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Abstract

Let X be a uniformly convex and uniformly smooth real Banach space with dual space
X

∗ . In this paper, a Mann-type iterative algorithm that approximates the zero of a
generalized-Φ-strongly monotone map is constructed. A strong convergence
theorem for a sequence generated by the algorithm is proved. Furthermore, the
theorem is applied to approximate the solution of a convex optimization problem, a
Hammerstein integral equation, and a variational inequality problem. This theorem
generalizes, improves, and complements some recent results. Finally, examples of
generalized-Φ-strongly monotone maps are constructed and numerical experiments
which illustrate the convergence of the sequence generated by our algorithm are
presented.
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1 Introduction

Let X be a real Banach space with dual space X∗. Let A : D(A) ⊂ X → X be a map, where

D(A) denotes the domain of A. The map A is called accretive if, for each u, v ∈ D(A), there

exists j(u – v) ∈ J(u – v) such that

〈

Au –Av, j(u – v)
〉

≥ 0,

where J : X → 2X
∗
is the normalized dualitymap defined, for each u ∈ X, by

J(u) =
{

u∗ ∈ X∗ :
〈

u,u∗〉 = ‖u‖
∥

∥u∗∥
∥,

∥

∥u∗∥
∥ = ‖u‖

}

.

The map A is called strongly accretive if there exists k > 0 such that, for each u, v ∈ D(A),

there exists j(u – v) ∈ J(u – v) such that

〈

Au –Av, j(u – v)
〉

≥ k‖u – v‖2.
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The map A is called strongly-Φ-accretive if, for each u, v ∈ D(A), there exist j(u – v) ∈
J(u – v) and a strictly increasing function Φ : [0,∞) → [0,∞) with Φ(0) = 0 such that

〈

Au –Av, j(u – v)
〉

≥ Φ
(

‖u – v‖
)

‖u – v‖.

The map A is called generalized-Φ-strongly accretive if, for each u, v ∈ D(A), there exist

j(u– v) ∈ J(u– v) and a strictly increasing function Φ : [0,∞) → [0,∞) with Φ(0) = 0 such

that

〈

Au –Av, j(u – v)
〉

≥ Φ
(

‖u – v‖
)

.

The accretive map A is called m-accretive if R(I + λA) = X for all λ > 0 (see, e.g., Guan

and Kartsatos [35], Reich [47], and the references therein). It is known that the class of

generalized-Φ-strongly accretive maps properly contains the class of Φ-strongly accre-

tive maps which, in turn, contains the class of strongly accretive maps. In Hilbert spaces,

accretive maps are calledmonotone maps. The accretive maps were introduced indepen-

dently in 1967 by Browder [11] and Kato [38]. Interest in such maps stems mainly from

their firm connection with evolution equations (see, e.g., Berinde [4], Chidume [17], Re-

ich [48], and the references contained in them). A fundamental problem in the study of

accretive maps in Banach spaces is the following:

Find u ∈ X such that Au = 0. (1.1)

Several existence theorems have been established for equation (1.1) (see, e.g., Browder [8–

11], Martin [40, 41]). It is well known that the class of generalized-Φ-strongly accretive

maps is the largest class of accretive-type maps for which, if a solution of equation (1.1)

exists, it is always unique. Iterative algorithms for approximating solutions of equation

(1.1) have been studied extensively by numerous authors. The first iterative method for

approximating solutions of equation (1.1) in real Banach spacesmore general thanHilbert

spaces, as far as we know, was that by Chidume [16]. He proved that if X = Lp,p ≥ 2, and

T : K → K is a Lipschitz strongly pseudo-contractivemap, then theMann iteration process

converges strongly to u∗ ∈ F(T), whereK is a nonempty closed convex andbounded subset

of X and F(T) := {x ∈ K : Tx = x}. This result signalled the return to extensive research on

iterative methods for approximating solutions of equation (1.1) in more general Banach

spaces. This theorem of Chidume has been generalized in various directions by numerous

authors. It has been extended tomore general real Banach spaces andmore general classes

of nonlinear operators. The literature on this abounds, and most of these extensions and

their applications can be found in any of the following monographs and journal papers:

Berinde [4], Chidume [17], Goebel and Reich [34, 49]. Let A : D(A) ⊂ X → X∗ be a map,

where D(A) denotes the domain of A. The map A is calledmonotone if

〈u – v,Au –Av〉 ≥ 0, ∀u, v ∈D(A). (1.2)

The map A is called strongly monotone if there exists k > 0 such that

〈u – v,Au –Av〉 ≥ k‖u – v‖2, ∀u, v ∈D(A). (1.3)
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The map A is called Φ-strongly monotone if there exists a strictly increasing function Φ :

[0,∞) → [0,∞) with Φ(0) = 0 such that

〈u – v,Au –Av〉 ≥ Φ
(

‖u – v‖
)

‖u – v‖, ∀u, v ∈D(A). (1.4)

The map A is called generalized-Φ-strongly monotone if there exists a strictly increasing

function Φ : [0,∞) → [0,∞) with Φ(0) = 0 such that

〈u – v,Au –Av〉 ≥ Φ
(

‖u – v‖
)

, ∀u, v ∈D(A). (1.5)

It is easy to see that the class of generalized-Φ-strongly monotonemaps contains the class

of Φ-strongly monotone maps and the class of strongly monotone maps.

Remark 1 The class of generalized-Φ-strongly monotone maps is the largest class of

monotone maps for which, if a solution of equation (1.1) exists, it is always unique.

Interest in monotone maps stems mainly from their usefulness in numerous applica-

tions. Consider, for example, the following: Let f : X → R ∪ {∞} be a proper lower semi-

continuous and convex function. The subdifferential of f , ∂f : X → 2X
∗
is defined, for each

u ∈ X, by

∂f (u) =
{

u∗ ∈ X∗ : f (v) – f (u) ≥
〈

v – u,u∗〉,∀v ∈ X
}

.

It is easy to see that the ∂f is amonotone map on X and that 0 ∈ ∂f (u) if and only if u is a

minimizer of f . Setting ∂f ≡ A, then solving the equation Au = 0 is equivalent to solving

for a minimizer of f . Several existence theorems have been established for the equation

Au = 0 when the map A is of monotone type (see, e.g., Deimling [32]; Pascali and Shurian

[46], and the references contained in them). Iterativemethods for approximating solutions

of Au = 0, where A : X → X∗ is of monotone type, have been studied by various authors.

Unfortunately, not much has been achieved. Part of the problem is that in real Banach

spaces more general than Hilbert spaces, since the map A maps X to X∗, the recursion

formulas containing un and Aun used for accretive-type maps may not be well defined in

this setting. Several attempts have been made to overcome this difficulty in the recursion

formulas for approximating zeros of monotone-type maps (see, e.g., Chidume et al. [26],

Kamimura and Takahashi [37], Reich and Sabach [51], Reich [48], Chidume et al. [28], and

the references contained in them). In 2015, Diop et al. [33] studied an iterative scheme of

Mann type to approximate the zero of a strongly monotone boundedmap in a 2-uniformly

convex real Banach space with a uniformly Gâteaux differentiable norm. They proved the

following theorem.

Theorem 1.1 (Diop et al. [33]) Let X be a 2-uniformly convex real Banach space with

uniformly Gâteaux differentiable norm and X∗ be its dual space. Let A : X → X∗ be a

bounded and k-strongly monotone map such that A–1(0) �= ∅. For arbitrary u1 ∈ X, let {un}
be the sequence defined iteratively by

un+1 = J–1(Jun – αnAun), n≥ 1,
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where J is the normalized duality map on X and {αn} ⊂ (0, 1) is a real sequence satisfying

the following conditions: (i)
∑

αn = ∞, (ii)
∑

α2
n < ∞. Then there exists γ0 > 0 such that

αn < γ0, the sequence {un} converges strongly to the solution of the equation Au = 0.

It is our purpose in this paper to first prove a strong convergence theorem for a

generalized-Φ-strongly monotone map using a Mann-type iterative algorithm and with-

out imposing the restriction that the operator be bounded. Then, the convergence theorem

proved is applied to approximate the solution of a convex minimization problem, a Ham-

merstein integral equation, and a variational inequality problem over the set of common

fixed points of a finite family of quasi-Φ-nonexpansive maps. Our theorems are improve-

ments of the results of Diop et al. [33], Chidume and Bello [20], Chidume [18], Chidume

et al. [24, 26], and a host of other results in the literature (see Remark 5 below). Finally, we

construct examples of generalized-Φ-strongly monotone maps and also give numerical

experiments to illustrate the convergence of the sequence generated by our algorithm.

2 Preliminaries

Let X be a smooth real Banach space with dual space X∗. Themapψ : X×X →R, defined

by ψ(u, v) = ‖u‖2 – 2〈u, Jv〉 + ‖v‖2,∀u, v ∈ X, will play a central role in what follows. The

map ψ was introduced by Alber [1] and has been studied by Alber [1], Kamimura and

Takahashi [37], Reich [51], Chidume [17], Berinde [4], Chidume and Monday [23], and a

host of other authors. It is easy to see from the definition of the map ψ that

(

‖u‖ – ‖v‖
)2 ≤ ψ(u, v)≤

(

‖u‖ + ‖v‖
)2
, ∀u, v ∈ X. (2.1)

Let V : X × X∗ → R be a map defined by V (u,u∗) = ‖u‖2 – 2〈u,u∗〉 + ‖u∗‖2,∀u ∈ X,u∗ ∈
X. Observe that V (u,u∗) = φ(u, J–1(u∗)),∀u ∈ X,u∗ ∈ X∗. The following lemmas will be

needed in the sequel.

Lemma 2.1 (Alber [1]) Let X be a reflexive strictly convex and smooth Banach space with

X∗ as its dual. Then

V
(

u,u∗) + 2
〈

J–1u∗ – u, v∗〉 ≤ V
(

u,u∗ + v∗) for all u ∈ X and u∗, v∗ ∈ X∗.

Lemma 2.2 (Chidume [18]) Let X be a uniformly convex real Banach space. For arbitrary

r > 0, let Br(0) := {u ∈ X : ‖u‖ ≤ r}. Then, for arbitrary u, v ∈ Br(0), the following inequality

holds:

ψ(u, v)≤ ‖u – v‖2 + ‖u‖2.

Lemma 2.3 (Tan and Xu [55]) Let {an} and {σ } be sequences of nonnegative real numbers.

For some No ∈N, the following relation holds:

an+1 ≤ an + σn, n≥ 0.

(a) If
∑

σn < ∞, then liman exists. (b) If, in addition, the sequence {an} has a subsequence

that converges to 0, then {an} converges to 0.
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Lemma 2.4 (Kamimura and Takahashi [37]) Let X be a uniformly convex and uniformly

smooth real Banach space and {un}, {vn} be sequences in X such that either {un}or{vn} is
bounded. If lim

n→∞
ψ(un, vn) = 0, then lim

n→∞
‖un – vn‖ = 0.

Remark 2 It is easy to see that the converse of Lemma 2.4 is also true whenever

{un}and{vn} are bounded.

Lemma 2.5 (Alber and Ryazantseva [2]) Let X be a uniformly convex Banach space with

dual space X∗. Then, for any R > 0 and for any u, v ∈ X∗ such that ‖u‖ ≤ R, ‖v‖ ≤ R, the

following inequality holds:

∥

∥J–1u – J–1v
∥

∥ ≤ c2δ
–1
X

(

4RL‖u – v‖
)

,

where c2 = 2max{1,R}, 1 < L < 1.7.

Lemma 2.6 (Alber and Ryazantseva [2]) Let X be a uniformly convex Banach space with

dual space X∗. Then, for any R > 0 and for any u, v ∈ X such that ‖u‖ ≤ R, ‖v‖ ≤ R, the

following inequality holds:

‖Ju – Jv‖ ≤ c2δ
–1
X∗

(

4RL‖u – v‖
)

,

where c2 = 2max{1,R}, 1 < L < 1.7.

Lemma 2.7 (Rockafellar [52], see also Pascali and Sburlin [46]) A monotone map

A : X → X∗ is locally bounded at the interior points of its domain.

Definition 2.8 A map A : X → X∗ is quasi-bounded if, for every μ > 0, there exists γ > 0

such that whenever 〈v,Av〉 ≤ μ‖v‖ and ‖v‖ ≤ μ, then ‖Av‖ ≤ γ .

The following lemma has been proved. However, for completeness, we present the proof

here (see, e.g., Pascali and Sburlan [46], chapter III, Lemma 3.6).

Lemma 2.9 Let X be a real normed space with dual space X∗. Every monotone map A :

D(A) ⊂ X → X∗ with 0 ∈ IntD(A) is quasi-bounded.

Proof By Lemma 2.7, A is locally bounded at 0, i.e., there exists r > 0 such that

‖Au‖ ≤ μ, ∀u ∈ Br(0), for some μ > 0.

Now, using this μ > 0, suppose 〈v,Av〉 ≤ μ‖v‖ and ‖v‖ ≤ μ. Then, by the monotonicity of

A, we have that

〈v,Av〉 ≥ 〈u,Av〉 + 〈v – u,Au〉, ∀u ∈ Br(0).

Observe that

〈v – u,Au〉 ≤ ‖Au‖
(

‖v‖ + ‖u‖
)

≤ μ
(

‖v‖ + r
)

.
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Thus,

〈u,Av〉 ≤ 〈v,Av〉 + 〈u – v,Au〉

≤ μ‖v‖ +μ
(

‖v‖ + r
)

= μ
(

2‖v‖ + r
)

, ∀u ∈ Br(0).

This implies that

∣

∣〈u,Av〉
∣

∣ ≤ μ
(

2‖v‖ + r
)

, ∀u ∈ Br(0).

Thus,

sup
‖u‖≤r

∣

∣〈u,Av〉
∣

∣ ≤ μ
(

2‖v‖ + r
)

.

Therefore,

‖Av‖ ≤
μ

r

(

2‖v‖ + r
)

.

Hence, A is quasi-bounded. �

3 Main result

In Theorem 3.1 below, the sequence {βn} ⊂ (0, 1) is assumed to satisfy the following condi-

tions: (C1)
∑

βn = ∞, limβn = 0; (C2) 2
∑

δ–1X (βnM)M < ∞; (C3) 2δ
–1
X (βnM) ≤ γ0 for some

M > 0, γ0 > 0, where δX is the modulus of convexity (see, e.g., Chidume [17], pp. 5, 6).

Theorem 3.1 Let X be a uniformly convex and uniformly smooth real Banach space with

dual space X∗. Let A : D(A) = X → X∗ be a generalized-Φ-strongly monotone map, where

D(A) is the domain of A and A–1(0) �= ∅. For arbitrary v1 ∈ X, let {vn} be a sequence gener-

ated iteratively by

vn+1 = J–1(Jvn – βnAvn), n≥ 1, (3.1)

where J is the normalized duality map on X, and the sequence {βn} ⊂ (0, 1) satisfies condi-

tions C1, C2, and C3. Then the sequence {vn} converges strongly to v∗ ∈ A–1(0).

Proof First, we observe that if the equation Au = 0 has a solution, it is necessarily unique.

If y∗ is a solution of the equation Au = 0, then, from inequality (1.5), we have that

〈

x – y∗,Ax
〉

≥ Φ
(∥

∥x – y∗∥
∥

)

, ∀x ∈ X. (3.2)

Suppose that u∗ �= y∗ is another solution of the equationAu = 0, substituting u∗ in inequal-

ity (3.2), we have

0≥ Φ
(∥

∥u∗ – y∗∥
∥

)

,

which implies, by the properties of Φ , that u∗ = y∗. This contradiction yields the unique-

ness of the solution. The remainder of the proof is now in two steps.
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Step 1.Weshow that the sequence {vn} is bounded. Let v∗ ∈ A–1(0). Letμ > 0 be arbitrary

but fixed. Then there exists r > 0 such that

r > max
{

4μ2 +
∥

∥v∗∥
∥

2
,ψ

(

v∗, v1
)}

. (3.3)

Define B := {v ∈ X :ψ(v∗, v)≤ r}. It suffices to show that {ψ(v∗, vn)} is bounded for each n ∈
N.We proceed by induction. For n = 1, by construction, we have thatψ(v∗, v1) ≤ r. Assume

that ψ(v∗, vn) ≤ r for some n ≥ 1. Using inequality (2.1), we have that ‖vn‖ ≤ ‖v∗‖ +
√
r.

Now, we show that ψ(v∗, vn+1)≤ r. Suppose by contradiction that ψ(v∗, vn+1) ≤ r does not

hold. Then ψ(v∗, vn+1) > r. Since A : X → X∗ is locally bounded at v ∈ X, there exist rv > 0

andm > 0 such that

‖Ax‖ ≤ m, ∀x ∈ Brv (v).

In particular, ‖Av‖ ≤ m.

Therefore, 〈v,Av〉 ≤ m‖v‖.

Define M0 := max{m,‖v∗‖ +
√
r}. Then 〈v,Av〉 ≤ M0‖v‖ and ‖v‖ ≤ M0. By Lemma 2.9,

there existsM > 0 such that ‖Av‖ ≤ M,∀v ∈ B. Define γ0 := min{1, Φ(μ)
M

, μ

M
}. Using Lemma

2.1, we compute as follows:

ψ
(

v∗, vn+1
)

= V
(

v∗, Jvn – βnAvn
)

≤ V
(

v∗, Jvn
)

– 2βn

〈

J–1(Jvn – βnAvn) – v∗,Avn –Av∗〉

= ψ
(

v∗, vn
)

– 2βn

〈

vn – v∗,Avn –Av∗〉 – 2βn〈vn+1 – vn,Avn〉. (3.4)

Using the fact thatA is a generalized-Φ-stronglymonotonemap and Lemma 2.5, it follows

from inequality (3.4) that

ψ
(

v∗, vn+1
)

≤ ψ
(

v∗, vn
)

– 2βnΦ
(∥

∥vn – v∗∥
∥

)

+ 2βnδ
–1
X

(

4RLβn‖Avn‖
)

‖Avn‖

≤ ψ
(

v∗, vn
)

– 2βnΦ
(∥

∥vn – v∗∥
∥

)

+ 2βnδ
–1
X (βnM)M. (3.5)

But from recursion formula (3.1), we have that

‖Jvn+1 – Jvn‖ = βn‖Avn‖ ≤ βnM. (3.6)

Applying Lemma 2.5 and inequality (3.6), we have that

‖vn+1 – vn‖ =
∥

∥J–1(Jvn+1) – J–1(Jvn)
∥

∥ ≤ 2δ–1X (βnM). (3.7)

Thus, from inequality (3.7), we obtain that

∥

∥vn – v∗∥
∥ ≥

∥

∥vn+1 – v∗∥
∥ – 2δ–1X (βnM). (3.8)

From Lemma 2.2, we have that

r < ψ
(

v∗, vn+1
)

≤
∥

∥vn+1 – v∗∥
∥

2
+

∥

∥v∗∥
∥

2
. (3.9)
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Using inequality (3.3), we have that

4μ2 +
∥

∥v∗∥
∥

2
–

∥

∥v∗∥
∥

2
< r –

∥

∥v∗∥
∥

2 ≤
∥

∥vn+1 – v∗∥
∥

2
.

Hence,

2μ ≤
∥

∥vn+1 – v∗∥
∥. (3.10)

From inequalities (3.7), (3.8), and the definition of γ0, we have that

∥

∥vn – v∗∥
∥ ≥ 2μ – 2δ–1X (βnM) ≥ 2μ –μ = μ. (3.11)

Since Φ is strictly increasing, we have that

Φ
(∥

∥vn – v∗∥
∥

)

≥ Φ(μ). (3.12)

From inequality (3.5) and the definition of γ0, we have that

r < ψ
(

v∗, vn+1
)

≤ ψ
(

v∗, vn
)

– 2βnΦ(μ) + 2βnδ
–1
X (βnM)M (3.13)

≤ r – 2βnΦ(μ) + βnΦ(μ) < r. (3.14)

This is a contradiction. Hence, {ψ(v∗, vn)} is bounded. Consequently, {vn} is bounded.
Step 2.We show that the sequence {vn} converges strongly to a point v∗ ∈ A–1(0). Using

inequality (3.5), we have that

ψ
(

v∗, vn+1
)

≤ ψ
(

v∗, vn
)

– 2βnΦ
(∥

∥vn – v∗∥
∥

)

+ 2βnδ
–1
X (βnM)M

≤ ψ
(

v∗, vn
)

+ 2βnδ
–1
X (βnM)M. (3.15)

By Lemma 2.3, we get that {ψ(v∗, vn)} is convergent. Furthermore, we have that

2βnΦ
(∥

∥vn – v∗∥
∥

)

≤ ψ
(

v∗, vn
)

–ψ
(

v∗, vn+1
)

+ 2βnδ
–1
X (βnM)M. (3.16)

Claim. lim infΦ(‖vn – v∗‖) = 0.

Suppose by contradiction that lim infΦ(‖vn–v∗‖) = 0 does not hold. Then lim infΦ(‖vn–
v∗‖) = s > 0. Hence, there exists N1 ∈N such that

Φ
(∥

∥vn – v∗∥
∥

)

>
s

2
for all n≥ N1. (3.17)

Using inequality (3.17), conditions C1 and C2, we have that

s

∞
∑

n=1

βn ≤
∞

∑

n=1

(

ψ
(

v∗, vn
)

–ψ
(

v∗, vn+1
))

+ 2

∞
∑

n=1

δ–1X (βnM)M < ∞. (3.18)

This is a contradiction. Hence, lim infΦ(‖vn – v∗‖) = 0. Thus, there exists a subsequence

{vnk } of {vn} such that

lim
k→∞

Φ
(∥

∥vnk – v∗∥
∥

)

= 0. (3.19)
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Using the property of Φ , it follows that lim
k→∞

‖vnk – v∗‖ = 0. By Remark 2, we have that

lim
k→∞

ψ
(

v∗, vnk
)

= 0. (3.20)

Consequently, by Lemma 2.3, we have that lim
n→∞

ψ(v∗, vn) = 0. Hence, by Lemma 2.4, we

have that lim
n→∞

‖vn – v∗‖ = 0.

This completes the proof. �

4 Application to convex optimization problem

In this section, we apply Theorem 3.1 in solving the problem of finding minimizers of

convex functions defined on real Banach spaces. First, we begin with the following known

results.

Lemma 4.1 (See, e.g., Diop et al. [33]) Let X be a real Banach space and g : X → R be a

convex and differentiable function. Let dg : X → X∗ denote the differential map associated

with g . Then v ∈ X is a minimizer of g if and only if dg(v) = 0.

Lemma 4.2 (Xu [56], see also Chidume [17], p. 43) Let X be a uniformly convex real Ba-

nach space. For arbitrary r > 0, let Br(0) := {v ∈ X : ‖v‖ ≤ r}. Then there exists a contin-

uous strictly increasing convex function Φ : [0,∞) → [0,∞),Φ(0) = 0 such that, for every

u, v ∈ Br(0), the following inequality holds:

〈u – v, Ju – Jv〉 ≥ Φ
(

‖u – v‖
)

,

where J is the single-valued normalized duality map on X.

Lemma 4.3 (Chidume et al. [26]) Let X be a uniformly convex and uniformly smooth real

Banach space. Let g : X →R be a differentiable convex function. Then the differential map

dg : X → X∗ satisfies the following inequality:

〈

u – v,dg(u) – dg(v)
〉

≥ 〈u – v, Ju – Jv〉, ∀u, v ∈ X,

where J is the single-valued normalized duality map on X.

Remark 3 If for any R > 0 and for any u, v ∈ X such that ‖u‖ ≤ R,‖v‖ ≤ R, then the map

dg : X → X∗ is generalized-Φ-strongly monotone. This can easily be seen from Lemmas

4.2 and 4.3.

We now prove the following theorem.

Theorem 4.4 Let X be a uniformly convex and uniformly smooth real Banach space with

dual space X∗. Let g : X → R∪ {∞} be a differentiable, convex, proper, and coercive func-

tion such that (dg)–1(0) �= ∅. For arbitrary v1 ∈ X, let the sequence {vn} be generated by

vn+1 = J–1
(

Jvn – βn dg(vn)
)

, n≥ 1,
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where J is the normalized duality map on X. Assume that {βn} ⊂ (0, 1) satisfies conditions

C1, C2, and C3 of Theorem 3.1. Then g has a unique minimizer v∗ ∈ X and the sequence

{vn} converges strongly to v∗.

Proof Since g is a lower semi-continuous, convex, proper, and coercive function, then g

has a minimizer v∗ ∈ X. Furthermore, dg : X → X∗ is generalized-Φ-strongly monotone.

Hence, the conclusion follows from Theorem 3.1. �

5 Application to Hammerstein integral equation

Let Ω ⊂ R
n be Lebesgue measurable. Let k : Ω × Ω → R and f : Ω ×R→ R be measur-

able real-valued functions. An integral equation of Hammerstein type has the form

u(x) +

∫

Ω

k(x, y)f
(

y,u(y)
)

dy = w(x), (5.1)

where the unknown function u and inhomogeneous function w lie in a Banach space X of

measurable real-valued functions. Define a linear map K by

Kv(x) =

∫

Ω

k(x, y)v(y)dy (5.2)

on Ω and denote by F the superposition or Nemitskyi operator corresponding to f , i.e.,

Fu(y) = f (y,u(y)). Then equation (5.1) can be put in the form

u +KFu = 0, (5.3)

where, without loss of generality, we have taken w ≡ 0. Interest in Hammerstein integral

equations stems mainly from the fact that several problems that arise in differential equa-

tions, for instance, elliptic boundary value problems whose linear parts possess Green’s

function can, as a rule, be put in the form (5.1) (see, e.g., Pascali and Sburian [46], chap-

ter p. 164). Several existence and uniqueness theorems have been proved for equations of

Hammerstein type (see, e.g., Brezis and Browder [5, 6], Chepanovich [15], Browder and

Gupta [12], De Figueiredo and Gupta [31], and the references contained in them). In gen-

eral, equations of Hammerstein type are nonlinear and there is no known method to find

closed form solutions for them. Consequently, methods for approximating solutions of

such equations are of interest. For earlier and more recent works on approximation of so-

lutions of equations of Hammerstein type, the reader may consult any of the following:

Brezis and Browder [5, 6], Chidume and Shehu [27], Chidume and Ofoedu [25], Chidume

and Zegeye [29], Chidume and Djitte [22], Ofoedu and Onyi [45], Ofoedu and Malonza

[44], Zegeye and Malonza [58], Chidume and Bello [20], Minjibir and Mohammed [42],

and the references contained in them. We now apply Theorem 3.1 to approximate a solu-

tion of equation (5.3). The following lemma would be needed in the proof of Theorem 5.2

below.

Lemma 5.1 Let X be a uniformly convex and uniformly smooth real Banach space with

dual space X∗ and E = X ×X∗. Let F : X → X∗ and K : X∗ → X be generalized-Φ1-strongly

monotone and generalized-Φ2-strongly monotone maps, respectively. Let A : E → E∗ be

defined by A([u, v]) = [Fu – v,Kv + u]. Then A is a generalized-Φ-strongly monotone map.
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Proof Let [u1, v1], [u2, v2] ∈ E. Then

〈

[u1, v1] – [u2, v2],A
(

[u1, v1]
)

–A
(

[u2, v2]
)〉

=
〈

[u1 – u2, v1 – v2], [Fu1 – Fu2 + v2 – v1,Kv1 –Kv2 + u1 – u2]
〉

= 〈u1 – u2,Fu1 – Fu2〉 + 〈v1 – v2,Kv1 –Kv2〉

≥ Φ1

(

‖u1 – u2‖
)

+Φ2

(

‖v1 – v2‖
)

. �

Remark 4 For A defined in Lemma 5.1, [u∗, v∗] is a zero of A if and only if u∗ solves (5.3),

where v∗ = Fu.

In Theorem 5.2 below, the sequence {βn} ⊂ (0, 1) is assumed to satisfy the following

conditions:

(C1)
∑

βn = ∞; limβn = 0.

(C2) 2
∑

(δ–1X (βnM1)M1 + δ–1X (βnM2)M2) < ∞.

(C3) 2max{δ–1X (βnM1)M1, δ
–1
X∗ (βnM2)M2} ≤ γ0 for someM1 > 0,M2, γ0 > 0.

(C4) γ0 = min{1, Φ(μ)
2M1

, Φ(μ)
2M2

}, δX is the modulus of convexity (see, e.g., Chidume [17], pp. 5,

6). We now prove the following theorem.

Theorem 5.2 Let X be a uniformly convex and uniformly smooth real Banach space with

dual space X∗. Let F : D(F) = X → X∗ and K : D(K) = X∗ → X be generalized-Φ1-strongly

monotone and generalized-Φ2-stronglymonotonemaps, respectively,where D(F) and D(K)

denote the domains of F and K , respectively, and such that equation (5.3) has a solution.

For arbitrary (u1, v1) ∈ X ×X∗, define the sequences {un} and {vn} by

un+1 = J–1
(

Jun – βn(Fun – vn)
)

, n≥ 1; vn+1 = J–1∗
(

J∗vn – βn(Kvn + un)
)

, n≥ 1.

Assume that the sequence {βn} ⊂ (0, 1) satisfies conditions C1, C2, and C3 of Theorem 3.1.

Then the sequences {un} and {vn} converge strongly to u∗ and v∗, respectively, where u∗ is a

solution of the equations u +KFu = 0 and v∗ = Fu∗.

Proof Set E = X × X∗ and A : E → E∗ by A([u, v]) = [Fu – v,Kv + u]. Then by Lemma 5.1,

A is a generalized-Φ-strongly monotone map. Hence, by Theorem 3.1 and Remark 4, the

result is immediate. �

6 Application to variational inequality problems

Let X be a real normed space with dual space X∗. Let A : C ⊂ X → X∗ be a nonlinear map.

The classical variational inequality problem is the following:

find u ∈ C such that 〈u – v,Au〉 ≥ 0,∀v ∈ C. (6.1)

The set of solutions of problem (6.1) is denoted by VI(A,C). Variational inequality prob-

lems were first introduced and studied by Stampacchia [54] in 1964 and have been found

to have numerous applications in the study of nonlinear analysis (see, e.g., Shi [53], Noor

[43], Yao [57], Stampacchia [54], and the references contained in them). Several existence

results for problem (6.1) have been proved when A is a monotone-type map defined on
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certain Banach spaces (see, e.g., Hartman and Stampacchia [36], Browder [7], Barbu and

Precupanu [3], and the references contained in them). Iterative approximation of solutions

of problem (6.1), assuming existence, has been studied extensively. For earlier and recent

works on variational inequality problems, the reader may consult any of the following:

Stampacchia [54], Korpelevich [39], Censor et al. [13], Chidume et al. [19, 21], and the

references contained in them. We now prove the following theorem.

Theorem 6.1 Let X be a uniformly convex and uniformly smooth real Banach space with

dual space X∗, and let C be a nonempty closed and convex subset of X. Let A : D(A) =

X → X∗ be a generalized-Φ-strongly monotone map, where D(A) is the domain of A. Let

Ti : C → X, i = 1, 2, . . . ,N , be a finite family of quasi-φ-nonexpansive maps such that P :=
⋂N

i=1 F(Ti) �= ∅. For arbitrary v1 ∈ X, define the sequence {vn} generated by

vn+1 = J–1
(

J(T[n]vn) – βnA(T[n]vn)
)

, n≥ 1, where T[n] := Tn modN . (6.2)

Assume that VI(A,P) �= ∅, and the sequence {βn} ⊂ (0, 1) satisfies conditions C1, C2, and C3

of Theorem 3.1. Then the sequence {vn} converges strongly to v∗ ∈ VI(A,P).

Proof The proof is in two steps.

Step 1.We show that the sequence {vn} is bounded.
Let v∗ ∈G–1(0). Let μ > 0 be arbitrary but fixed. Then there exists r > 0 such that

r > max
{

4μ2 +
∥

∥v∗∥
∥

2
,ψ

(

v∗, v1
)}

. (6.3)

Define B = {v ∈ X : ψ(v∗, v) ≤ r}. It suffices to show that {ψ(v∗, vn)} is bounded for each

n ∈ N. We proceed by induction. For n = 1, by construction, ψ(v∗, v1) ≤ r. Assume that

ψ(v∗, vn) ≤ r for some n ≥ 1. Applying the definition of the map ψ , we have that ‖vn‖ ≤
‖v∗‖ +

√
r. Now, we show that ψ(v∗, vn+1) ≤ r. Suppose not, i.e., suppose ψ(v∗, vn+1) > r.

By Lemma 2.9, A is quasi-bounded. Thus, there exists M > 0 such that ‖Av‖ ≤ M,∀v ∈ B.

Define γ0 := min{1, Φ(μ)
M

, μ

M
}. Using Lemma 2.1, we compute as follows:

ψ
(

v∗, vn+1
)

= V
(

v∗, J(T[n]vn) – βnA(T[n]vn)
)

≤ V
(

v∗, J(T[n]vn)
)

– 2βn

〈

J–1
(

J(T[n]vn) – βnA(T[n]vn)
)

– v∗,A(T[n]vn)
〉

= ψ
(

v∗,T[n]vn
)

– 2βn

〈

T[n]vn – v∗,AT[n]vn
〉

– 2βn〈vn+1 – T[n]vn,AT[n]vn〉

≤ ψ
(

v∗, vn
)

– 2βn

〈

T[n]vn – v∗,AT[n]vn –Av∗〉 – 2βn

〈

T[n]vn – v∗,Av∗〉

– 2βn

〈

vn+1 – T[n]vn,A(T[n]vn)
〉

≤ ψ
(

v∗, vn
)

– 2βn

〈

T[n]vn – v∗,AT[n]vn –Av∗〉

– 2βn

〈

vn+1 – T[n]vn,A(T[n]vn)
〉

. (6.4)

Using the fact thatA is a generalized-Φ-stronglymonotonemap and Lemma 2.5, it follows

from inequality (6.4) that

ψ
(

v∗, vn+1
)

≤ ψ
(

v∗, vn
)

– 2βnΦ
(∥

∥T[n]vn – v∗∥
∥

)

+ 2βnδ
–1
X

(

4RLβn‖AT[n]vn‖
)

‖AT[n]vn‖

≤ ψ
(

v∗, vn
)

– 2βnΦ
(∥

∥vn – v∗∥
∥

)

+ 2βnδ
–1
X (βnM)M. (6.5)
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But from recursion formula (6.2), we have that

‖Jvn+1 – JT[n]vn‖ = βn‖Avn‖ ≤ βnM. (6.6)

Applying Lemma 2.5 and inequality (6.6), we have that

‖vn+1 – T[n]vn‖ =
∥

∥J–1(Jvn+1) – J–1(JT[n]vn)
∥

∥ ≤ 2δ–1X (βnM). (6.7)

Thus, from inequality (6.7), we obtain that

∥

∥T[n]vn – v∗∥
∥ ≥

∥

∥vn+1 – v∗∥
∥ – 2δ–1X (βnM). (6.8)

From Lemma 2.2, we have that

r < ψ
(

v∗, vn+1
)

≤
∥

∥vn+1 – v∗∥
∥

2
+

∥

∥v∗∥
∥

2
. (6.9)

Using inequality (6.3), we have that

4μ2 +
∥

∥v∗∥
∥

2
–

∥

∥v∗∥
∥

2
< r –

∥

∥v∗∥
∥

2 ≤
∥

∥vn+1 – v∗∥
∥

2
.

Hence,

2μ ≤
∥

∥vn+1 – v∗∥
∥. (6.10)

From inequalities (6.8), (6.10), and the definition of γ0, we have that

∥

∥T[n]vn – v∗∥
∥ ≥ 2μ – 2δ–1X (βnM) ≥ 2μ –μ = μ. (6.11)

Since Φ is strictly increasing, we have that

Φ
(∥

∥T[n]vn – v∗∥
∥

)

≥ Φ(μ). (6.12)

From inequality (6.5) and the definition of γ0, we have that

r < ψ
(

v∗, vn+1
)

≤ ψ
(

v∗, vn
)

– 2βnΦ(μ) + 2βnδ
–1
X (βnM)M (6.13)

≤ r – 2βnΦ(μ) + βnΦ(μ) < r. (6.14)

This is a contradiction. Hence, {ψ(v∗, vn)} is bounded. Consequently, {vn} is bounded. The
remaining part of the proof follows from the proof of Theorem 3.1. �

7 Examples

Example 1 Let X = lp, 1 < p < 2, and let A : lp → l∗p be a map defined by

Au = Ju, ∀u ∈ lp,u = (u1,u2,u3, . . .),
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where J is the normalized duality map on X. Then

〈u – v,Au –Av〉 = 〈u – v, Ju – Jv〉

≥ (p – 1)‖u – v‖2, ∀u, v ∈ X.

Hence, A is generalized-Φ-strongly monotone map with Φ(t) = (p – 1)t2 (see, e.g.,

Chidume [17], p. 55).

Example 2 Let X = lp, 2≤ p < ∞, and let A : lp → l∗p be a map defined by

Au =
1

2
Jpu, ∀u ∈ lp,u = (u1,u2,u3, . . .).

Then

〈u – v,Au –Av〉 = 〈u – v, Jpu – Jpv〉

≥ p–1cp‖u – v‖p, ∀u, v ∈ X, cp > 0.

Hence, A is a generalized-Φ-strongly monotone map with Φ(t) = p–1cpt
p (see, e.g.,

Chidume [17], p. 54).

8 Numerical illustration

In this section, we present numerical examples to illustrate the convergence of the se-

quence generated by our algorithm.

Example 3 In Theorem 3.1, set X =R
2 so that X∗ =R

2,

Av =

(

5 –5

3 6

)(

v1

v2

)

.

Then it is easy to see that A is a generalized-Φ-strongly monotone map and the vector

v∗ = (0, 0) is the unique solution of the equation Av = 0. Take βn =
1

n+1
,n = 1, 2, . . . , as our

parameter in Theorem 3.1. With this, we now give the following algorithm which is a

specialized version of Theorem 3.1.

Algorithm.

Step 0: Choose any v1 ∈ R
2 and set a tolerance ǫ0 > 0. Let k = 1 and set the maximum

number of iterations, n.

Step 1: If ‖vk‖ ≤ ǫ0 or k > n, STOP. Otherwise, set βn =
1

k+1
.

Step 2: Compute

vk+1 = vk – βkAvk .

Step 3: Set k = k + 1 and go to Step 1.

Table 1 gives our test results using 10–6 tolerance.

The numerical result for the initial point (1, 1
2
) is sketched below where the y-axis rep-

resents the values of ‖vn+1 –0‖ while the x-axis represents the number of iterations n (see

Fig. 1).
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Table 1 Numerical illustration for the zero of a generalized-φ-strongly monotone map

Initial points Num. of iter Approx. solution

(1, 0) 88 9.6598× 10–7

(0, 1) 95 9.3690× 10–7

(2, 1) 103 9.9756× 10–7

(1, 4) 120 9.5080× 10–7

( 12 ,
1
2 ) 86 9.3020× 10–7

(1, 12 ) 92 9.6662× 10–7

Figure 1 Convergence of the sequence {vn} with
initial point (1, 12 )

Table 2 Numerical illustration for the solution of Hammerstein integral equation

Initial points Num. of iter Approx. sol. (‖un+1‖)
(1, 0), (0,1) 45 9.7064× 10–7

(1, 1), (2,3) 49 9.4440× 10–7

(2, 3), (1,1) 49 9.9188× 10–7

( 12 ,
1
2 ), (

1
2 ,

1
2 ) 36 9.6055× 10–7

( 12 , 1), (
1
2 , 2) 38 9.4539× 10–7

(3, 5), (2, 1) 55 9.7373× 10–7

Example 4 In Theorem 5.2, set X =R
2 so that X∗ =R

2,

Fu =

(

3 –1

1 8

)(

u1

u2

)

, Kv =

(

7 2

–2 5

)(

v1

v2

)

.

Then it is easy to see that F and K are generalized-Φ-strongly monotone maps and the

vector u∗ = (0, 0) is the unique solution of the equation u + KFu = 0. Take βn =
1

(n+1)
,n =

1, 2, . . . , as our parameters in Theorem 5.2.With this, we now give the following algorithm

which is a specialized version of Theorem 5.2.

Algorithm.

Step 0: Choose any u1, v1 ∈ R
2 and set a tolerance ǫ0 > 0. Let k = 1 and set the maximum

number of iterations, n.

Step 1: If ‖uk‖ ≤ ǫ0 or k > n, STOP. Otherwise, set βk =
1

(k+1)
.

Step 2: Compute

⎧

⎨

⎩

uk+1 = uk – βk(Fuk – vk),

vk+1 = vk – βk(Kvk + uk).

Step 3: Set k = k + 1 and go to Step 1.

Table 2 gives our test results using 10–6 tolerance.
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Figure 2 Convergence of the sequence {un} with
initial point (3, 5), (2, 1)

Table 3 Numerical illustration for the solution of variational inequality problem

Initial points Num. of iter Approx. solution

(1, 0) 24 8.2377× 10–7

(1, 1) 24 9.6812× 10–7

(2, 3) 25 9.6103× 10–7

(–2, 1) 25 9.3095× 10–7

( 12 ,
1
2 ) 22 7.1434× 10–7

(– 1
10 , –1) 92 9.6662× 10–7

(5, 8) 27 8.3144× 10–7

The numerical result for the initial point (3, 5), (2, 1) is sketched below where the y-axis

represents the values of ‖un+1 – 0‖, while the x-axis represents the number of iterations n

(see Fig. 2).

Example 5 In Theorem 6.1, set X =R
2 so that X∗ =R

2,

Av =

(

5 –5

3 6

)(

v1

v2

)

, Tv =

(

– 1
2

1
2

1
2

1
2

)(

v1

v2

)

.

Then it is easy to see that A is a generalized-Φ-strongly monotone map, T is quasi-Φ-

nonexpansive, and the vector v∗ = (0, 0) is the common solution. We take βn =
1

n+1
,n =

1, 2, . . . , as our parameter in Theorem 6.1. With this, we now give the following algorithm

which is a specialized version of Theorem 6.1.

Algorithm.

Step 0: Choose any v1 ∈ R
2 and set a tolerance ǫ0 > 0. Let k = 1 and set the maximum

number of iterations, n.

Step 1: If ‖vk‖ ≤ ǫ0 or k > n, STOP. Otherwise, set βn =
1

k+1
.

Step 2: Compute

vk+1 = T[k]vk – βkA(T[k]vk).

Step 3: Set k = k + 1 and go to Step 1.

Table 3 gives our test results using 10–6 tolerance.

The numerical result for the initial point (5, 8) is sketched below where the y-axis repre-

sents the values of ‖vn+1 – 0‖, while the x-axis represents the number of iterations n (see

Fig. 3).
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Figure 3 Convergence of the sequence {vn} with
initial point (5, 8)

Remark 5 Our theorem is a significant improvement of the results of Diop et al. [33],

Chidume and Bello [20], Chidume [18], Chidume et al. [26], and Chidume et al. [24] in

the following sense:

(1) Theorems 3.1 and 5.2 are proved in a more general real Banach space which

contains the space of 2-uniformly convex space and LP spaces, 1 < p < ∞.

(2) The class of strongly monotone maps studied in Diop et al. [33], Chidume and Bello

[20] is extended to the more general class of generalized-Φ-strongly monotone maps

in Theorems 3.1 and 5.2, respectively.

(3) The requirement that the maps A, K , and F be bounded, which is assumed in

Theorems 1.1 and 3.1 of Diop et al. [33], Chidume and Bello [20], respectively, and

in the theorem of Chidume et al. [24, 26] and Chidume [18], is dispensed with in

our theorems.

9 Conclusion

In this paper, aMann-type iterative algorithm that approximates the zero of a generalized-

Φ-strongly monotone map is presented. A strong convergence theorem of the sequence

generated by the algorithm is proved. Furthermore, the theorem proved is applied to ap-

proximate solutions of a convexminimization problem, a Hammerstein integral equation,

and a variational inequality problem. The theorem proved generalizes, extends, and im-

proves the results of Diop et al. [33], Chidume and Bello [20], Chidume [18], Chidume et

al. [26], Chidume et al. [24], and other recent important related results in the literature. Fi-

nally, examples of generalized-Φ-stronglymonotonemaps are constructed and numerical

experiments which illustrate the convergence of the sequence generated by our algorithm,

are presented.
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