and inverter

designs respectively. Note that different m values were used for the convenience of having the same number of

elements in each region – as the two problems had a different number of elements in their finite element mesh, we

sought values of m such that Ne is divisible by m and 4≤m≤ 8. All designs are subject to an input force of 3 N/mm.

Results for the homogeneous gripper without and with stress constraints are shown in Figures 5 and 6 respec-

tively. By comparing the gripper results with and without stress constraints we see that stress concentrations at

the back of the gripper’s jaws have been reduced, note also that this is where the maximum stress occurred in

the gripper with no stress constraint. By comparing the topologies in Figures 5b and 6a we see that the optimizer

has achieved this reduction in stress by rounding the inner corners of the jaws (as indicated by the arrows). The

thickness of the vertical member at the back of the jaws has also been increased and the design contains an ex-

tra supporting member extending from the output port. Note that high stresses are still experienced at the output

port of the stress-constrained gripper. These stresses are unavoidable for the gripper design problem and are also

present in all future results.
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Fig. 6: Homogeneous stress-constrained gripper results: (a) topology solution with red arrow highlighting the

rounded inner edge which avoids stress concentrations, (b) average von Mises stress distribution, and (c) ratio of

relaxed stress to yield stress.

FGM gripper designs are shown in Figure 7. There are distinct differences in the topology and Young’s mod-

ulus distributions between volume- and modulus-constrained designs – as expected, modulus-constrained designs

use a larger volume with a wider range of modulus values. This is in keeping with findings in previous work in [1].

The FGM volume-constrained RA gripper (Figures 7a-7c) has rounded structural members at the top and bot-

tom of the jaws which has eliminated stress concentrations from the design (indicated by the arrow in figure 7a).

This is a similar result to the homogeneous design in Figure 6a. From Figure 7c we see that this design has dis-

tributed the stresses throughout the structure. The modulus-constrained RA gripper (Figures 7d-7f) still contains

some stress concentrations but at a lower magnitude than previous designs (and far less than the yield stress).

These stress concentrations are all at the compliant joints (and the unpreventable output port) rather than the back

of the jaws which was the failure point in the unconstrained gripper design. As stress concentrations are present

this also means that stresses are not evenly distributed throughout the structure which is seen in Figure 7f.

The FGM volume-constrained RB gripper can withstand higher stresses than its RA counterpart. Similar to

the L-bracket results we see that the RA design opts for more of the stiffest material with low modulus materials

only concentrated towards the joints. The RB volume-constrained design has concentrated the stiffest material

towards the output port and used more mid-range modulus materials throughout the structure. This mechanism

employs two vertical structural members behind the jaws in an effort to reduce stress concentrations (as indicated

by the arrow in figure 7g). The presence of this additional member reduces the stresses in the primary member

including the point of maximum stress (top and bottom of primary structural member). Regions of high stress do

not necessarily correspond to high stress-ratio this is evident in comparing Figures 7h and 7i in particularly at

joints behind the gripper’s jaws.

The material distribution of modulus-constrained designs has few differences between RA and RB, however

there is more stiffer material concentrated towards the input and output ports for RB which leads to a higher me-

chanical advantage. Much of the same conclusions drawn from the RA modulus-constrained gripper can be said

for the RB gripper also: low-magnitude stress concentrations are present at compliant joints but not at the back

of the jaws; stresses are not distributed throughout the structure; magnitude of stress-ratio is reduced compared to

homogeneous design; and mechanical advantage is higher compared to volume constrained designs. A compari-

son of the mechanical advantage
(

Fout
Fin

)

for all converged designs is shown in Table 1.

Table 1: Mechanical advantage of converged gripper designs.

Design Problem Mech. Advantage

Homogeneous 4.29

Stress-constrained Homog. 4.01

FGM RA Volume-constrained 3.33

FGM RA Modulus-constrained 3.53

FGM RB Volume-constrained. 4.08

FGM RB Modulus-constrained 5.66
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(c) Vol. constrained Rel. A σ̄
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(d) Mod. constrained Rel. A Topology
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(f) Mod. constrained Rel. A σ̄
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(i) Vol. constrained Rel. B σ̄
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(l) Mod. constrained Rel. B σ̄

Fig. 7: FGM gripper results. The red arrows in (a) highlight the rounded inner edge and (g) the second vertical

member which are used to reduce the stress ratio.

Comparing to the results presented in [1] we see similarities in the topology and material distribution, espe-

cially for modulus-constrained designs. However comparing the stress distributions we see that the results of the

current study are far more efficient at distributing stresses throughout the structure leading to a reduction in stress

concentrations. Thus the proposed method has been able to better distribute stresses in the structure making the

design less susceptible to failure.

The optimizers approach to distributing material is distinctly different between RA and RB designs. RA de-

signs have a more even stress distribution, whereas RB designs are able withstand higher stresses so the optimizer

is less inclined to distribute stresses throughout the structure. Although some localized stresses are present in the

designs, they have been reduced in magnitude or spread over a larger area. It should be also noted that the stress

constraint is satisfied for all designs. RB designs have achieved a higher mechanical advantage than RA designs.

This is because the Ee−σy relationship is tailored such that RB designs are less reliant on more compliant material
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Fig. 8: (a) Inverter design domain, (b) topology solution problem, and (c) average von Mises stress distribution

without stress constraints.
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Fig. 9: Homogeneous stress-constrained inverter results: (a) topology solution, (b) average von Mises stress dis-

tribution, and (c) ratio of relaxed stress to yield stress.

to reduce stresses. As stiffer material is used, the design can transmit higher loads and achieve a larger mechanical

advantage.

The second compliant mechanism problem studied is the force inverter problem shown in Figure 8a. The

problem is defined the same as the gripper mechanism in (27). All inverter mechanisms have a resource con-

straint of 0.2 and the maximum compliance, C̄, is equal to the compliance of the initial material distribution where

xe = M̄ = 0.2 for all e. The results for the homogeneous inverter problem without and with stress constraints are

shown in Figures 8 and 9 respectively. The unconstrained results show clear stress concentrations at the joints

where there is a maximum stress of 100.1 MPa. These compliant joints are very thin and only one element thick at

the point of maximum stress. The stress constrained design has much thicker joints which reduces the maximum

stress to 50.0 MPa. The stresses have been better distributed throughout the structure, however there are still stress

concentrations, albeit spanning a larger area than the unconstrained problem. It should also be noted that all de-

signs experience stress concentrations towards the output port and fixed boundaries. Like the gripper, these stress

concentrations are unpreventable and inherent to the inverter problem.

FGM force inverter results are shown in Figure 10. Unlike the gripper problem, here there are very few differ-

ences in topology and material distribution between the FGM results. This implies that there is one optimal solu-

tion to the inverter problem. The similarities in the inverter designs is also reflected in the value of the objective

function where each design produces a similar mechanical advantage as shown in Table 2. Modulus-constrained

designs have been able to opt for slightly thicker members which gives a small increase in mechanical advantage.

Both volume- and modulus-constrained designs predominately contain the stiffest material, however the presence

of more compliant material, particularly close to the joints, has helped to improve stress distributions compared to

the homogeneous design.
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Table 2: Mechanical advantage of converged inverter designs.

Design Problem Mech. Advantage

Homogeneous 4.49

Stress-constrained Homog. 4.28

FGM RA Volume-constrained 4.05

FGM RA Modulus-constrained 4.32

FGM RB Volume-constrained. 4.63

FGM RB Modulus-constrained 4.80

RA designs (Figures 10a-10 f ) incorporate fewer thin joints compared to RB designs (Figures 10g-10l). This

allows stress to be more efficiently distributed leading to fewer stress concentrations. However, all designs have

satisfied the stress constraint.

We experienced convergence issues when the inverter problem was solved with higher loads because the stress

constraint could not be satisfied. This implies that the joints are crucial to the function of the force inverter.

5 Additional examples

5.1 Choice of p-norm parameter

It is important to understand how the choice of the p-norm parameter, ζ , can affect the converged designs. Up to

now, all the results presented used ζ = 10 (with continuation). Figure 11 shows results for the gripper problem

(defined in (27) and figure 5a) for homogeneous stress-constrained designs with ζ = 5 and ζ = 15. We see that

with a low value of ζ the optimizer has not been able to been able to round the inner edges of the grippers jaws

and stress concentrations are still present. On the other hand, ζ = 15 produces a similar design to when ζ = 10.

Here the inner jaws are rounded and stress concentrations are removed. It is also worth noting that higher values

of ζ are thought to be more susceptible to local minima. Figure 12 shows the FGM RA gripper designs with ζ = 5

and ζ = 15. Comparing to the ζ = 10 designs in figure 7 one can make the same observations as the homogeneous

grippers.

5.2 Impact of resource constraint

The resource constraint acts as a constraint on cost. Two resource constraints are presented in this work –cost

proportional to volume, and cost proportional to the Young’s modulus. As a third option we modify the resource

constraint in (27) such that more compliant materials associated with low values of x1 come at a greater cost. This

is done by adding a third term to the constraint which creates a bias towards high values of x1.

∫

Ω

M(x)

M0
dΩ − M̄+α

Ne

∑
i=1

1− x1

Ne

≤ 0 (28)

where α is a weighting-parameter for controlling the weight of the bias towards higher modulus materials. Figure

13 shows results for the gripper problem for a bias modulus constraint with α = 0.02, M̄ = 0.2, and using relation-

ship A. Comparing to results in 7d we see the large regions of compliant material that is present in the unbiased

design have been replaced with a stiffer truss-like structures. Stress concentrations are also eliminated from the

design and the mechanism produced a mechanical advantage of 3.34, which is slightly less than the 3.53 achieved

with the original cost constraint. This is expected as there is now more restriction on the design space.

6 Conclusion

In this work we have introduced a novel method for topology optimization of functionally graded structures with

stress considerations. Adjoint sensitivities are derived in detail for both homogeneous and FGM p-norm stress

functions. Three design problems are studied, the first being the L-bracket problem which is a benchmark problem

for stress-based design. Homogeneous results for the L-bracket match the results present in the literature which

helps to validate our model. Expanding to FGM designs, the results have shown us that this method behaves

as expected with the maximum relaxed stress-ratio in the structure being reduced. Despite this, some areas of

high local stress are still present in converged designs. This is especially prominent in the inverter problems,



A stress-based topology optimization method for heterogeneous structures 17

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Y
o
u
n
g
's

 M
o
d
u
lu

s
 (

M
P

a
)

105

(a) Vol. constrained Rel. A Topology

0

5

10

15

20

25

30

35

40

45

50

V
o

n
 M

is
e

s
 S

tr
e

s
s
 (

M
P

a
)

(b) Vol. constrained Rel. A σ̄V M

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

la
x
e

d
 S

tr
e

s
s
 R

a
ti
o

, 
/

y
,E

e

(c) Vol. constrained Rel. A σ̄

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Y
o
u
n
g
's

 M
o
d
u
lu

s
 (

M
P

a
)

105

(d) Mod. constrained Rel. A Topology

0

5

10

15

20

25

30

35

40

45

50

V
o

n
 M

is
e

s
 S

tr
e

s
s
 (

M
P

a
)

(e) Mod. constrained Rel. A σ̄V M
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(f) Mod. constrained Rel. A σ̄
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(g) Vol. constrained Rel. B Topology
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(h) Vol. constrained Rel. B σ̄V M

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

la
x
e

d
 S

tr
e

s
s
 R

a
ti
o

, 
/

y
,E

e

(i) Vol. constrained Rel. B σ̄
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(j) Mod. constrained Rel. B Topology
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(k) Mod. constrained Rel. B σ̄V M
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(l) Mod. constrained Rel. B σ̄

Fig. 10: FGM inverter results.

(a) Topology when ζ = 5
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Fig. 11: Homogeneous stress-constrained gripper results with ζ = 5 and ζ = 15.
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(a) Topology when ζ = 5
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(c) Topology when ζ = 15
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Fig. 12: FGM RA stress and volume-constrained gripper results with ζ = 5 and ζ = 15.
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Fig. 13: Results for a modified cost constraint where

and for higher loads, the inverter problems experienced convergence issues as the designs were unable to satisfy

the stress constraint. Comparing volume- and modulus-constrained problems we have observed that stresses are

generally lower in modulus-constrained designs but stresses are more evenly distributed in volume-constrained

designs. Modulus-constrained compliant mechanism designs achieve the highest mechanical advantage which is

in keeping with previous results. RB designs outperform RA designs in each case which shows that for equal

resources the design engineer can select a range of materials with favourable material properties to achieve more

efficient designs which are not susceptible to failure.
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