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Diatoms are an important group of eukaryotic phytoplankton, responsible for about 20% of global primary
productivity. Study of the functional role of chemical signaling within phytoplankton assemblages is still in its infancy
although recent reports in diatoms suggest the existence of chemical-based defense strategies. Here, we demonstrate
how the accurate perception of diatom-derived reactive aldehydes can determine cell fate in diatoms. In particular, the
aldehyde (2E,4E/Z)-decadienal (DD) can trigger intracellular calcium transients and the generation of nitric oxide (NO)
by a calcium-dependent NO synthase-like activity, which results in cell death. However, pretreatment of cells with
sublethal doses of aldehyde can induce resistance to subsequent lethal doses, which is reflected in an altered calcium
signature and kinetics of NO production. We also present evidence for a DD–derived NO-based intercellular signaling
system for the perception of stressed bystander cells. Based on these findings, we propose the existence of a
sophisticated stress surveillance system in diatoms, which has important implications for understanding the cellular
mechanisms responsible for acclimation versus death during phytoplankton bloom successions.
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Introduction

Diatoms are major components of phytoplankton blooms in
aquatic ecosystems and are central in the biogeochemical
cycling of important nutrients such as carbon, nitrogen, and
silicon [1,2]. Unraveling the factors that regulate the fate of
blooms is therefore of great importance. During a bloom
succession, phytoplankton are thought to utilize chemical
signals to enhance their defense capacities against grazers [3]
and pathogens [4,5], and for outcompeting other phytoplank-
ton for available resources [6,7]. The evolutionary and
ecological success of diatoms in the contemporary oceans
might suggest that they utilize sophisticated mechanisms to
monitor and adapt appropriately to changing environmental
conditions [8]. Indeed, previous reports have implicated the
role of a chemical defense based on diatom-derived aldehyde
products of fatty-acid oxidation [9,10], which impair the
normal development of grazers such as copepods and other
invertebrates [11,12]. Furthermore, it has now emerged that
these same aldehydes are toxic to the diatoms themselves and
can trigger a process bearing the hallmarks of programmed
cell death [13]. We therefore explored the hypothesis that they
may function as infochemicals in the marine environment,
and so we investigated how diatoms perceive and respond to
diatom-derived antiproliferative aldehydes such as (2E,4E/Z)-
decadienal (DD). DD was chosen as a model aldehyde because
its reactive properties are currently being tested on various
animal, plant, and unicellular systems [14–16].

Results/Discussion

One of the early responses of plants and algae to pathogens
and allelochemicals is thought to be the generation of

reactive oxygen species (ROS) [7,17,18]. Our results indicated

that DD did not stimulate detectable increases in general

ROS production (assayed by dihydrorhodamine 123; data not

shown), but rather induced the generation of nitric oxide

(NO). NO exerts crucial physiological and developmental

functions in both animals and plants, and is also involved in

defense responses [19–21]. We monitored NO generation in

two representative diatom species, Thalassiosira weissflogii,

representing a cosmopolitan diatom genus, and Phaeodactylum

tricornutum, which has become a central model for molecular

and cellular studies of diatom biology [22,23]. Endogenous

NO generation was measured by flow cytometry, fluorometry,

and subcellular real-time imaging using the NO-sensitive dye

4-amino-5-methylamino-29,7’-difluorofluorescein diacetate

(DAF-FM) [24]. Microscopic analysis of T. weissflogii cells

revealed that NO began to accumulate within 5 min after
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exposure to DD and increased significantly thereafter (Figure

1A). Furthermore, the DAF-FM fluorescence was localized

close to the nucleus and was excluded from the plastid. A

similar response was observed in P. tricornutum cells, in which

the NO burst was also detected 5 min after exposure to DD

(Figure 1B). In these short-term experiments, production of

NO was proportional to DD concentration (between 33–66

lM [5–10 lg/ml]) with respect to the percentage of DAF-FM–

positive cells, the extent of DAF-FM staining, and the lag time

until significant numbers of cells emitted green fluorescence

(Figure 1C). Treatments with methanol (1%), acetaldehyde

(247 lM [10 lg/ml]), and other C10-unsaturated aldehydes

such as (2E)–decenal (65 lM [10 lg/ml] failed to induce NO

production (Figure 1C).

We used two NO donors, diethylamine nitric oxide

(DEANO) and sodium nitroprusside (SNP), as positive

controls to verify the reliability of DAF-FM as a probe for

NO detection in P. tricornutum cells (Figure 1D and 1E). To

further demonstrate DD-dependent NO production, we

treated P. tricornutum cells with the NO synthase (NOS)

Figure 1. DD Induces NO Generation in Diatoms

Micrographs depicting NO generation over time in response to DD (66 lM [10 lg/ml]) in T. weissflogii (A) and P. tricornutum (B). (C) Monitoring of NO
production in P. tricornutum in response to a range of DD concentrations; (D) Cytogram showing NO generation 15min after addition of DEANO (2mM) to
P. tricornutum cells (filled violet indicates the KOH control; open green indicates DEANO). Insets show epifluorescence micrographs of the DEANO-treated
cells. (E and F) Relative accumulation of NO in P. tricornutum cells following treatment with SNP (E) or NMMA prior to exposure to DD (F).
In all experiments, NO generation was assayed using the fluorescent probe DAF-FM. Data in (C), (E) and (F) are means plus standard deviation from four
experiments. Representative data from at least four experiments are shown in (A), (B), and (D). Experiments shown in (C), (D), and (F) were performed by
flow cytometry, and in (E) using a fluorescence microplate reader.
BF, bright field; Chl, chlorophyll-derived red autofluorescence; D, (2E)-decenal. Scale bars represent 5 lm.
DOI: 10.1371/journal.pbio.0040060.g001
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antagonist NG-monomethyl-L-arginine (NMMA) prior to
addition of DD (Figure 1F). This inhibitor reduced signifi-
cantly the production of NO, implicating the possible

involvement of NOS-like activities in NO generation (see
below).

A recent study in T. weissflogii showed that DD causes cell

cycle arrest and induction of cell death, which was accom-
panied by morphological hallmarks of apoptosis [13].
Similarly, treatment of P. tricornutum cells with DD for 4 h

led to cell death in more than 90% of the population, as
evidenced by assaying plasma membrane integrity with the
fluorescent dye Sytox Green, which is commonly used to

detect dead cells [13,25] (Figure 2A). We further analyzed the
kinetics of diatom cell death in response to a range of DD
concentrations using flow cytometry (Figure 2B). DD was
found to induce cell death in a dose- and time-dependent

manner, and increased dramatically above a distinct thresh-
old below which, although cell division was arrested, no cell
death occurred. In these short-term experiments using cell

densities of 2 3 105 cells/ml, the threshold concentration of
aldehyde required to induce cell death was around 19.8 lM (3
lg/ml). Treatments with methanol (1%), acetaldehyde (247

lM [10 lg/ml]) and (2E)-decenal (65 lM [10 lg/ml]) failed to
induce significant cell death (Figure 2B).

To further examine the role of NO in determining diatom

cell fate we examined cell death in response to an NO donor in
the absence of DD, and treated cells with a NOS inhibitor
prior to exposure to DD (Figure 2C and 2D). Treatment with

the NO donor SNP led to an increase in the number of Sytox-
positive cells, which coincided proportionally with NO
accumulation (Figures 2C and 1E), in agreement with the

threshold nature of the response to a range of DD concen-
trations (Figure 1C). Conversely, the NOS inhibitor NMMA

could reduce DD-dependent cell death (Figure 2D). These data
implicate the involvement of NO in the cell death cascade.

To investigate the intracellular origin of NO, we double

stained P. tricornutum cells with DAF-FM and 49,6-diamidino-
2-phenylindole (DAPI) to label the nucleus (Figure 3A).

Analysis of the images acquired by fluorescence microscopy
showed that DAF-FM–derived fluorescence localized in
neither the chloroplasts nor the nucleus, although it was

closely associated with the latter. This could suggest that NO
accumulates within a specific subcellular compartment,

although one should caution that this observation could be
a consequence of dye localization (DAF-FM fluorescence is
nonetheless pH insensitive [24]). To further decipher the

source of NO in diatoms, we assayed diatom extracts for NOS
enzymatic activity using a conventional citrulline/arginine

assay [26]. Basal NOS activity was 4 pmol � min�1 � mg�1 and
increased significantly around 2.5-fold within the first 15 min
after exposure to DD (Figure 3B). Analysis of the whole

genome sequence of the diatom Thalassiosira pseudonana [27]
(http://genome.jgi-psf.org/thaps1/thaps1.home.html), as well as
the draft genome sequence of P. tricornutum, revealed several

candidate genes with homology to genes encoding NO-
generating enzymes from bacteria and plants [26,28–30], of

Figure 2. DD-Dependent NO Production Induces Cell Death

(A) Micrographs of P. tricornutum cells treated with DD (66 lM [10 lg/ml]) for 4 h, which resulted in 90% cell death (assayed by Sytox Green
fluorescence). Chlorophyll autofluorescence (shown in red) was significantly reduced in Sytox-positive cells, giving a further indication of cell death.
(B–D) Quantification of cell death kinetics induced by DD or (2E)-decenal (B), SNP (C), and NMMA added prior to DD application (D). Data in (B–D) are
means plus standard deviation from four experiments. Representative data from four experiments are shown in (A). Experiments shown in (B–D) were
performed by flow cytometry. Abbreviations are as in Figure 1. Scale bar represents 5 lm.
DOI: 10.1371/journal.pbio.0040060.g002
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which the diatom ortholog of the plant enzyme AtNOS1
(present in both diatom genomes) appeared to be the most
likely candidate, based on overall similarity (data not shown).
Indeed, diatom extracts exhibited NOS activity that was
similar to the plant NOS enzyme [31] in that activity was
strongly calcium dependent (Figure 3B).

Calcium is known to be an important secondmessenger for a
wide variety of environmental stimuli in both plant and animal
cells [32,33]. Previous studies have revealed that P. tricornutum

displays sophisticated sensing systems for perceiving abiotic
environmental signals that involve calcium-dependent signal
transduction mechanisms [34]. We used transgenic P. tricornu-
tum cells expressing the calcium-sensitive photoprotein
Aequorin to detect transient changes in cytosolic calcium in
response to reactive aldehydes. Application of DD stimulated a
dramatic increase in intracellular calcium that persisted for
several minutes before returning to basal levels, whereas its
monounsaturated form, (2E)-decenal, or methanol, its solvent,
did not provoke any substantial response (Figure 3C). As seen
both for DD-dependent NO production and cell death, DD
triggered Ca2þ release with maximal amplitude proportional
to the applied dose (Figure 3C). In an attempt to identify the
source of the cytosolic calcium increase, we exposed P.

tricornutum cells to the impermeant form of BAPTA (1,2-
Bis(2-aminophenoxy)ethane-N,N,N9,N9-tetraacetic acid, tetra-
potassium salt), a known highly selective calcium chelating
reagent, prior to addition ofDD. This chelator had no effect on
the DD-dependent calcium transient, but suppressed the
cellular response to hypo-osmotic shock (Figure S1). These
data suggest that internal calcium stores are responsible for
the Ca2þ release in response to DD, contrasting with the
external origin of cytosolic calcium induced in response to the
abiotic stress.
To our knowledge this is the first time that NO has been

detected in marine phytoplankton, although it has been
detected in sea water and was suggested to originate from
abiotic nitrite photolysis and from bacterial denitrification/
nitrification cycles [35,36]. Neither short- nor long-term
exposures to NO donors (DEANO and SNP) led to any
detectable increases in cytosolic Ca2þ (data not shown),
suggesting that NO acts downstream of Ca2þ in the signaling
cascade, in agreement with the earlier response of calcium
compared with NO following addition of DD, and the Ca2þ

dependency of NOS activity (Figures 1B, 3B, and 3C).
Furthermore, several control compounds (see above) failed
to induce either calcium transients or NO production, and
did not induce cell death. Conversely, other pharmacological
agents that amplified the calcium response (e.g., nifedipine)
also amplified changes in NO and increased cell death (data
not shown), implying a causal link between calcium and NO
in the induction of cell death. Our results therefore suggest a
signaling pathway in which DD-induced cell death in diatoms
is preceded by accurate perception of the aldehyde, followed
by changes in intracellular calcium that may activate a plant-
type NOS to subsequently generate NO.
Real-time imaging of NO generation in P. tricornutum cells

treated with DD revealed that after 30 min, intracellular
levels of NO were at least 10-fold higher in reacting cells with
respect to basal levels (Figure 4A). Furthermore, some of the
cells displayed higher sensitivity and responded to DD earlier
than in adjacent cells (see Video S1). Neighboring cells in the
proximity of these early-responding cells exhibited signifi-
cantly delayed responses (Figure 4B), suggesting the gener-
ation of a diffusible NO-inducing signal from reacting cells.
These observations suggested a DD-derived intercellular
communication system that could propagate within the
diatom population.
In order to examine this intercellular signaling phenom-

enon further, we designed an experiment in which cells were
exposed to a range of DD concentrations (660 nM–13.2 lM
[0.1–2.0 lg/ml]) for 24 h (population A) and then were mixed

Figure 3. The Origin of NO in P. tricornutum and Its Interplay with

Calcium

(A) Intracellular localization of DAF-FM-derived fluorescence (green)
compared with DAPI-staining (blue) and chlorophyll (Chl) autofluor-
escence (red) in P. tricornutum.
(B) NOS enzymatic activity in cell-free extracts induced by DD (66 lM [10
lg/ml]), in the presence or absence of calcium.
(C) Ca2þ transients in response to addition of 1, 3, and 5 lg/ml (6.6, 19.8,
and 33 lM) DD, depicted in blue, pink, and green respectively and of 10
lg/ml (65 lM) (2E)-decenal (yellow) in transgenic P. tricornutum cells
expressing the calcium-sensitive photoprotein Aequorin. Addition is
indicated by arrow. Data in (B) are means plus standard deviation from
four experiments. Representative data from at least four experiments are
shown in (A) and (C). Scale bar represents 5 lm.
DOI: 10.1371/journal.pbio.0040060.g003
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with DAF-FM–preloaded cells that were not exposed directly

to DD (population B). Monitoring DAF-FM fluorescence in

the untreated population B revealed that NO accumulated

over the next 24 h (Figure 4C). Interestingly, the response

correlated with the level of DD pretreatment of population A

and was already detectable in response to cells treated with

very low sublethal concentrations (e.g., 660 nM [0.1 lg/ml]).

Furthermore, the pattern of NO production resembled a

threshold response: Population A cells treated with DD

concentrations between 660 nM and 6.6 lM (0.1–1.0 lg/ml)

provoked equivalent NO production profiles in population B

cells, whereas treatment with 13.2 lM (2.0 lg/ml) DD

generated much higher changes in NO (Figure 4C). Such

responses are in agreement with the EC50 value for P.

tricornutum cell growth of 7.06 lM 6 2.44 lM (1.07 6 0.37 lg/

ml) calculated by Probit analysis for initial cell densities of

105 cells/ml after exposure to DD for 24 h (data not shown).

These data suggested that diatom cells could detect the level

of stressed cells within the population by sensing a DD-

derived diffusible signal (or signals) transmitted by wounded

cells to neighboring healthy cells. To exclude the possibility

that the observed response was simply due to the residual

presence of DD in the medium, fresh cell free medium was

incubated with the same DD concentrations for 24 h prior to

addition to population B cells. Such treatments failed to

induce any detectable increase in NO (Figure 4C), confirming

that the aldehyde was likely to be degraded over the 24-h

period [37].

A recent report [11] has demonstrated arrested larval

development in copepods fed on dinoflagellates that were

treated with DD concentrations in the range of 9.9 lM (1.5 lg/

ml). In these experiments it was proposed that the dino-

flagellates acted as DD carriers by absorption of the molecule

to the cell surface. However, the amount of DD absorbed by

the dinoflagellate carrier cells ranged from only 0.4 fg cell�1

to 36 fg cell�1, much lower than the total aldehyde

concentration initially inoculated in the culture medium.

Considering this finding and considering that even lower

Figure 4. Intercellular Transmission of a DD-Derived Signal that Induces NO in Neighboring Cells

(A and B) In vivo imaging of DD-induced NO burst in P. tricornutum cells.
(A) Time course of NO production in single cells based on corresponding real-time movie (see Video S1).
(B) Relative accumulation of NO in selected cells of the micrographs shown in (A).
(C) NO accumulation in an untreated population of DAF-FM-loaded cells that were inoculated with a non DAF-FM–loaded population that had been
exposed to DD at different concentrations (open circle, methanol solvent; open square, 660 nM; filled circle, 3.3 lM; open triangle 6.6 lM, and open
diamond, 13.2 lM) for 24 h prior to the mixing. Incubation of fresh medium with 13.2 lM DD for 24 h (filled triangle) prior to addition to DAF-FM-loaded
cells did not provoke any detectable increase in NO. Data in (C) are means plus standard deviation from four experiments.
DOI: 10.1371/journal.pbio.0040060.g004
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concentrations of DD (660 nM [0.1 lg/ml]) led to responses in

our untreated population B cells, we propose that unsatu-

rated aldehydes such as DD could play an important role in

diatom assemblages during blooms, in which local densities

can reach as high as 5 3 105 cells/ml [38]. Benthic diatoms

living in dense microbial mats and biofilms are also known to

produce fatty acid derivatives [39]. Such microenvironments,

consisting of high cell densities within polysaccharide

matrices, are likely to further facilitate the potential for

cell–cell communication and to further enhance defenses

against grazers [40].

Based on our observations presented in Figure 4, we further

explored the signaling role of unsaturated aldehydes in

diatom populations. We aimed to mimic conditions in which

diatoms could be exposed to different doses of DD on

successive occasions, as may be the case in natural environ-

ments. We performed long-term experiments in which cells

were exposed to sublethal doses of DD (660 nM [0.1 lg/ml]) for

2 h prior to subsequent addition of a higher dose (13.2 lM [2

lg/ml]), and compared the responses to a single dose only. The

two populations displayed remarkable differences. Substantial

cell death was already visible after 33 h in the non-pretreated

culture, whereas cell death in the pretreated culture was

significantly delayed (Figure 5A). After 60 hr, cell death in the

preconditioned population was around 40%, whereas more

than 70% of cells in the non-preconditioned population were

positively stained with the cell death indicator Sytox Green

(Figure 5B). Furthermore, resuspension of the same cultures

in DD-free fresh medium revealed a notable difference in

growth rates, with a 6-fold increase in cell density in the

acclimated population compared with cultures from non-

acclimated cells after 5 d (Figure 5C). Interestingly the

pretreated culture could fully recover, whereas the non-

acclimated culture failed to be viable and ultimately collapsed

(Figure 5C, inset). These data demonstrate the potential of DD

as an infochemical for regulating cell fate in diatom

populations at doses one order of magnitude lower than used

in previous reports [10,11,13]. Specifically, it appeared that

pretreatment with sublethal doses of DD could stimulate

resistance to normally lethal concentrations.

To examine the molecular mechanism responsible for

these contrasting responses (induced resistance versus

death), we examined the role of calcium and nitric oxide.

Preconditioned P. tricornutum cells treated with 660 nM (0.1

lg/ml) DD for 2 h, which did not provoke any changes in

intracellular calcium (data not shown), were dramatically

sensitized to a successive administration of 13.2 lM (2.0 lg/

ml) DD (Figure 6A). The initial peak in cytosolic calcium was

increased almost 2-fold compared with cells that were not

preconditioned, and a second more-sustained peak was

Figure 5. Sublethal DD Concentrations Can Induce Resistance to Lethal Doses in P. tricornutum

Cells were pretreated with 0.1 lg/ml (660 nM) DD for 2 h prior to subsequent addition of 2 lg/ml (13.2 lM) DD (blue) and compared to a single dose
treatment of 2 lg/ml (13.2 lM) DD (green).
(A and B) Cell death was assayed by flow cytometry both qualitatively in cytograms (A) and quantitatively (B) using Sytox Green at the indicated time
points.
(C) Cell growth curves following resuspension of pretreated and non-pretreated cells in DD-free fresh medium 60 h after the 2 lg/ml (13.2 lM) DD
treatment. The time scale indicates the days following resuspension. Inset shows photograph of the two cultures taken 2 wk after resuspension starting
from an initial inoculum of 53 104 cells/ml.
Representative data from at least five experiments are shown in (A–C).
a.u., arbitrary units.
DOI: 10.1371/journal.pbio.0040060.g005
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apparent that was not seen in non-pretreated cells.
Interestingly, this modulation in the calcium signature
correlated with a 3-fold increased rate of NO production

in the acclimated population during the first 2 h after
exposure to the second treatment (Figure 6B). Only after 5 h
did the rate of production return to steady-state levels that

were similar in the two populations. Such a pronounced
increase in the preconditioned population could be due
either to a higher production rate of NO per cell or to a

higher number of reacting cells, as also observed in the real-
time studies of NO propagation within a DD-treated
population (see Video S1). In either scenario this result
implies that NO is associated not only with cell death but

also with induced resistance. The results in Figure 4C
confirm this, in that NO production increases both in
response to lethal and sublethal DD concentrations. How-

ever, in both this and other experiments (see Figures 1–4)
we observed a clear threshold response, suggesting that
sublethal doses of DD may trigger signaling phenomena that

lead to induced resistance, whereas higher doses induce cell
death. In terms of calcium, the different signatures of cell
populations destined to die and those with induced
resistance may suggest that the first acute response may

trigger active cell death, whereas the second sustained
response may override this and induce resistance responses.
The mechanisms whereby the same molecule can mediate

such contrasting responses must be the subject of future
study. Interestingly, a similar phenomenon has been
reported for NO in plants [41].

In these studies we used the best-characterized unsaturated
aldehyde, DD, to study effects on diatom cell-fate regulation,
and responses to very low concentrations could be observed.

However, previous reports demonstrate that a variety of
unsaturated aldehydes are produced by different diatom
species, and variability can also be found among different
strains of the same species [10,42,43]. Hence, local concen-
trations of reactive aldehydes may be considerable and they

may display synergistic effects not yet tested. Furthermore,
analysis of the amount of aldehydes produced by different
diatom species has revealed a high variability ranging
between 30 and 869 fg per cell [11,44], and it appears that

aldehyde production is continuous once cell membrane
integrity is disrupted [9]. A variety of factors may therefore
contribute to raise actual concentrations further, and so it is
reasonable to believe that the observations reported here may

have ecological relevance. Recent attempts to develop a
sensitive method for the detection and quantification of
diatom-derived aldehydes in cultures and in natural pop-
ulations will clearly help determine the ecological role of
these molecules in aquatic habitats [44].

In conclusion, our results demonstrate that diatom cells
can sense local DD concentrations and integrate this
information in a temporal context. Because aldehydes such
as DD are released by wounded diatom cells [9], we propose

that they are used as infochemicals to provide a surveillance
system to evaluate stress during bloom conditions. Indeed, in
chrysophytes, aldehyde concentrations also increase follow-
ing exposure to abiotic stress (e.g., light and nutrients [45]).

Figure 6. The Role of NO and Calcium in Acclimation to Sublethal Doses of DD

(A) Cytosolic calcium transients in transgenic P. tricornutum cells expressing Aequorin. Left panel shows calcium response in non-pretreated cells (green)
following addition of 13.2 lM (2 lg/ml) DD (indicated by arrow), whereas right panel shows the calcium signature of cells that had been pretreated with
660 nM (0.1 lg/ml) DD for 2 h prior to addition of 13.2 lM (2 lg/ml) DD (blue).
(B) Relative rate of NO production in pretreated (blue) and non-pretreated (green) cells. Experimental conditions as in (A).
Representative data from five experiments is shown in (A). Data in (B) are means plus standard deviation from five experiments.
a.u., arbitrary units.
DOI: 10.1371/journal.pbio.0040060.g006

PLoS Biology | www.plosbiology.org March 2006 | Volume 4 | Issue 3 | e600417

Infochemical Signaling in Phytoplankton



Furthermore, perception of some aldehydes could be used for
the detection of other phytoplankton competitors, analogous
to the cross talk (allelopathy) observed between a bloom-
forming dinoflagellate and toxic Microcystis sp. in Lake
Kinneret [7]. Perception of sublethal levels of aldehydes by
cells in the locality of bystander damaged cells could sensitize
calcium- and NO-based signaling systems to induce resistance
to successive aldehyde exposure, providing an early-warning
protective mechanism, as clearly observed in Figure 5. In a
somewhat analogous fashion, plants use volatile organic
compounds (VOC) for chemical communication to provide
immunity during plant–plant–herbivore interactions [46].

When stress conditions aggravate during a bloom, and cell
lysis rates increase, aldehyde concentrations could exceed a
certain threshold, and may function as a diffusible bloom-
termination signal that triggers population-level cell death
[25,47]. It is now established that coordination of stress
responses, cell survival, and death can also operate in
unicellular organisms and can orchestrate multicellular-like
behavior [48,49]. Based on our observations, we therefore
propose that differential production and sensitivity to
reactive aldehydes by diatoms may determine the fitness
and succession of phytoplankton communities in the marine
environment through mechanisms regulated by intracellular
calcium and NO signals. Such a hypothesis is further
supported by observations that different species and even
different strains of the same species display qualitative and
quantitative differences in aldehyde production [10,42,43].

A recent field study has evaluated intraspecies genetic
variability in populations of the harmful diatom Pseudo-

nitzschia delicatissima and indicated a high genetic variability in
pre-bloom conditions whereas only one major clade domi-
nated during the peak of the bloom [50]. Future studies
should therefore determine the function of infochemicals
such as unsaturated aldehydes in mediating selection in intra-
and interspecies interactions during bloom succession.

Materials and Methods

Diatom growth conditions. Phaeodactylum tricornutum Bohlin strain
CCMP 632 and Thalassiosira weissflogii clone CCMP 1336 were obtained
from the Provasoli-Guillard National Center for Culture of Marine
Phytoplankton (West Boothbay Harbor, Maine, United States).
Transgenic lines of P. tricornutum expressing the Aequorin gene were
obtained as previously described [34] and were grown axenically in
artificial sea water (ASW) at 20 8C in a 12-h photoperiod (100 lmol �
m�2

� s�1). T. weissflogii cells were grown axenically in filtered sea water
(SW) enriched with nutrients as in f/2 medium. Exponentially growing
cultures at cell densities from 13105 to 53105 cells/ml were used for
all experiments.

Chemicals. Dihydrorhodamine 123 (5 mg/ml stock in ethanol),
coelenterazine (1 mM stock in methanol), DEANO (10 mM stock in
KOH [pH 12]), DAF-FM (5 mM stock in DMSO), SNAP (S-nitroso-N-
acetylpenicillamine; 100 mM stock in DMSO), NMMA (100 mM stock
in water), DAPI (49,6-diamidino-2-phenylindole [5 mg/ml stock in
water]), impermeant BAPTA ((1,2-Bis(2-aminophenoxy)ethane-
N,N,N9,N9-tetraacetic acid, tetrapotassium salt; 1M stock in MOPS
[pH 7.2]), and Sytox Green nucleic acid stain (5 mM stock in DMSO)
were purchased from Molecular Probes-Invitrogen (http://probes.
invitrogen.com). SNP (sodium nitroprusside; 100 mM fresh stock in
water), acetaldehyde, (2E)-decenal, and DD were obtained from
Sigma-Aldrich (http://www.sigma-aldrich.com). DD from Sigma-Al-
drich was used for all experiments except for Aequorin assays, in
which we used a purified preparation of diatom-derived DD, kindly
provided by Dr. Georg Pohnert (MPI, Jena, Germany). DD was
dissolved in methanol, and concentrations were determined by
measuring absorption at the lambda max for DD of 274 nm, using

a Hewlett-Packard 8453 spectrophotometer (Hewlett-Packard Com-
pany, Palo Alto, California, United States).

Fluorescence detection. Fluorescence microscopy was performed
usingthefollowingfiltersfromOmegaOptical(http://www.omegafilters.
com): XF104–2 (for DAF-FM and Sytox Green detection), XF39 (for
chlorophyll detection), and XF06 (for DAPI detection). Image
acquisition was performed using a Hamamatsu ORCA-100 CCD
camera (Hamamatsu Photonics, Hamamatsu City, Japan). For the
video (see Video S1), DAF-FM-loaded cells were embedded in 0.5%
low melting point agarose (Bio-Rad, Hercules, California, United
States) in ASW. Image acquisition in the microscope was begun 5 min
after addition of DD (10 lg/ml), using a 203 objective and an
intensified CCD camera, I-PentaMAX Gen III ICCD:HB, from
Princeton Instruments (Roper Scientific, Tucson, Arizona, United
States).

For NO measurements, P. tricornutum or T. weissflogii cells were
incubated in the dark with 10 lM DAF-FM for 60 min followed by
two washing steps (incubation for 30 min after the first wash to
allow de-esterification). Efficiency of loading was tested by examin-
ing DAF-FM–dependent fluorescence in the microscope following
addition of the NO donor SNAP (0.5 mM). To quantify NO
accumulation, DAF-FM fluorescence was measured either with a
Bio-Tek FL600 Fluorescence Microplate Reader using a GFP filter
set (excitation 485/30, emission 530/30), or using a FACScalibur
Becton-Dickinson flow cytometer (Becton-Dickinson, Palo Alto,
California, United States) equipped with a 488-nm laser as
excitation source. A 530/30BP emission filter was used for detection
of DAF-FM–derived fluorescence. Cell death was assayed using Sytox
Green [13,25], and fluorescence was monitored both microscopically
and using flow cytometry or a fluorescence microplate reader, as for
NO.

Determination of NOS activity. DD-treated cells were harvested
and sonicated with lysis buffer (10 mM Tris-HCl [pH 7.5], 0.5 mM
EDTA, 50 mM NaCl, 1 mM DTT, 0.1% Triton X-100, and protein
inhibitor cocktail). The protein solution was then used to measure
NOS activity with a NOS assay kit from Cayman Chemicals (http://
www.caymanchem.com) as described in Guo et al. [26]. In order to
determine whether the reaction was calcium dependent, 5 mM EDTA
was added prior to the assay. Protein quantification was determined
using the Bio-Rad Lowry kit.

Supporting Information

Figure S1. DD Triggers Calcium Release from Internal Stores

P. tricornutum cells were treated with impermeant BAPTA (50 mM)
prior to exposure to either DD (A) or a hypo-osmotic shock (25%
ASW) (B). Traces from BAPTA-treated cells are in blue, traces from
untreated cells are in green.

Found at DOI: 10.1371/journal.pbio.0040060.sg001 (46 KB PDF).

Video S1. In Vivo Imaging of DD-Induced NO Burst in P. tricornutum
Cells

Real-time movie of DAF-FM–loaded P. tricornutum cells treated with
66 lM (10 lg/ml) DD and imaged for 35 min for NO detection. Frame
interval: 10 s. Movie time: approximately 35 min (QuickTime).

Found at DOI: 10.1371/journal.pbio.0040060.sv001 (3.2 MB MOV).
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