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ABSTRACT

Dual string theories of everything, being
purely geometrical, contain only two
fundamental comstants: ¢, for relativistic
invariance, and a length A, for quantiza-
tion. Planck's and Newton's constants
appear only through Planck's length, a
"calculable" fraction of A. Only the
exlistence of a light sector breaks a
"reciprocity" principle and unification at
A, which is also the theory's cut off.
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It is not inconceivable at present that a Dual (Super) String Theory
is the theory of everything(TOE). If so all phenomena must be reducible to
quantum relativistic geometry of 2-dimensional surfaces.

Witten has already pointed out [1] that ;most likely, Superstrings have

no free dimensionless parameters. Here we shall make some simple

observations on the dimensionful constants of nature in a dual TOE.

The (obvious ?) conclusion is that such theories only contain two
fundamental constants ,the velocity of light , c, needed for relativity (and
set equal to 1 in the following, if not explicitely written), and a length A,
needed for quantization. It is unnecessary, in fact very unnatural, to
introduce a string tension T, an energy scale, or a fundamental actionf, in
the context of quantum strings.

The above conclusion 1s immediately reached by recalling that the
Nambu-Goto {NG) string action is an area . All one needs for quantization is
tc convert en action into a phase factor: this is true for standard
treatments of non relativistic quantum mechanics [2], or in Feynman's path
integral approach [3). Obviously, to get a phase, we only need to divide the
NG action by A% where X is a fundamental length.

A guestion comes immediately to mind : why does one not do the same
in point theories, where actions are lengths rather than areas?The problem

is that even the free action of a system of point particles contains several
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(mass) perameters:

Sﬁ,in{s - -% e < fozr a2

One could quentize {1) by introducing a length , which amounts to
choose a unit of mass, but the functionel integral, or the indetermination
relations that would follow, would stili contain the perameters m;/m K
explicitely, hence will not involve purely geometrical objects. One prefers
to introduce an arbitrary new unit of mass and a quantum actionfi.

By contrast the classical string action does not contain parameters
{there is just gne superstring) The string coordinates (o ,T ) contain
both the position and the momentum variables in a single object with

dimensions of length. It is thus most natural ﬂ_ﬂl to introduce ﬂnu rESCﬂ"ng
factors in the expansion of X/*

X0 w)= P4 P T+ oscllotors
(2)

P = 2x/ p



and consider P as the conjugate variable 1o q (we shall put a bar on
the quantities we define non conventionally).

The usually adopted (and unnecessary ) rescaling factor 1/onT= a'=
dJ/dm2, the Reqgge slope parsmeter, has dimensions length/mass, 1s @
classical quantity (related as we shall see to Newton's constant) , and
should not be confused with A If we use p instead of the ususl p,
positions and momenta are on a more identical footing.

This is a manifestation of duality itself , which is related to 0,7
reparametrization invariance. Position variables are related to (o) et a
given T ; momenta to T evolution ,but what is o and what is T depends
on the parametrization used. P and X' can be combined together through a
reparametrization and thus they better have the same dimensions. This can
also be rephrased by saying that strings obey & version of the old Borm
principle of rectprocity [4] ,a symmetry of nature’s laws under the

interchange of q's with p’'s, which naturally leads to harmonic oscillators

and strings.

we thus proceed to quantization by Feynman's path tntegrai:
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This corresponds to a canonical quantization where:
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Thus A2 plays the role of Planck’s constant .Quantization allows only

discrete values for E 2 at tree level i.e.
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with N an integer occupation number (.20 for tachyon-free theories)Eq.
(5), for N=0, breaks rectprocity since strings have non zero size (Ag> ) ).

tn order to make connection with something more familiar remember
that a TOE, by definition, contains gravitation . Massive static particles

attract each other inducing a gravitational acceleration given by:

p— —_ (i)
%ﬂ = W1, Cl,jr

= M, Wy
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(6)

where, evidently, in our system of units G,, 15 a pure number( recall that

c=1). In the specific case of the Heterotic String [S] one finds for



instance:
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where { DV is the expectation value of the dileton field and ¥, is the
invariant volume of the compact manifold into which 6 of the original 10
dimensions compactify. Both should in principte come out of the theoryf1].

Note thet forces are dimensionless in our units. Comparing eq. (6)
with Newton's formula for the grevitational accelarotion {no sense in

comparing forces since the units are different) we find:
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¥e thus see that our definition of mass is ,apart from the factor ( 7 ),
the same as the so-called gravitationa! (Schwarzschild) radius [6] p _ of

an object of mass m

(9)

As anticipated ,this is an enterely classical concept, involving G,, but



noi4 . Thus our point cen be rephrased by saying that string properties are
best expressed in terms of sizes ond gravitstionel radii of particles, both
being quantized in units A . On the other hand, the quantity that
corresponds to A\ 1n the standard approach is nothing but Planck’s length,

up to a factor. Indeed one has :

(10) 37(: —?'\2:—@%&=>\P/@—M
A/

where the usual definition of the Planck length
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has been used . Thus, using ( 7 ) :

~<D> 3
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From general considerations {7] (see also eq. (16) below) one expects
A= 016 1),
It is amusing to consider the ratio between gravitational and physical

radius for a massive string:
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They are of the same order for en elementary string state as could
have been expected from reciprocity . This result indicates that strings,
through the uncertainty relation ( 4), neatly avoid the probiems due to the
too singular behaviour of classical relativity. indeed, ot distances smaller
than A, heavy string exchanges modify Newton's law and make it less
singular. Gravity indeed becomes fully quantum mechanical at distances
smaller than A and elementary (stringy) black holes do not probably exist.

Similar considerations also allow ta determine gauge couplings
obtsined via a Kaluza Klein mechanism. Gauge charges are compactified
momenta and again should be naturally measured in A units. The

indetermination principie gives

—_— T
(14) 'Féou.‘p ?v X/QCOM._P_

but q/'ﬁ reciprocity further implies

(1) =
—PCah.qP.. ~ RCOI&.P ™~ >\

The electromagnetic force is thus very similar to the gravitational

one



one .
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in our units gauge and gravitational couplings are both dimensionless
{in D=4 )} end ere “unified" for generic string states. It is only the
existence of extremely light strings (in A units) that breaks the symmetry
between the two forces and reciprocity (allowing p <<q ). The relation (16)
1s just the one deduced in the heterotic string [S] by use of modular
invariance .This leads to the selection of even self dual lattices for the
allowed momenta and follows directly from reciprocity at the A scale if
our units of moementum are used.

The above considerations also solve a problem in classical KK

theory (8], the KK radius being kept finite by a quantum effect {(a Bohr
quantization rule) controlled by the new quantum length \ .

Notice that gravitational and gauge forces are classical concepts: it

is just the_velues of elementary masses and charges that sre quentized in
(the same) units of A . Thus & cross section such as o(e*e'—;pf ﬁ)will be

given in our units os ¢
—2=4 - |
an O~ =& . x*N/5s o = a3
S
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and will be much larger than X" at usual accelerator energies.

g



Regarding A as the only constant controlling quantum phenomena
appears to generate a paradox. Systems involving distances much larger
than A should be classical,not quantum. How about the hydrogen atom then?

The above point is true for generic string states, but breaks down for
the massless string states . Somehow, these will eventually pick up a tiny
mass e.g.

g My = M= & ) (€= 0(5%%)

For systems involving very light string states quantum mechanics is
still very relevant {remember that the semiclassical approximation breaks
down at small momenta [2]} . Take indeed the hydrogen atom. Writing
Bohr's quantization condition in our units

2.
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as well as F=ma:

T
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gives immediately the standard results ( e.g. Balmer's series )
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The hydrogen atom thus satisfies AZ-AD = X very asymmetrically:
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Eq.(21) determines in principle A in terms of Rydberg’ constant .

Similarty, widths and lifetimes of ordinary strings are of the same
order, while for the light states one has

(23)

ceF =% ; ct~0(AfE)»\ ; Peed

As a final point we would like to discuss the fate off in a theory that
can do without 1t. It is not dissimilar from that of Boltzmann's constant
k 1n thermodynamics. Replacing temperetures by energies makes the
Introduction of k unnecessary. Fixing a unit of temperature (e.g. the degree
Kelyin) brings in k as the conversion factor.

Stmilarly, the (unnecessary) introduction of a unit of mass different
from the fundamental length A 1tself ( say the gram ) brings in G as the
conversion factor and A as a new constant. # itself can be expressed in

terms of A and c as

\C
) h = —— e
e

where €,, eq.(18), is the mass of the electron in A units(a “calculable”

-28
number) end m, = 9.11 10  gr. is taken here as the definition of grem . Of
course any other system can replace the electron in eq.(24 ), acm 3 of

vrater ot the freezing point, for instance.
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The fundamental quantum length A could mean however much more
than just the usefulness of & new system of units. If all probes are
quantum strings it is not possible to localize something with a precision
better than A during a T interval 0(1) :

(25) A ( g;ﬂtt \?<(°7'°)> > N\

Since any conceivable measurement must involve some string-string
scattering and this is described by a finite integral over T s ,there is no
measurement which does not involve field averages over regions of space
time O( }\"‘), subject themselves to quantum uncertainty. Strings thus avoid
the old Bohr-Rosenfeld criticism of local fields [9]. Since momenta

AP >.§'- (é }‘) are suppressed, the quantum constant A is also the cut
off, and the infinities of ordinary field theories are overcome. Strings
also appear to achieve the goals of T.D.Lee's approach [10] based on &
dynamical, discretized space time .

In conclusion string theories ,when expressed in their natural units,
reduce all phenomena ,not only gravity ,to pure geometry , reslizing an old
dream of modern physics [11], which started with Einstein's general
retativity. Although guantum mechanics plays a crucial role in dual string
theories , it is also purely geometrical, as emphasized by the dimensions

of the new quantum constant: maybe even Einstein would have accepted it!
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