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Abstract The paper is inspired by the stress-strength models in the reliability
literature, in which given the strength (Y ) and the stress (X) of a component,
its reliability is measured by P (X < Y ). In this literature, X and Y are typi-
cally modeled as independent. Since in many applications such an assumption
might not be realistic, we propose a copula approach in order to take into
account the dependence between X and Y . We then apply a copula-based
approach to the measurement of household financial fragility. Specifically, we
define as financially fragile those households whose yearly consumption (X)
is higher than income (Y ), so that P (X > Y ) is the measure of interest and
X and Y are clearly not independent. Modeling income and consumption as
non-identically Dagum distributed variables and their dependence by a Frank
copula, we show that the proposed method improves the estimation of house-
hold financial fragility. Using data from the 2008 wave of the Bank of Italy’s
Survey on Household Income and Wealth we point out that neglecting the
existing dependence in fact overestimates the actual household fragility.

Keywords Reliability · Dagum distribution · Copula · IFM · SHIW data

Mathematics Subject Classification (2000) 60E05 · 62H20 · 91B82

1 Introduction and motivation

The stress-strength term comes from a reliability problem: it describes the life
of a component which has a random strength Y and is subject to a random
stress X. If the stress exceeds the strength (X > Y ) the component will fail,
while the component works whenever X < Y . Thus, F = P (X > Y ) measures
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the likelihood of failure and R = P (X < Y ) is a measure of component
reliability.

In the literature, stress-strength models refer to statistical methods asso-
ciated with the evaluation of R or F. A comprehensive account of this topic
is given by Kotz et al. (2003). Unlike the specific literature where R plays the
leading role, we shall focus, without loss of generality, on the failure measure
F.

Although the seminal use of the stress-strength models is to be found in
problems of physics and engineering, interest in R is not confined to these
contexts. In fact, it spreads across different disciplines, such as quality control,
genetics, psychology, economics and in the last thirty years there have been
numerous applications in medical problems and clinical trials (e.g. Gupta and
Gupta 1990; Adimari and Chiogna 2006).

There is a well-developed theory for the case in which R is calculated under
the assumption that X and Y are independent variables. By the end of the
1970s, inference on R was carried out for the majority of common distribution
families, such as Gaussian, Pareto, Exponential, etc., to cite only the most
recent contributes, see Krishnamoorthy and Lin (2010), Rezaei et al. (2010),
Sengupta (2011) and Huang et al. (2012).

Yet little attention has been paid to the more realistic problem in which
X and Y are dependent variables. Many situations require that X and Y are
related in some way; for example, they may be influenced by a common factor,
or may represent two measures pre and post treatment on the same subjects
and so on.

Recently, estimators of R have been proposed assuming several bivariate
distribution families for (X,Y ) for describing the joint behavior of strength
and stress variables, e.g. bivariate beta (Nadarajah 2005), bivariate exponen-
tial (Nadarajah and Kotz 2005) and bivariate log-normal (Gupta et al. 2010).
Balakrishnan and Lai (2009) evaluated R for models in which X and Y are
correlated. Nevertheless, the assumption on the bivariate distribution often
admits only a certain specific form of dependence between margins and pre-
supposes that both the marginal distributions are of the same type. Bivariate
Normal distribution, for instance, restricts the type of association between
margins to linear and the margins to be normally distributed, although these
restrictions are not always realistic. In fact, empirical evidence of a non-linear
form of dependence and non-normality of the data is widely unquestionable.

With the aim of evaluating the role of dependence in the stress-strength
models, we calculate the failure measure through a copula-based approach. To
the best of our knowledge, until now a similar task has never been attempted
by using copula functions (an attempt in this direction is in Domma and
Giordano 2009 where the stress and strength variables are assumed to be
non-identical Burr III distributed and their dependence is modeled through
the Farlie-Gumbel-Morgenstern copula). This approach concerns modeling the
bivariate distribution of stress and strength variables with univariate margins
belonging to given parametric families and a copula function which summarizes
the existing dependence structure.
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To better understand the potential of this approach, consider that a copula
function joins margins of any type (parametric, semi-parametric and non-
parametric distributions) not necessarily belonging to the same family, and
captures various forms of dependence (linear, non-linear, tail dependence etc).

The purpose of this work is to provide a contribution to the estimation
of reliability measures in all practical problems where both the strength and
stress variables are dependent and parametrically distributed. In this paper,
X and Y are household consumption and income, respectively. The idea here
is to estimate F as a measure of household financial fragility which occurs
whenever expenses exceed household yearly income. To do this, we apply the
Frank copula to model the dependence between margins whose non-identical
distributions belong to the Dagum family. We show that neglecting the existing
dependence overestimates the fragility measure.

The paper is organized as follows. Sect. 2 examines the issue of household
financial fragility and Sect. 3 describes the data. Sect. 4 motivates the choice
of Dagum models for the income and consumption distributions (Sect. 4.1)
and Frank copula (Sect. 4.2) for the association to provide an estimate of the
fragility measure (Sect. 4.3). Final developments are mentioned in Sect. 5.

2 Household financial fragility

The recent crisis has highlighted that understanding the ability of households
to offset adverse changes in their financial circumstances is of great relevance
for policy makers.

Attention to household financial stress has been rising in recent years. Sev-
eral authors explore the determinants of measures of financial fragility to iden-
tify which households are potentially more vulnerable to unfavorable changes
in the economic environment. Despite the increasing contributions, a highly
debated, but still untangled point in the literature concerns exactly the defi-
nition of household financial fragility.

Brown and Taylor (2008) considered as measure of financial fragility the
probability for a household to have negative net worth, that is being in a
situation where total debts outweigh financial assets. Jappelli et al. (2008) in-
vestigate whether indebtedness is associated with increasing financial fragility
measured as the sensitivity of household arrears to adverse shocks, such as un-
employment and interest rate increase. They also explore institutional factors
that can make households more willing to service scheduled loan payments.
Moreover, Christelis et al. (2009) present a cross-country comparison of the
capacity of elderly household heads to handle financial distress. They describe
household vulnerability in 11 countries of Europe through four indicators: the
net worth-income ratio, the proportion of households with low financial wealth,
the proportion of households with debts other than housing and the reported
difficulties in “making ends meet”. In a recent contribution, Lusardi et al.
(2011) measure financial fragility by examining the household ability to come
up with an unexpected expense of 2000 dollars in one month regardless of the
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source of funds (i.e. savings, borrow from family/friends, traditional access to
credit, work more etc). In all the cited studies, the financial fragility measures
are compared across countries suggesting that the interest in this issue is not
confined to the Italian experience.

In Italy, the recent increasing financial straits for households have been
provoked by a drop in income mainly due to a rise in the rate of unemploy-
ment, to cuts in state transfers for welfare and increase in taxes in the attempt
to reduce the budget deficit and prevent the growth of public debt, and, more
generally, to the unsettled economic situation. On the other hand, there has
been a rise in consumption mainly imputable to the growth of the financial
sector which now offers households a broader range of products, such as con-
sumer credit and loans. In fact, a wide variety of options to defer payments
are now available. However, although most households are able to cope with a
certain amount of debt, a number of households cannot really afford the loans
and other debt they take on. They often do not limit debt payments to low
percentages of their gross income.

Financial difficulties limit household borrowing capacity and ability to meet
repayments. Moreover, income instability may affect the household liability.
This issue has been much explored in the economic literature and the reader
can refer for a better understanding of this specific topic to, among others, the
recent contribution of Jappelli and Pistaferri (2010).

Our idea is to identify a stress-strength problem in the household budget
management: the component is the household having at its disposal a random
strength Y, income, which is subject to a stress X, consumption. If the stress
exceeds the strength the component fails, so when expenses outpace the dis-
posable income the household has a financial problem and needs to borrow or
to decumulate its wealth and becomes vulnerable.

To put it bluntly, when consumption exceeds income, households face fi-
nancial stress, so F = P (X > Y ) is directly interpretable as a measure of
household financial fragility.

It is worth noting that we define as financial fragile those households whose
yearly consumption is greater than yearly income. It may be the case, how-
ever, that households are reliant on their savings to support their consumption
without difficulties in managing financially. But, our definition of fragility im-
plicitly assumes that the household is also susceptible to financial stress when
it needs to access its cumulated savings, as income does not suffice, to cope
with expected or unexpected consumption within the year.

We believe it is important to estimate the propensity of households to
exceed their yearly financial resources, especially as it is related to household
attitude towards indebtedness which sometimes can lead to bankruptcy. It is
not our task, however, to discuss the economic or institutional determinants of
household financial fragility, our aim is rather to estimate the measure F taking
into account the dependence underlying income and consumption variables. In
the case at hand, in fact, the usual independence assumption of stress-strength
variables is evidently untenable and will be relaxed in Section 4.
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3 Income-consumption data

Income and consumption of Italian households are drawn from the 2008 wave
of the Bank of Italy’s Survey on Household Income and Wealth (SHIW08)1.

The sample comprises 7977 households2 (13266 income-earners) over about
350 Italian towns.

The variable Y indicates the net disposable household income obtained in
the year 2008 as sum of income coming from payroll employment, pension and
net transfers, self-employment and properties of all the income-earners in the
household; X denotes the year’s durable and non-durable consumption and in
detail is obtained by summing up the following year’s expenses:

• rental of dwelling or loans (mortgage instalments or personal loans) relating
to the principal residence and other properties;

• extraordinary maintenance of dwelling and other properties owned by the
household;

• total amount (if fully paid in 2008) or year’s amount spent on instalment
payments for the purchase of:
– valuables (jewellery, gold, antiques, etc...);
– means of transport (cars, motorbikes, caravans, motor boats, boats,

bicycles);
– furniture, furnishings, household appliances, sundry equipment;
– non-durable goods (holidays, fur coats, etc...);

• fringe benefits3;
• maintenance, allowances, gifts, donations, loans to relatives or friends;
• life insurance premiums;
• contributions to supplementary pension schemes;
• all spending on average in 2008 in cash, by credit card, cheque or bancomat
card for food and non-food (except previous items);

and subtracting the following year’s received amounts:

• total value of objects (valuables and motor vehicles) sold in 2008;
• total amount deducted (36% or 41%) for renovation costs of all properties
owned by the household.

1 The data are freely available at www.bancaditalia.it/statistiche/indcamp/bilfait/dismicro.
We refer the reader to the work of Brandolini and Cannari (1994) containing much detailed
information on the survey; see also the supplements to the bulletin of the survey 2008
available from www.banca ditalia.it/statistiche/indcamp/bilfait/docum/ind 08.

2 The sampled households actually involved in this study are 7955; as income or/and
consumption for few households is negative or null they have been deleted from the original
SHIW08 dataset.

3 Fringe benefits are included in both income (i.e. in payroll income) and consumption
variables according to the Bank of Italy definition since this form of income is not cash, has
an expire date, is usable only for the expenses it is devoted to and cannot be accumulated
to increase household savings.
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Unlike income Y , the variableX here considered as household consumption
differs from that calculated by the Bank of Italy4 which also involves the total
value of objects purchased by the household even if they have not been paid
for in full during 2008. In particular, we focused only on the expenses the
household incurred in 2008.

Summary statistics pertaining to income and consumption data are re-
ported in Table 1.

Table 1 Descriptive statistics for Income and Consumption (in euro)

Income Consumption

min 65.68066 1200

max 629339.7 278900

median 26790.56 17030

mean 32429.08 20157.44

std error 24333.98 14008.44

skewness 5.24 4.32

kurtosis 78.23 47.82

4 F for dependent variables

Dependence between variables is completely described by the joint distribution
function which can be specified by modelling the univariate margins and the
dependence structure separately. A flexible tool to model different kinds of
dependence which has received growing recognition in several applications is
the copula function. The monographs by Joe (1997) and Nelsen (2006) give
a comprehensive introduction to the most popular copula families and their
properties.

A two-dimensional copula is merely a bivariate distribution function with
Uniform (0, 1) margins. Sklar’s theorem clarifies how copulas join the mul-
tivariate distribution functions with their univariate margins. According to
Sklar’s theorem any bivariate distribution H(x, y) = P (X ≤ x, Y ≤ y) with
continuous margins F (x) andG(y) can be written asH(x, y) = C (F (x), G(y)),
where C is a unique copula.

The joint density function is denoted by h(x, y) = c (F (x), G(y)) f(x)g(y)

where c (F (x), G(y)) = ∂2C(F (x),G(y))
∂F (x)∂G(y) is the copula density, and f(x), g(y)

indicate the marginal density functions.

4 The variables used by the Bank of Italy are defined in the legend download-
able from www.bancaditalia.it/statistiche/indcamp/bilfait/ docum/ind 08/descrizione arc/
eng Legen08.pdf.
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Consequently, the measure F allowing for the dependence between X and
Y , with positive values for simplicity, turns out to be

F = P (X > Y ) =

∫ +∞

0

∫ x

0

h(x, y)dydx

=

∫ +∞

0

∫ x

0

c (F (x), G(y)) f(x)g(y)dydx. (1)

Hereafter, the argument of functions will be omitted when necessary for the
sake of simplicity, so that F (x), G(y) will be denoted in short form by F,G.

Copulas depend on one or more parameters, while the marginal distribu-
tions may belong to either non-parametric and parametric families. It is easy
to imagine that there is an uncountable variety of possible combinations of
copula and marginal distributions. In the parametric approach, we can choose
the parametric distributions which best fit the marginal behavior of the two
variables and capture the existing dependence through a suitable copula func-
tion.

In the rest of the section we concentrate on two steps: 1. to find appropriate
marginal parametric distributions (Sect. 4.1) and a copula (Sect. 4.2) which
serve the need to suitably model the joint distribution of income-consumption
data; 2. to estimate the measure F of Italian household fragility accounting
dependent income and consumption variables (Sect. 4.3).

4.1 Distributions for margins

The origins of the Dagum (Dagum 1977) model stem from an attempt to
overcome the limits of the classical Log-Normal and Pareto distributions by
accommodating both the heavy tails and the mode of the empirical income
density function. In fact, the Dagum distribution5 has been shown to provide
an excellent fit to income distribution data. Consequently, the Dagum model
has been appreciated by economists and is often preferred to its parametric
competitors to model income data as highlighted in several empirical applica-
tions (e.g. Azzalini et al. 2003; Bandourian et al. 2003).

For this reason, we assume that the marginal densities of household income
and consumption belong to the three-parameter Dagum family.

First, we introduce some notation. The cumulative distribution function of
the Dagum variable is

F (x;γ) =
(

1 + λx−δ
)−β

(2)

which leads to the probability density function

f(x;γ) = βλδx−δ−1
(

1 + λx−δ
)−β−1

(3)

5 Kleiber (2008) provides an exhaustive overview on the genesis of the Dagum distribution
and its developments in the literature on applied statistics.
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where x ∈ R
+, and γ = (β, λ, δ), positive. The scale parameter is λ, while β

and δ are shape parameters.
Here, consumption and income data are modeled by non-identical Dagum

distributions, henceforth denoted by F (x;γc) and G(y;γi), where the sub-
scripts c and i clearly refer to consumption and income, respectively.
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Fig. 1 Graphical goodness-of-fit on income data: (a) Empirical and fitted cumulative dis-
tribution functions; (b) Empirical and fitted density functions; (c) QQ-plot

We fit the Dagum distribution to the SHIW08 data. The maximum likeli-
hood estimates (MLE) γ̂c = (β̂c, λ̂c, δ̂c) and γ̂i = (β̂i, λ̂i, δ̂i) are obtained by
numerical methods since the solution of the maximum likelihood equations is
not in closed form. An optimization procedure is implemented in the language
R (2011).

Table 2 reports the MLE of the parameters of the two marginal distribu-
tions, the standard errors (SE), 95% asymptotic confidence intervals and the
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Fig. 2 Graphical goodness-of-fit on consumption data: (a) Empirical and fitted cumulative
distribution functions; (b) Empirical and fitted density functions; (c) QQ-plot

maximum value of the log-likelihood functions (l). Moreover, the Anderson-
Darling (AD) goodness-of-fit statistic values, in the last column, confirm that
the Dagum model is suitable for these data.

We shall now check graphically the adequacy of the Dagum distribution to
the analyzed data. The probability plots in Figures 1 and 2 show an excellent
goodness-of-fit of the Dagum model. In fact, the fitted cumulative function well
approximates the empirical curve in panels (a); the Dagum and the empirical
density match appropriately in panels (b) and the points in the QQ-plots (c)
lie extremely close to the 45◦ ray from the origin, except for a few extreme
values. Thus, the overall fit of the Dagum distribution is satisfactory.
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Table 2 MLE, SE, 95% confidence intervals, max log-likelihood, AD statistic test (p-value)

γ MLE SE 95% CI l AD test (p-value)

Consumption βc 1.0837 0.0504 0.985–1.182 -11118.46 1.076 (0.3197 )

δc 2.9959 0.0543 2.889–3.102

λc 4.3327 0.4174 3.514–5.150

Income βi 0.8582 0.0351 0.789–0.927 -15405.14 1.338 (0.2204 )

δi 2.9752 0.0541 2.869–3.081

λi 23.8284 2.7952 18.35–29.31

4.2 Copula

A copula-based modeling of the joint distribution of income-consumption data
with Dagum margins is now provided. The next practical step is the choice of
an appropriate copula function to model the association of income-consumption
data. The coverage of an appropriate dependence range, a graphical approach
and a goodness-of-fit test are the three criteria that oriented our choice which
we shall now discuss briefly.

The copula functions depend on one or more parameters, say θ, called
association parameters, which are related to the degree of dependence between
margins. Common measures of the amount of association that exists, such as
Kendall’s τ , Spearman’s ρ and medial correlation M among others, are usually
expressed as function of the association parameters.

For instance, Kendall’s τ , defined as measure of discordance of the two
variables, can be written as τθ = 4

∫ ∫

[0,1]2
C(F,G; θ)c(F,G; θ)dFdG − 1, while

Spearman’s ρ, which assesses how well the relationship between two variables
can be described using a monotonic function, is written in terms of copula
ρθ = 12

∫ ∫

[0,1]2
C(F,G; θ)dFdG − 3. In particular, unlike Pearson’s correlation

coefficient, these measures do not depend on parameters of the marginal dis-
tributions but on the association parameters only.

It is worth noting that τ and ρ values corresponding to the θ domain do
not necessarily cover the whole interval [−1, 1] and the range of dependence
that can be really achieved varies for different copulas. The Farlie-Gumbel-
Morgenstern family of copulas, for example, allows the association measures to
vary in a limited sub-interval only, i.e. τ ∈ [−0.22, 0.22] and ρ ∈ [−0.33, 0.33].
Therefore, the choice of an appropriate family of copulas should depend on
the range of dependence covered. So, since the empirical values of τ and ρ on
SHIW08 income-consumption data are τE = 0.494 and ρE = 0.677 showing
a medium-high degree of positive association, a critical step involves choosing
one copula from the competitive families whose association parameter lies
within a range which allows τ, ρ to cover at least that empirical value, or more
generally, the positive dependence domain (0, 1]. We restrict our search to a
copula which possesses this property.
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Moreover, a graphical tool provides us with a rough copula selection strat-
egy: the comparison between the plot of the pairs of fitted margins (F̂j , Ĝj),

j = 1, ..., n, where F̂j = F (xj ; γ̂c), Ĝj = G(yj ; γ̂i), and the scatterplot of sim-
ulated data6 (Uj , Vj), j = 1, ..., n, from different copulas may orient the choice
towards certain copula families whose scatterplot looks like that of the fitted
marginal values on the unit square, whereas it excludes other copulas whose
representations do not conform with the data. A sampling of scatterplots for
some members of the Archimedean class of copulas, found in Nelsen (2006,
pp. 120-121), guided our choice.

The third but key criterion which leads to the choice of a copula consists
in performing a goodness-of-fit test. When testing the hypothesis that the de-
pendence structure of a bivariate distribution is well represented by a specific
copula family, a natural goodness-of-fit test involves quantifying a distance
between the empirical copula Cn, which is a non-parametric estimator of the
true unknown copula, and the estimated copula C(θ̂). Among the tests based
on the empirical copula, we considered the statistic7 Sn which performed well
in Genest et al. (2009). Large values of this statistic lead to the rejection of the
hypothesized copula family. Approximated p-values are obtained by a para-
metric bootstrap-based procedure even if it is computationally demanding.

As candidate families of copulas we considered the widely applied class
of the one-parameter Archimedean copulas. Its popularity is due to the fact
that these copulas are easily constructed, possess nice properties, are mathe-
matically tractable and many packages provide implemented procedures to fit
them to data.

The Frank copula family is chosen on the above mentioned criteria. The al-
ternative families we considered among the most common Archimedean copu-
las do not satisfy all the three criteria except the copula belonging to the Frank
family. Some of the selected copulas (e.g. Ali-Mikhail-Haq and Farlie-Gumbel-
Morgenstern) are discarded as they do not cover an appropriate range for the
dependence measures, for other copulas (e.g. Clayton) the proposed scatter-
plot remarkably differs from the plot of fitted margins, and the hypothesis
that the dependence structure between the margins is well-represented by a
specific parametric family of copulas is accepted only for the Frank family.

The Frank family allows a range of both negative and positive dependence,
shows a good fitting to the data (Sn = 0.019, p − value = 0.2) and is also in
accordance with the graphical check. In this respect, as can be seen in Figure
3, the scatterplot of data simulated from a Frank copula with θ̂ = 5.489 (i.e.
the estimated value for θ as shown below) and that of the pairs of Dagum mar-
gins seem very similar confirming that the Frank copula can give an adequate
description of the examined data. Other commonly used Archimedean copu-

6 Joe, 1997, page 146 illustrates a method for simulating random pairs from a copula C: if
U,Q are independent random U(0, 1) variables, then (U, V ) = (U,C−1

2|1
(Q|U) has distribution

C, where the conditional distribution is C2|1(v|u) =
dC(u,v)

du
.

7 The reader interested in details on Sn and the parametric bootstrap procedure to cal-
culate p-values refers to the cited paper.
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las, such as Clayton and Gumbel, exhibit greater dependence in the positive
tail than in the negative, whereas the Frank copula better fits the symmet-
ric dependence structure in the income-consumption data (see scatterplots in
Nelsen 2006).
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Fig. 3 Scatterplots: (a) Uj , Vj are simulated from a Frank copula with θ̂ = 5.489; (b)

F̂j = F (xj ; γ̂c), Ĝj = G(yj ; γ̂i) are the estimated Dagum cumulative functions on income-
consumption data

Next step is the estimation of the association parameter.
A basic notation is needed: the functional form of the Frank copula is

C(F,G; θ) = −θ−1log{1−
(1− e−θF )(1− e−θG)

1− e−θ
}

and the copula density is given by

c(F,G; θ) =
θ(1− e−θ)e−θ(F+G)

[1− e−θ − (1− e−θF )(1− e−θG)]2
(4)

where θ ∈ R\{0}.
The estimation procedure employed is the IFM (Inference Functions for

Margins), see e.g. Joe (1997), that provides estimates of the association pa-
rameter given the estimated marginal parameters. It consists of two steps: the
parameters of the marginal distributions are estimated separately in the first
step and then, given these, the procedure calculates the estimate of the asso-
ciation parameter of the copula function. Here, this means that the maximum
likelihood estimates γ̂c and γ̂i of the Dagum distributions for consumption
and income margins are provided in the first step. They are then plugged into
the log-likelihood function

l(θ) =

n
∑

j=1

log[c(F (xj ; γ̂c), G(yj ; γ̂i); θ)]
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which is maximized with respect to θ, c(·) being the Frank density copula (4)
and F (xj ; γ̂c), G(yj ; γ̂i) are the estimated Dagum cumulative functions (2).
Joe (2005) showed that the traditional asymptotic properties of the maximum
likelihood estimates still hold for the IFM estimates.

The starting value θ0 = 5.62 used in the maximization procedure is ob-
tained by the inversion of Kendall’s τ , a method-of-moment estimate for
one-parameter copulas; the resulting MLE on income-consumption data is
θ̂ = 5.489, SE = 0.084, l = 2395.362, and the estimated Kendall’s τ , τ(θ̂) =

0.486, and Spearman’s ρ, ρ(θ̂) = 0.678, well approximate the empirical values
τE = 0.494 and ρE = 0.677.

4.3 Estimating F with Dagum margins and Frank copula

We shall proceed to estimate the measure of Italian household fragility F un-
der the assumption that income and consumption are non-identically Dagum
distributed variables and their dependence is modeled using a Frank copula
function.

Therefore, substituting the Dagum and Frank copula densities (3) and (4)
in the expression (1), F turns out to be

F = a

∫ +∞

0

∫ x

0

e−θ(F+G)
(

1 + λct
−δc

)

−βc−1 (
1 + λiy

−δi
)

−βi−1

tδc+1yδi+1[1− e−θ − (1− e−θF )(1− e−θG)]2
dydt

(5)

where a = θ(1 − e−θ)βiλiδiβcλcδc, and the marginal cumulative functions
F = F (x;γc), G = G(y;γi) defined in (2) are represented symbolically for the
sake of simplicity.

Thus, F depends on both marginal and association parameters, F(γc,γi, θ).

Then, from the invariance property of MLEs, computing F̂ as function of all
the estimated parameters F(γ̂c, γ̂i, θ̂) provides the MLE of F. We solve the
integral (5) numerically by using the Mathematica software as it is unlikely
that a solution in closed form can be found. This provided the estimated
value F̂ = 0.172, whereas the empirical value of F evaluated for the surveyed
households in 2008 is

FE =
n. of households with (consumption - income) > 0

n. of surveyed households
= 0.156 (6)

i.e. the yearly consumption of 15 households out of 100 is beyond their current
income.

The estimated F̂ accounting for the existing dependence in the data seems
to well approximate the empirical value.

At this point it is helpful to find out whether it is worth taking into account
the dependence between variables and, to do this, we calculate the value of
F in case of the consumption and income variables are assumed independent
and compare it with F̂ and FE .
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Fig. 4 F for θ = 0.001, 0.01, 0.5, 1.5, 3, 4.5, 5.489, 7, 8.5, 10

For θ → 0 in the Frank copula, the marginal variables are independent.
So, values of θ less than θ̂ and approaching to zero reveal departure from
the actual presence of dependence in the data towards the independence as-
sumption. In particular, decreasing θ leads to increasing values for F (e.g. F
evaluated at θ = 0.001 is 0.29) and Figure 4 shows this behavior for some val-
ues of the association parameter, for example θ ∈ (0, 10]. Hence, neglecting the
existing dependence between income and consumption actually overestimates
household financial fragility.

Consideration of the dependence between margins enables us to evaluate
F more accurately; in fact the estimated F̂ is closer to the empirical FE than
whatever F under assumptions approaching to independence.

The change in the estimation of F due to the contribution of the dependence
between X and Y is remarkable and leads to the obvious conclusion that this
feature of the data cannot be omitted.

As final comment, a referee suggested stressing that in our assumption of
financial fragile household there is no role for savings, but extraordinary ex-
penses are typically financed by pre-existing household savings, especially in
Italy. For this reason, we considered extraordinary the expenses for means of
transport, furniture, furnishings, appliances and for maintenance of dwelling,
then we defined another consumption variable by dropping out all the costs
for them and estimated the financial fragility under this new specification.
The results are robust and confirm the initial conclusion, in fact the fragility
measure estimated taking the dependence between income and the new con-
sumption into account is F̂ = 0.1276, while the empirical value is FE = 0.1143
and F = 0.2416 under the independence assumption (a value of θ close to zero
is considered).
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5 Further developments

Since the independence between the household income and consumption vari-
ables is not the most appropriate assumption to work with, we have concen-
trated on estimating a measure of household fragility considering the relation-
ship between the margins.

The proposed copula-based approach has been both promising and appeal-
ing, but more needs to be done. One clear extension of this work, according
to the financial fragility literature, would be to finetune the estimation proce-
dure to account economic and individual variables affecting household fragility.
In fact, household consumption, in general, depends on individual (including
wealth), institutional and market characteristics and these covariates should
be considered. This detailed information on the surveyed households is col-
lected in the SHIW08 dataset.

Another aspect of interest is the temporal trend of household fragility. As
income and consumption of Italian households have been available since the
1970s from the Bank of Italy, we are stimulated to investigate the evolution
of the measure of fragility over the years.

All these aspects are still open and in need of an in-depth study.
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