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Abstract

We prove that two-party randomized communication complexity satisfies a strong direct product
property, so long as the communication lower bound is proved by a “corruption” or “one-sided discrep-
ancy” method over a rectangular distribution. We use this to prove new nΩ(1) lower bounds for 3-player
number-on-the-forehead protocols in which the first player speaks once and then the other two players
proceed arbitrarily. Using other techniques, we also establish an Ω(n1/(k−1)/(k − 1)) lower bound
for k-player randomized number-on-the-forehead protocols for the disjointness function in which all
messages are broadcast simultaneously. A simple corollary of this is that general randomized number-
on-the-forehead protocols require Ω(log n/(k − 1)) bits of communication to compute the disjointness
function.

1 Introduction

1.1 Number-on-the-forehead communication protocols

A fundamental problem in communication complexity is understanding the amount of communication nec-
essary to compute the two-player disjointness function: Alice and Bob are each given a subset of {1, . . . n}
and they want to determine whether or not they share a common element [2, 19, 31, 30]. A natural ex-
tension of two-party disjointness is k-party disjointness. In this set-up, there are k players, with sets
x1, . . . , xk ⊆ {1, . . . n}, and the players want to determine whether or not the sets share a common ele-
ment. To this end, the players exchange bits, and possibly make use of a shared source of randomness. They
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wish to compute the correct answer, or get the answer correct with probability at least two-thirds, while
minimizing the number of bits exchanged.

What makes the multi-player problem especially interesting are the ways in which the players can share
partial information about the inputs. We consider the “number-on-the-forehead” (NOF) model [13] in which
the i’th player can see every input xj for j 6= i. Metaphorically, it is as if the input xi is on the forehead
of player i. Contrast this with the well-studied “number-in-the-hand” (NIH) model, in which player i sees
input xi and no other inputs. Notice that in the number-in-the-hand model, the players share no information,
whereas in the number-on-the-forehead model the players share a large amount of information. Disjointness
has been studied extensively in the number-in-hand model largely because randomized lower bounds in this
model provide lower bounds on the space complexity of randomized streaming algorithms that approxi-
mately compute frequency moments of a data set [1]. While the communication complexity of disjointness
is almost completely characterized for the number-in-the-hand model [1, 32, 6, 7, 11], it is almost entirely
open for the number-on-the-forehead model.

The number-on-the-forehead communication model is useful in theoretical computer science because
phenomena such as circuits, branching programs, and propositional proofs can be transformed into number-
on-the-forehead communication protocols. For this reason, establishing large enough communication lower
bounds is a time-honored method for establishing lower bounds in other computational models. Most fa-
mously, linear lower bounds for k = nε players for any explicit function would yield explicit superpoly-
nomial lower bounds for ACC circuits. (We emphasize that such bounds are not yet known, and how to
establish communication bounds for a super-logarithmic number of players is probably the central question
in the study of number-on-the-forehead protocols.) The communication complexity of the set-disjointness
function also has interesting consequences. The first three authors of this paper show in [8] work that
ω(log4 n) lower bounds for the k-party randomized number-on-the-forehead communication complexity of
disjointness imply proof size lower bounds for a family of proof systems known as tree-like, degree k − 1
threshold systems. Proving proof size lower bounds for these systems is a major open problem in propo-
sitional proof complexity. Such proof systems are quite powerful, and include the tree forms of systems
such as the Chvátal-Gomory Cutting Planes proof system, and the Lovász-Schrijver proof systems. In [8],
it also is shown that lower bounds of the form ω(log2 n(log log n)2) for randomized three-party number-on-
the-forehead communication of disjointness imply superpolynomial size lower bounds for Lovász-Schrijver
proofs with polynomially-bounded coefficients.

Another motivation for the study of disjointness in the number-on-the-forehead model is to understand
the power of non-determinism in this concrete computational model. Large enough communication lower
bounds for disjointness imply a better separation between nondeterministic and deterministic (or random-
ized) multiparty number-on-the-forehead communication complexity1 than the best currently known sepa-
ration, which is barely super-constant [24].

With the exception of one barely-super-constant bound [13], known lower bounds for number-on-the-
forehead communication complexity for more than two parties use the discrepancy method [5, 14, 29] in
which it is shown that the function is nearly balanced on all large cylinder intersections. The discrepancy
method completely fails when trying to prove communication lower bounds for disjointness under any
distribution that gives even modest weight to intersecting inputs. This is because the disjointness function is
constant on some very large cylinder intersections. Progress here seems to require a new kind of argument.

Prior to our work, little was known about the multi-player number-on-the-forehead communication com-
plexity of the disjointness function. For two-party randomized protocols, it was known that the disjointness

1In the preliminary version of this paper [9] we claimed that, by extending the arguments in [2], the disjointness problem can be
shown to be complete for the class k-NPcc, the multiparty analogue of NPcc. This claim does not seem to be correct.
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function requires Θ(n) bits of communication to compute with constant error [19, 31]. For three or more
players, the best protocol known for the k-party number-on-the-forehead disjointness problem is the pro-
tocol of Grolmusz [17] that uses O(kn/2k) bits of communication. (Grolmusz’s protocol is designed for
the generalized-inner-product function, however, the protocol works for the disjointness function with an
obvious modification.) Prior to and independent of our work, Tesson had shown in an unpublished section
of his doctoral dissertation [34] that the deterministic k-party number-on-the-forehead communication com-
plexity of disjointness is Ω( log n

k ). We obtain the following communication lower bounds for randomized
number-on-the-forehead protocols:

1. Three-player protocols such that the first player speaks once and the other two players then proceed ar-
bitrarily require Ω(n1/3) bits of communication to compute the disjointness function for deterministic
computation or randomized computation with constant error. The only three-player number-on-the-
forehead model for which an nΩ(1) lower bound for disjointness was previously known is the one-way
model in which the first player speaks, then the second player speaks, and finally the third player cal-
culates the answer. A result of Wigderson (included in the appendix of a paper by Babai, Hayes and
Kimmel [4]), shows that the one-way three-party number-on-the-forehead complexity of disjointness
is Ω(n1/2). While the one-way model is weaker, the Ω(n1/2) bound is quantitatively better, so the
two results are incomparable. (The bound as stated is for a layered pointer jumping problem which
corresponds to the special case of the disjointness problem in which the first player’s input is one of√

n disjoint subsets of [n] of size
√

n, the second player’s input has one element in each of these
√

n
blocks and the third player’s input is an arbitrary vector of n bits.)

2. k-player protocols in which all players broadcast a single message simultaneously require
Ω

(
n1/(k−1)/(k − 1)

)
bits of communication. This uses an argument based on that used by Babai,

Gal, Kimmel and Lokam [3] to study other functions in the simultaneous messages model.

3. General k-player randomized number-on-the-forehead protocols require log2 n
k−1 − O(1) bits of com-

munication to compute disjointness with constant error. This is slightly better than the unpublished
bound by Tesson [34] since it is for randomized protocols rather than deterministic protocols (though
it seems likely that his methods can be extended to the randomized case), and the constants in our
bound seem to be sharper.

1.2 A Direct Product Theorem

Our lower bound for three-player, number-on-the-forehead, “first player speaks then dies” protocols is
proved by using the three-player protocol to solve many independent instances of the two-player disjointness
problem. We then make use of our core technical theorem, which says that for a broad class of functions f ,
whenever f requires b bits of communication by a two-player randomized protocol to be calculated correctly
with probability δ < 1, computing the answer for t independent instances of f using t′ bits of communi-
cation for some t′ that is Θ(tb) is correct with probability at most δΩ(t). Results of this form are known as
strong direct product theorems.

Direct sum and direct product theorems are a broad family of results relating the computational difficulty
of computing a function on many different instances with the computational difficulty of computing the
function on a single instance. Given a function f : I → O, the function f t : It → Ot is given by
f t(x1, . . . , xt) = (f(x1), . . . , f(xt)).

A complexity measure C, such as communication complexity or circuit size, satisfies a direct sum prop-
erty if and only if C(f t) = Ω(tC(f)). Karchmer, Raz, and Wigderson [21] introduced the direct sum
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problem in two-party communication complexity in the context of search problems based on random func-
tions. They showed that if a direct sum result holds for these search problems, then NC1 6= NC2. Direct
sum theorems are known for nondeterministic and co-nondeterministic two-party communication complex-
ity and direct sum properties are known for bounded-round deterministic [20] and bounded-round distribu-
tional/randomized [18] two-party communication complexity. Recent information theory based techniques,
information complexity [12, 6] and conditional information complexity [7], are useful because these mea-
sures satisfy direct sum properties under rectangular (or conditionally rectangular) distributions.

Direct product results relate the amount of error made by a computation of f t to the amount of error
made by a computation of f . More precisely, they relate the probability of success under a distribution
µt to the probability of success under distribution µ. A good example of such a result is the Concatenation
Lemma, a variant of Yao’s XOR lemma: if all circuits of size≤ s compute f correctly on at most a p fraction
of inputs, then for all ε > 0, circuits of size ≤ s (ε/n)O(1) compute f t correctly on at most a pt + ε fraction
of inputs [16]. (Note that when ε is in the interesting range around pt, f t has a hardness guarantee only for
circuits of size far less than the size for which computing f is hard.) Direct product results naturally concern
distributional complexity, but by Yao’s arguments relating distributional and randomized computation they
imply results for randomized algorithms as well.

Strong direct product results combine the resource amplification of a direct sum result with the error
amplification of a direct product result: If a computation using r resources gets the answer for f correct on
at most a p measure of the inputs under distribution µ, then for some r′ = Ω(tr) a computation using r′

resources gets the answer for f t correct on at most a pΩ(t) measure of the inputs under distribution µt.
Few strong direct product results are known and strong direct product theorems do not hold for many

interesting models of computation. In particular, Shaltiel has shown that distributional two-party commu-
nication complexity in general does not satisfy a strong direct product theorem [33]. However, for com-
munication complexity under the uniform distribution, Shaltiel [33] proved that lower bounds obtained by
the discrepancy method under the uniform distribution satisfy a strong direct product property in that for
any 2-party protocol sending r′ = tr bits, the correlation of its output with the exclusive-or of the t binary
outputs of f t decays exponentially with t.

As with Shaltiel’s result for discrepancy, the way we ensure that a strong direct product theorem holds
is to make use of the method used to prove the communication lower bound. Lower bounds for the dis-
tributional (and thus randomized) two-party communication complexity of the disjointness function have
been proved using the corruption method2. In general, a corruption bound shows that for a function f and
distribution µ, for some frequently occurring value b in the range of f , on every not-very-tiny set of the
form A × B, at least an ε fraction of the elements map to answers different from b. In [22], Klauck for-
malized many ideas similar to the corruption bound, and showed that it is tightly connected to the amount
of communication needed in MAcc and AMcc protocols. It is easy to see that, up to constant factors, lower
bounds based on corruption are at least as large as those based on discrepancy. Moreover Babai, Frankl, and
Simon [2] showed, using the two-party disjointness function, that lower bounds based on corruption can be
exponentially better than those based on discrepancy [2].

Our theorem shows that when µ is a distribution on pairs (x, y) in which the distribution on x is inde-
pendent of the distribution on y, communication bounds proved using the corruption method obey a strong
direct product theorem. Our strong direct product theorem is incomparable with the discrepancy result of
Shaltiel, because Shaltiel’s result involves a more restrictive technique for obtaining lower bounds and a nar-

2Although corruption bounds are frequently used, there does not seem to be a consistent terminology for such bounds. The
monograph by Kushilevitz and Nisan [24] uses the term “one-sided discrepancy”. Klauck calls the method “ε-error complex-
ity” [22].
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rower class of distributions but requires less from the protocol in that it only has to predict the exclusive-or
of the outputs of f t rather than all of f t. We also extend our strong direct product theorem to the case of
approximate computation of f t; essentially the same strong direct product bounds apply to protocols that
compute any function g each of whose outputs has small Hamming distance from the corresponding out-
put of f t. We use this approximate version in deriving sharper bounds for the case of randomized 3-party
protocols.

2 Background and Notation

2.1 Sets, Strings and Miscellaneous Notation

The set of integers {1, . . . n} is denoted [n]. We identify P([n]) with {0, 1}n by identifying sets with their
characteristic vectors. We will refer to elements of {0, 1}n interchangeably as sets or vectors. In this spirit,
we write x ∩ y for the string whose i-th coordinate is 1 if and only if the i-th coordinate of both x and y are
1.

At times we use regular expression notation when specifying sets of strings over a finite alphabet such
as {0, 1} or {p, q}. The empty string is written as Λ. When A and B are expressions for sets of strings,
AB = {xy | x ∈ A, y ∈ B}, Ai = {x1 . . . xi | x1, . . . xi ∈ A}, A≤i =

⋃
j≤i A

j , A∗ =
⋃∞

k=0 Ak, and
A ∪ B is the set-theoretical union of A and B. The notation xj denoting j repetitions of the string x could
clash with the use of superscripts when naming variables. However, in this paper, the repetition notation is
used only with elements of the alphabet, such as 0, 1, p, q, or sets, and it is never used with symbols that are
used variable names, such as x, y, z.

Let µ be a probability distribution on a set X . The support of µ is {x ∈ X | µ(x) > 0}. When µ is
a probability distribution on a product set X × Y , µ is said to be a rectangular distribution if there exist
distributions µX on X and µY on Y so that for all (x, y) ∈ X × Y , µ(x, y) = µX(x) · µY (y). The phrase
product distribution is often used in the literature instead of rectangular distribution.

2.2 Communication Complexity

Number-on-the-forehead protocols are strategies by which a group of k players compute a function on
X1× . . .×Xk, f(x1, . . . xk), when each player i has access only to the inputs x1, . . . , xi−1, xi+1, . . . , xk. In
randomized protocols, in addition to their inputs players have access to a shared source of random bits. (This
is the so-called public randomness model and is equivalent to a probability distribution over deterministic
protocols.)

A protocol is simultaneous if each player’s message depends only on the random bits and the inputs
visible to that player, a protocol is one-way if each player speaks exactly once and the players do so in a
fixed order. We identify each player in a number-on-the-forehead communication protocol with the name of
the set from which the inputs on its forehead are drawn. We describe restrictions on communication order
such as those above by a communication pattern P . Examples of communication patterns P we consider
are

• X1 → ... → Xk indicating that the protocol is one-way in that players X1, . . . , Xk each speak once
in that order.

• X1||...||Xk indicating that players X1, . . . , Xk each speak simultaneously and independently.
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• X1 ↔ . . . ↔ Xk indicating that the order of speaking is arbitrary. Since this is unrestricted computa-
tion, following standard notation we simply write that P is k to denote that it is unrestricted k-party
computation.

These patterns can be combined using parentheses to create more complicated communication patterns. In
particular, we denote the 3-party communication pattern in which “the first player speaks then dies” by
Z → (Y ↔ X). (We use these set/player names so that communication between the last two parties has
similar set names to standard two-party communication complexity.)

Formal definitions of such protocols are quite standard and may be found, for example, in [24]; we do
not repeat them here.

Definition 2.1. For a deterministic protocol Π, and input ~x, let Π(~x) denote the output of the protocol on
input ~x and let cΠ(~x) denote the sequence of bits communicated on that input. For randomized protocols the
corresponding values are denoted Π(~x, r) and cΠ(~x, r) where r is the shared random string. For a given
communication pattern P for a function f on ~X define

• the deterministic communication complexity of f , DP (f), to be the minimum over all deterministic
protocols Π with pattern P and with Π(~x) = f(~x) for every ~x, of C(Π) = max~x |cΠ(~x)|.

• the ε-error randomized communication complexity of f , RP
ε (f), to be the minimum over all ran-

domized protocols Π with pattern P and with Prr[Π(~x, r) 6= f(~x)] ≤ ε for every ~x, of C(Π) =
max~x,r |cΠ(~x, r)|.

• for any probability distribution µ on ~X , the (µ, ε)-distributional communication complexity of f ,
DP,ε

µ (f) to be the minimum over all deterministic protocols Π with pattern P and Prµ[Π(~x) 6=
f(~x)] ≤ ε of C(Π) = max~x |cΠ(~x)|.

As usual in studying communication complexity we need the following definitions.

Definition 2.2. A combinatorial rectangle R in X×Y is a set of the form A×B with A ⊆ X and B ⊆ Y . An
i-cylinder C on U = X1×· · ·×Xk is a set of the form {(x1, . . . , xk) ∈ U | g(x1, . . . , xi−1, xi+1, . . . , xk) =
1} for some function g : X1 × . . . × Xk → {0, 1}. A cylinder intersection on X1 × · · · × Xk is a set
E =

⋂k
i=1 Ci where Ci is an i-cylinder on X1 × · · · ×Xk. A cylinder-intersection in the product of k sets

X1 × . . .×Xk is called a k-dimensional cylinder intersection.

Observe that a combinatorial rectangle is a two-dimensional cylinder intersection. We make use of the
following standard results in communication complexity, cf. [24].

Proposition 2.3. Let k ≥ 2 be an integer, let X1, . . . , Xk be nonempty sets, and let Π be a randomized k-
party number-on-the-forehead protocol on X1×. . .×Xk. For each setting of the random source r ∈ {0, 1}∗,
and each s ∈ {0, 1}∗, {(x1, . . . , xk) ∈ X1 × . . .×Xk | cΠ(x1, . . . , xk, r) = s} is a cylinder intersection.

Proposition 2.4 (Yao’s lemma). Let P be a communication pattern on ~X and µ be a distribution on ~X . For
any f defined on ~X and ε > 0, RP

ε (f) = maxµ DP,µ
ε (f).

We will also use the following standard bounds on tails of the binomial distribution and the standard
amplification results relating different error bounds in communication complexity that follow.

Proposition 2.5. Let 0 ≤ p ≤ 1 and B(n, p) denote the binomial distribution. Then
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1. Pr[B(n, p) ≤ pn/4] ≤ 2−pn/2.

2. For p < 1/2, Pr[B(n, p) ≥ n/2] ≤ (4p(1− p))n/2.

Proof. The first bound follows from a standard Chernoff bound, Pr[B(n, p) ≤ pn/4] ≤ (
√

2/e3/4)pn ≤
2−pn/2 and the second follows via

Pr[B(n, p) ≥ n/2] ≤
n∑

k=n/2

(
n

k

)
pk(1− p)n−k ≤ 2npn/2(1− p)n/2 = (4p(1− p))n/2.

Proposition 2.6. There is a constant c such that for any 0 < ε′ < ε < 1/2, and any f : ~X → {0, 1}, for

any communication pattern P , RP
ε′ (f) ≤ c

log1/ε(1/ε′)

(1−2ε)2
RP

ε (f).

Proof. Suppose first that 1/8 < ε < 1/2. Write δ = 1
2 − ε. Applying Proposition 2.5 with p = ε and

n = d 1
δ2 e = d 4

(1−2ε)2
e we obtain that Pr[B(n, ε) ≥ n/2] ≤ (1 − 4δ2)n/2 ≤ e−2 < 1/8. Therefore if we

define a new protocol P ′ that takes the majority of n independent runs of the original protocol we obtain an
error at most 1/8. For ε ≤ 1/8, 4ε(1− ε) < ε1/3 and thus repeating any such protocol 6 log1/ε(1/ε′) times
and taking the majority yields error at most ε′. Combining these two arguments yields the claim.

Finally, we define the k-party disjointness function.

Definition 2.7. The k-party disjointness function for X1 = · · · = Xk = {0, 1}n is the function DISJk,n :
X1 × · · · ×Xk → {0, 1} defined by DISJk,n(x1, . . . , xk) = 1 if for there is some j ∈ [n] such that xi,j = 1
for all i ∈ [k] and DISJk,n(x1, . . . , xk) = 0 otherwise. (That is, DISJk,n(x1, . . . , xk) = 1 if and only if
x1 ∩ . . . ∩ xk 6= ∅.) We drop the subscript n if it is understood from the context.

This is a natural extension of the usual two-party disjointness function so we have kept the same termi-
nology but when it evaluates to 0 it does not mean that the inputs x1, . . . , xn viewed as sets are mutually
disjoint; instead it means that there is no common point of intersection among these sets. (Note that in the
analysis of disjointness in the number-in-hand model (e.g. [1]) the lower bounds apply to either version of
the problem. In the number-on-the-forehead model only the version of problem that we define is non-trivial.)

3 Discrepancy, Corruption, and Communication Complexity

Let f : I → O. For b ∈ O, a subset S ⊆ I is called b-monochromatic for f if and only if f(s) = b for all
s ∈ S and is called monochromatic if and only if it is b-monochromatic for f for some b ∈ O. Let µ be a
probability measure on I . For b ∈ O, a subset S ⊆ I is called ε-error b-monochromatic for f under µ if and
only if µ(S \ f−1(b)) ≤ ε · µ(S). For f : I → {0, 1}, b ∈ {0, 1}, and S ⊆ I the b-discrepancy of f on S
under µ,

discb
µ(f, S) = µ(S ∩ f−1(b))− µ(S \ f−1(b)).
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Let Γ be a collection of subsets of I and let f : I → O.

monob
µ,Γ(f) = max{µ(S) | S ∈ Γ is b-monochromatic}

ε-monob
µ,Γ(f) = max{µ(S) | S ∈ Γ is ε-error b-monochromatic}

discb
µ,Γ(f) = max{discb

µ(f, S) | S ∈ Γ}
monoµ,Γ(f) = max{monob

µ,Γ(f) | b ∈ O}
discµ,Γ(f) = max{discb

µ,Γ(f) | b ∈ O}

When µ is omitted from these notations, it is treated as the uniform distribution. When Γ is not spec-
ified, it is the set of k-dimensional cylinder intersections on the input space. In particular, Γ is the set of
combinatorial rectangles when k = 2.

Proposition 3.1. For any function f : I → {0, 1}, distribution µ on I , Γ ⊆ P(I), ε < 1/2, and b ∈ {0, 1},
discb

µ,Γ(f) ≥ (1− 2ε)(ε-monob
µ,Γ(f)).

Proof. Choose S ∈ Γ so that µ(S) = ε-monob
µ,Γ(f) and µ(S \ f−1(b)) ≤ εµ(S). Then discb

µ,Γ(f) ≥
discb

µ(f, S) ≥ (1− 2ε)µ(S) as required.

Let N2
1 (f) and N2

0 (f) be the two-party nondeterministic and co-nondeterministic communication com-
plexities of a function f : X×Y → O. (That is, the logarithm of the minimum number of 1-monochromatic
rectangles needed to cover f−1(1) and the logarithm of the minimum number of 0-monochromatic rectan-
gles needed to cover f−1(0), respectively, cf. [24].) The following is a standard way to obtain two-party
communication complexity lower bounds (cf. [24]):

Proposition 3.2. Let Γ be the set of combinatorial rectangles on X × Y . For any f : X × Y → {0, 1} and
for any probability measure µ on X × Y ,

(a) D2(f) ≥ log2(1/monoµ,Γ(f)),

(b) For b ∈ {0, 1}, N2
b (f) ≥ log2(µ(f−1(b))/monob

µ,Γ(f)).

The following are the standard discrepancy lower bounds for randomized communication complexity
(see for example [24]).

Proposition 3.3 (Discrepancy Bound). Let Γ be the set of combinatorial rectangles on X × Y . Let f :
X × Y → {0, 1}, ε < 1/2, and µ be any probability distribution on X × Y .

(a) R2
ε (f) ≥ D2,µ

ε (f) ≥ log2((1− 2ε)/discµ,Γ(f))

(b) For b ∈ {0, 1}, R2
ε (f) ≥ D2,µ

ε (f) ≥ log2((µ(f−1(b))− ε)/discb
µ,Γ(f)).

More generally, for k ≥ 2, if f : X1 × · · · × Xk → {0, 1} and Γ is replaced by the set of cylinder
intersections on X1 × · · · ×Xk then

Rk
ε (f) ≥ Dk,µ

ε (f) ≥ log2((µ(f−1(b))− ε)/discb
µ,Γ(f)).
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It is easy to see that the bound from part (a) can never be more than 1 plus the maximum of the two
bounds from part (b). Without loss of generality, suppose that µ(f−1(1)) ≥ 1/2. We have that

µ(f−1(1))− ε

disc1
µ,Γ(f)

≥ 1/2− ε

max{disc1
µ,Γ(f),disc0

µ,Γ(f)}
=

1
2
· 1− 2ε

discµ,Γ(f)

The discrepancy bound works well for analyzing functions such as the inner product, the generalized
inner product [5], and matrix multiplication [29]. However, it does not suffice to derive lower bounds for
functions such as disjointness. A more general method that is used to prove two-party communication lower
bounds for disjointness is the corruption technique. A corruption bound says that any sufficiently large
rectangle cannot be fully b-monochromatic and makes errors on some fixed fraction of its inputs. Hence, we
say that the rectangle is “corrupted”. The corruption technique has been used implicitly many times before,
and we formalize the principle below. For later discussions of corruption we find it convenient to use the
following definition in its statement.

Definition 3.4. For a collection Γ of subsets of I , distribution µ on I , function f : I → O, ε > 0 and b ∈ O
define

corrbdb
µ,Γ(f, ε) = log2(1/(ε-monob

µ,Γ(f))).

Lemma 3.5 (Corruption Bound). Let Γ be the set of combinatorial rectangles on X ×Y . Let f : X ×Y →
O, O′ ⊂ O, ε ≤ 1, and µ be any probability distribution on X × Y . For ε′ < ε · µ(f−1(O′)),

R2
ε′(f) ≥ D2,µ

ε′ (f) ≥ min
b∈O′

log2((µ(f−1(O′))− ε′/ε)/ε-monob
µ,Γ(f))

= min
b∈O′

corrbdb
µ,Γ(f, ε)− log2(

1
µ(f−1(O′)− ε′/ε)

).

More generally, for k ≥ 2, if f : X1 × · · · × Xk → O and Γ is the set of cylinder intersections on
X1 × · · · ×Xk then the same lower bound applies to Rk

ε′(f).

Proof. We give the proof for k = 2; the argument for k > 2 is completely analogous. By Yao’s lemma
(Proposition 2.4), R2

ε′(f) ≥ maxµ′ D2,µ′

ε′ (f) ≥ D2,µ
ε′ (f). Consider any deterministic protocol Π of cost

D2,µ
ε′ (f) that computes f correctly on all but at most an ε′ fraction of inputs under distribution µ. Consider

the partition R of X × Y into rectangles induced by the protocol. Let γ = maxb∈O′ ε-monob
µ,Γ(f). For

b ∈ O′, let
αb = µ({x | Π(x) = b and x ∈

⋃
R∈R, µ(R)≤γ

R}),

the total measure of inputs contained in rectangles of measure at most γ on which the protocol outputs b.
There must be at least

∑
b∈O′ αb/γ such rectangles and thus D2,µ

ε′ (f) ≥ log2(
∑

b∈O′ αb/γ).
We now bound

∑
b∈O′ αb. For any b 6= b′ ∈ O, let ε′b→b′ the total measure of inputs on which the

protocol answers b′ when the correct answer is b. Clearly ε′ =
∑

b,b′:b6=b′ ε
′
b→b′ . By definition, the protocol

answers b on at least a µ(f−1(b)) +
∑

b′ 6=b ε′b′→b −
∑

b′ 6=b ε′b→b′ measure of the inputs. By the definition
of γ and ε-monob

µ,Γ(f), any rectangle of measure larger than γ on which the protocol answers b must have
at least an ε proportion of its total measure on which the correct answer is not b; i.e., an ε proportion of its
measure contributes to

∑
b′ 6=b ε′b′→b. Thus in total for b ∈ O we have∑

b′ 6=b

ε′b′→b ≥ ε · [µ(f−1(b)) +
∑
b′ 6=b

ε′b′→b − αb −
∑
b′ 6=b

ε′b→b′ ].

9



Rearranging, we have
αb ≥ µ(f−1(b))−

∑
b′ 6=b

ε′b→b′ − (1/ε− 1)
∑
b′ 6=b

ε′b′→b.

Summing this over all choices of b ∈ O′ we obtain

∑
b∈O′

αb ≥
∑
b∈O′

µ(f−1(b))−
∑
b∈O′

∑
b′ 6=b

ε′b→b′ − (1/ε− 1)
∑
b∈O′

∑
b′ 6=b

ε′b′→b

= µ(f−1(O′))− (1/ε)
∑

b,b′∈O′:b6=b′

ε′b→b′ −
∑
b∈O′

∑
b′ /∈O′

ε′b→b′ − (1/ε− 1)
∑
b/∈O′

∑
b′∈O′

ε′b→b′

≥ µ(f−1(O′))− (1/ε)
∑

b,b′:b6=b′

ε′b→b′

= µ(f−1(O′))− ε′/ε

which yields the claimed lower bound.

In the special case that the output set O = {0, 1} we obtain the following corollary.

Corollary 3.6. Let Γ be the set of combinatorial rectangles on X × Y . For any ε < 1/2 there is a constant
cε > 0 with cε = O( 1

(1−2ε)2
) such that for f : X × Y → {0, 1}, µ any probability distribution on X × Y ,

and b ∈ {0, 1},

R2
ε (f) ≥ D2,µ

ε (f) ≥ cε log2((µ(f−1(b))− ε)/ε-monob
µ,Γ(f))

= cε[corrbdb
µ(f, ε)− log2(

1
µ(f−1(b))− ε

)]

and the same lower bound holds for the case of Rk
ε (f) where Γ is the corresponding set of cylinder inter-

sections on X1 × · · · ×Xk.

Proof. We reduce the protocol error to ε′ = ε2 using Proposition 2.6 and then apply Lemma 3.5 to obtain
the claimed result. The bound on cε follows since log1/ε(1/ε′) is constant.

Up to the multiplicative factor cε = O( 1
(1−2ε)2

), the above bound is of the same form as that of Propo-
sition 3.3 except that it uses corruption rather than the discrepancy. By Proposition 3.1, a corruption bound
is applicable whenever a discrepancy bound is applicable but the reverse is not the case. (Disjointness is a
counterexample.) So, up to a multiplicative constant factor and a small additive term at worst, corruption
bounds are always superior to discrepancy bounds.

4 A Direct Product Theorem for Corruption under Rectangular Distribu-
tions

We now relate the corruption bound for f to the corruption bound for solving t disjoint instances of f .

Definition 4.1. For a function f : X × Y → {0, 1}, define f t : Xt × Y t → {0, 1}t by f t(~x, ~y) =
(f(x1, y1), . . . , f(xt, yt)) where ~x = (x1, . . . , xt) and ~y = (y1, . . . , yt).

Given a distribution µ on a set I , the distribution µt is the distribution on It with µt(x1, . . . xt) =∏t
j=1 µ(xj).

10



Theorem 4.2 (Direct Product for Corruption). Let f : X × Y → {0, 1} and µ be a rectangular probability
distribution on X × Y . Let b ∈ {0, 1}, t be a positive integer, m = corrbdb

µ(f, ε), and ε satisfy 1 > ε >

12mt/2m/8.

(a) Let T0 ⊆ {1, . . . , t} with |T0| = t0 and define VT0 = {~v ∈ {0, 1}t | vi = b for all i ∈ T0}. If R is a
combinatorial rectangle on Xt × Y t with µt(R) ≥ 2−t0m/6 then

µt(R ∩ (f t)−1(VT0)) < (3/ε)(1− ε/2)t0/2µt(R).

(b) In particular, if ~v ∈ {0, 1}t is a binary vector with at least t0 many b’s then
corrbd~v

µt(f t, 1− (3/ε)(1− ε/2)t0/2) ≥ t0 · corrbdb
µ(f, ε)/6.

This theorem implies very strong error properties: any large rectangle on which a protocol P outputs a
vector v with many b’s has the correct answer on only an exponentially small fraction of the inputs under
distribution µt. Up to small factors in the communication and the error this is as strong a theorem as one
could hope for. Note that, because the corruption bound only measures the complexity when the the output
is b, both the communication and error exponent in any such bound must scale with t0 rather than t.

The general technique we use for our direct product bound follows a standard paradigm of iterated
conditional probability analysis on the coordinates that allow one to prove Yao’s XOR lemma [16], Raz’s
parallel repetition theorem [28], and bounds on the complexity savings given by ‘help bits’ [10, 25].

Definition 4.3. Let T ⊆ [t] and U = [t] − T . For A ⊆ Xt, let AT be the set of projections of A on XT .
(If T is a singleton set {j} then we write Aj for A{j}.) For xU ∈ XU and A ⊆ Xt let A(xU ) be the
set of all ~x′ ∈ A such that x′U = xU . For B ⊆ Y t and yU ∈ Y U can define BT and B(xU ) similarly.
Moreover, extend the definition for S ⊆ Xt × Y t to ST , the set of projections of S on XT × Y T , and, for
(xU , yU ) ∈ XU × Y U , to S(xU , yU ), the set of all (~x′, ~y′) ∈ S such that x′U = xU and y′U = yU .

Let µ be a distribution on X × Y . For T ⊆ [k] define µT on XT × Y T as the product µT on those
coordinates. Define µT

X and µT
Y similarly so that µT is the cross product of µT

X and µT
Y .

Finally, we say that S is rectangular with respect to coordinates T if and only if for every (xU , yU ) ∈ SU ,
S(xU , yU )T is a combinatorial rectangle in XT × Y T .

The following lemma is the main tool we need to prove the direct product property of corruption. Its
proof is the sole reason that we need to restrict the distribution µ to be rectangular. Intuitively, it says that in
any rectangle A×B on Xk×Y k, except for a small error set E, the set of inputs for which f(x1, y1) = b is
contained in the union of two disjoint well-structured sets (rectangular on the remaining coordinates) with
the property that one has little variation in the first coordinate and the other is constant factor smaller than
the set of inputs in A×B not in the first set. We will apply this repeatedly to prove Theorem 4.2 by carefully
accounting for each of the t0 coordinates on which the lemma can be applied, and observing that either the
lack of variation or the reduction in size will be compounded many times.

Lemma 4.4 (Key Lemma). Let f : X × Y → {0, 1} and µ be a rectangular probability distribution on
X×Y . Let b ∈ {0, 1} and m = corrbdb

µ(f, ε) for ε < 1. Let k ≥ 1 and A×B be a combinatorial rectangle
in Xk × Y k. Let an integer K ′ ≥ 1 be given and set K = dlog(1−ε/6) 2−K′e = d−K ′/ log2(1 − ε/6)e.
There are sets P,Q,E ⊆ A × B such that the set of inputs (~x, ~y) ∈ A × B for which f(x1, y1) = b is
contained in P ∪Q ∪ E where

1. µk(E) ≤ 21−K′
,

2. µk(Q) ≤ (1− ε/2)µk(A×B − P − E),

11



3. µ(P1) ≤ K22−m.

Furthermore P , Q, and E are rectangular on coordinates {2, . . . , k} and P1, Q1, and E1 are all disjoint.

Proof. We would like to upper bound the fraction of inputs in A×B on which f(x1, y1) = b. The general
idea of the proof involves considering the set of projections (x1, y1) of the elements of A × B on the first
coordinate. This set forms a rectangle on X × Y . By definition of m = corrbdb

µ(f, ε), if this set has µ
measure larger than 2−m then f(x1, y1) = b for at most a 1− ε fraction of the projected pairs (x1, y1).

However, because the different (x1, y1) occur with different frequencies in A × B, the overall fraction
of errors may be much smaller. To overcome this problem we group the elements of A and B based on the
number of extensions their projections x1 or y1 have in A or B respectively. We choose the groups so that
each is a rectangle and in any group there is very little variation in the number of extensions. For any one of
these groups containing at least a 2−m fraction of (x1, y1) pairs we can apply the corruption bound for f to
upper-bound the fraction of inputs on which the function has output b. Any group that does not satisfy this
must be small. To keep the number of groups small we first separate out one set consisting of those inputs
where the number of extensions is tiny. In our argument, Q will be the union of the large groups, P will be
the union of the small groups, and E will be the set of inputs with a tiny number of extensions.

Let A1 be the set of projections of A on the first coordinate and B1 be the set of projections of B
on the first coordinate. Choose δ = ε/6 and let T = {2, . . . , k}. Sort the elements of A1 based on
the number of their extensions: For 1 ≤ i ≤ dlog(1−δ) 2−K′e = d−K ′/ log2(1 − δ)e = K let A1,i =
{x1 ∈ A1 | i = dlog(1−δ) µT

X(A(x1)T )e} and B1,i′ = {y1 ∈ B1 | i′ = dlog(1−δ) µT
Y (B(y1)T )e}. Every

point in A1,i has between a (1 − δ)i−1 and (1 − δ)i measure of extensions in the T coordinates and the
same holds for each B1,i′ . Let A1,i = {~x ∈ A | x1 ∈ A1,i} and B1,i′ = {~y ∈ B | y1 ∈ B1,i′}. Let
E = [(A −

⋃K
i=1 A1,i) × B] ∪ [A × (B −

⋃K
i′=1 B1,i)]. We bound the size of E as follows: For each

x1 ∈ A \
⋃K

i=1 A1,i, we have log1−δ µT
X((A(x1))T )e > K, and therefore µk

((
A \

⋃K
i=1 A1,i

)
× Y

)
≤

(1 − δ)K ≤ (1 − δ)log1−δ 2−K′
≤ 2−K′

. Similarly, µk
(
X ×

(
B \

⋃k
i=1 B1,i

))
≤ 2−K′

, and therefore

µk(E) ≤ 2 · 2−K′
.

For i, i′ ≤ K let R(i,i′) = A1,i × B1,i′ and then A × B = E ∪
⋃K

i=1

⋃K
i′=1 R(i,i′). By definition

R
(i,i′)
1 = A1,i × B1,i′ is the projection of R(i,i′) on the first coordinate. Every (x1, y1) ∈ R

(i,i′)
1 has at most

a (1− δ)i+i′−2 and at least a (1− δ)i+i′ measure of extensions in R(i,i′) because:

µT ((R(i,i′)(x1, y1))T ) = µT (((A×B)(x1, y1))T ) = µT (A(x1)T ×B(y1)T ) = µT
X(A(x1)T ) ·µT

Y (B(y1)T )

and for (x1, y1) ∈ R
(i,i′)
1 the first quantity in the product is between (1− δ)i−1 and (1− δ)i and the second

is between (1 − δ)i′−1 and (1 − δ)i′ . Furthermore, this guarantees that the measures of extensions for any
two pairs (x1, y1), (x′1, y

′
1) ∈ R

(i,i′)
1 have a ratio between 1 and (1− δ)2 ≥ 1− 2δ = 1− ε/3.

Let G = {(i, i′) | µ(R(i,i′)
1 ) = µ(A1,i × B1,i′) ≥ 2−m}. Because m = corrbdb

µ(f, ε), for every
(i, i′) ∈ G we have

µ(A1,i ×B1,i′ ∩ f−1(b)) ≤ (1− ε)µ(A1,i ×B1,i′).

Let Q(i,i′) = {(~x, ~y) ∈ R(i,i′) | f(x1, y1) = b}. Since elements in R
(i,i′)
1 = A1,i × B1,i′ have a µT

measure of extensions in R(i,i′) between (1− ε/3) and 1,

µk(Q(i,i′)) ≤ (1− ε)µk(R(i,i′))/(1− ε/3) ≤ (1− ε/2)µk(R(i,i′))
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Let Q =
⋃

(i,i′)∈G Q(i,i′) and P =
⋃

(i,i′)/∈G R(i,i′). Then

µk(Q) ≤ (1− ε/2)µk(
⋃

(i,i′)∈G

R(i,i′)) = (1− ε/2)µk(A×B − P − E)

Furthermore for the projection P1 of P on the first coordinate, µ(P1) = µ(
⋃

(i,i′)∈[K]2\G A1,i×B1,i′) <

K22−m. Observe that the conditions that determine whether an element (~x, ~y) ∈ A × B is in Q or P is
based solely on the the (x1, y1) coordinates of (~x, ~y) so each of Q and P is rectangular with respect to
T = {2, . . . , k}.

Proof of Theorem 4.2. We prove part (a); part (b) is an immediate corollary. Without loss of generality, we
may assume that b = 0, and by symmetry we may assume that T0 = {1, . . . , t0}. Let R be any rectangle on
Xt × Y t. We will classify inputs in R based on the properties of their projections on each of the t0 prefixes
of their coordinates based on the trichotomy given by Lemma 4.4. Lemma 4.4 splits the set of inputs in any
rectangle R based solely on their the first coordinate into a tiny error set E of inputs, a set P of inputs among
which there are very few choices for the first coordinate and a set Q of the remaining inputs on which an
output of 0 for that coordinate can be correct only on a (1− ε/2) fraction of inputs.

The sets of inputs corresponding to sets P and Q are iteratively subdivided using Lemma 4.4 based on
the properties of their second coordinate, etc. For j ≤ t0 we will group together all the tiny error sets E
found at any point into a single error set which also will be tiny. For the remaining inputs the decomposition
over the various coordinates leads to disjoint sets of inputs corresponding to the branches of a binary tree,
depending on whether the input fell into the P or Q set at each application of Lemma 4.4. At each stage
we either get a very small multiplicative factor in the upper bound on the total number of inputs possible
because of the lack of variation in the coordinate (the case of set P ) or we get a small multiplicative factor
in the upper bound on the fraction of remaining inputs on which the answer of 0 can be correct (the case of
set Q). For α ∈ {p, q}t0 we will write Sα for the set of inputs such that for each j ∈ [t0], the input is in a P
set at coordinate j when αj = p and in a Q set at coordinate j when αj = q. Out of t0 coordinates, one of
p or q must occur at least t0/2 times which will be good enough to derive the claimed bound.

For α ∈ {p, q}j define #p(α) (resp. #q(α)) to be the number of p’s (resp. q’s) in α. For 0 ≤ j ≤ t0
and α ∈ {p, q}j we inductively define sets Sα, Ej ⊆ Xt × Y t satisfying the following properties:

1. R ∩ (f t)−1(VT0) ⊆ Ej ∪
⋃

α∈{p,q}j Sα.

2. For every α ∈ {p, q}j , Sα is rectangular with respect to coordinates j + 1, . . . , t.

3. For U = {1, . . . , j}, for all α, β ∈ {p, q}j , if α 6= β then Sα
U ∩ Sβ

U = ∅.

4. For α ∈ {p, q}j−1, µt(Sαq) ≤ (1− ε/2)(µt(Sα)− µt(Sαp)).

5. For U = {1, . . . , j}, for all α ∈ {p, q}j , µU (Sα
U ) ≤ d−mt/ log(1− ε/6)e2j2−#p(α)m.

6. µt(Ej) ≤ 2j2−mt.

For the base case when j = 0: Define Sλ = R and E0 = ∅ where λ is the empty string. Clearly all the
properties are satisfied. To inductively proceed from j to j + 1, for each α ∈ {p, q}j we apply Lemma 4.4
to build the sets Sαp, Sαq, and Ej+1 from sets Sα and Ej as follows:

Let α ∈ {p, q}j . Let U = {1, . . . , j} and T = [t] − U . Since by property 2 for j, Sα is rectangular on
T , for each (xU , yU ) ∈ Sα

U , the set Sα(xU , yU )T can be expressed as AxU ,yU ×BxU ,yU . Apply Lemma 4.4
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with k = t − j and K ′ = mt to AxU ,yU × BxU ,yU to obtain disjoint sets PxU ,yU , QxU ,yU , and ExU ,yU

that contain all projections of inputs in (Sα(xU , yU ))T on which the j + 1-st output 0 is correct. Thus sets
P(xU ,yU ) = {(xU , yU )}×PxU ,yU , Q(xU ,yU ) = {(xU , yU )}×QxU ,yU , and E(xU ,yU ) = {(xU , yU )}×ExU ,yU

are disjoint and contain all inputs of Sα(xU , yU ) on which the j + 1-st output 0 is correct. Moreover,
by Lemma 4.4 these sets are disjoint on coordinate j + 1, rectangular on coordinates j + 2, . . . , t and for
K = d−mt/ log2(1− ε/6)e satisfy:

µT ((E(xU ,yU ))T ) ≤ 21−mt (1)

µ((P(xU ,yU ))j+1) ≤ K22−m (2)

µT ((Q(xU ,yU ))T ) ≤ (1− ε/2)µT (Sα(xU , yU )T − (P(xU ,yU ))T ) (3)

(Lemma 4.4 yields a slightly stronger bound than (3) but we only need the weaker bound.)
For α ∈ {p, q}j define

Sαp =
⋃

(xU ,yU )∈Sα
U

P(xU ,yU ),

Sαq =
⋃

(xU ,yU )∈Sα
U

Q(xU ,yU ),

and define
Ej+1 = Ej ∪

⋃
α∈{p,q}j

⋃
(xU ,yU )∈Sα

U

E(xU ,yU ).

Properties 1, 2, and 3 for j + 1 follow immediately from Lemma 4.4 and the properties 1–6 for j.
Now consider property 4:

µt(Sαq)

= µt(
⋃

(xU ,yU )∈Sα
U

Q(xU ,yU )) =
∑

(xU ,yU )∈Sα
U

µt(Q(xU ,yU ))

=
∑

(xU ,yU )∈Sα
U

µU ({(xU , yU )})µT (Q(xU ,yU ))

≤
∑

(xU ,yU )∈Sα
U

µU ({(xU , yU )})(1− ε/2)µT (Sα(xU , yU )T − (P(xU ,yU ))T ) by (3)

= (1− ε/2)

 ∑
(xU ,yU )∈Sα

U

µU ({(xU , yU )})µT (Sα(xU , yU )T −
∑

(xU ,yU )∈Sα
U

µU ({(xU , yU )})µT (P(xU ,yU ))T )


= (1− ε/2)(µt(Sα)− µt(Sαp))

which proves that property 4 is satisfied for j + 1.
For the case of property 5 observe that for α ∈ {p, q}j ,

µU∪{j+1}(Sαp
U∪{j+1})

= µU∪{j+1}

 ⋃
(xU ,yU )∈Sα

U

(P(xU ,yU ))U∪{j+1}


14



=
∑

(xU ,yU )∈Sα
U

µU∪{j+1}((P(xU ,yU ))U∪{j+1})

(since the sets P(xU ,yU ) have distinct values in coordinates U ∪ {j + 1})

=
∑

(xU ,yU )∈Sα
U

µU ({(xU , yU )}) · µ((P(xU ,yU ))j+1)

≤
∑

(xU ,yU )∈Sα
U

µU ({(xU , yU )}) ·K22−m by (2)

≤ µU (Sα
U ) ·K22−m ≤ K2j2−#p(α)m ·K22−m = K2(j+1)2−#p(αp)m

and

µU∪{j+1}(Sαq
U∪{j+1}) ≤ µU∪{j+1}(Sα

U∪{j+1}) ≤ µU (Sα
U ) · µ(Sα

j+1)

≤ µU (Sα
U ) ≤ K2j2−#p(α)m = K2j2−#p(αq)m.

Thus property 5 is satisfied for j + 1.
Finally, for property 6,

µt(Ej+1) = µt(Ej ∪
⋃

α∈{p,q}j

⋃
(xU ,yU )∈Sα

U

µt(E(xU ,yU )))

≤ µt(Ej) +
∑

α∈{p,q}j

∑
(xU ,yU )∈Sα

U

µt(E(xU ,yU ))

= µt(Ej) +
∑

α∈{p,q}j

∑
(xU ,yU )∈Sα

U

µU ({(xU , yU )})µT ((E(xU ,yU ))T )

≤ 2j2−mt +
∑

α∈{p,q}j

∑
(xU ,yU )∈Sα

U

µU ({(xU , yU )})µT ((E(xU ,yU ))T )

and by (1), the definition of Sα
U , and the fact that the Sα

U for distinct α are disjoint this is

≤ 2j2−mt + µU (
⋃

α∈{p,q}j

Sα
U ) 21−mt

≤ 2j2−mt + 21−mt ≤ 2(j + 1)2−mt,

which proves that property 6 is satisfied for j + 1.
All the properties required for the induction hypothesis are satisfied, therefore the recursive construction

produces the desired sets. We now use all these properties to derive the upper bound on µt(R∩(f t)−1(VT0)):
By property 1, R∩(f t)−1(VT0) ⊆ Et0∪

⋃
α∈{p,q}t0 Sα. Therefore for α ∈ {p, q}t0 with #p(α) ≥ t0/2,

µt(Sα) ≤ µ{1,...,t0}(Sα
{1,...,t0}) ≤ K2t02−#p(α)m ≤ K2t02−t0m/2

and therefore

µt

 ⋃
α∈{p,q}t0 :#p(α)≥t0/2

Sα

 ≤ 2t0K2t02−t0m/2
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We now upper bound the total measure of Sα for #p(α) ≤ t0/2.

CLAIM: For every j ≤ t0, µt(
⋃

α∈{p,q}t0 : #q(α)=j Sα) ≤ (1− ε/2)jµt(R).

The claim is clearly true for j = 0. For any α ∈ {p, q}∗, by multiple applications of property 4,

µt(
⋃

i≤t0−|α|−1

Sαpiq) =
∑

i≤t0−|α|−1

µt(Sαpiq)

≤
∑

i≤t0−|α|−1

(1− ε/2)
(
µt(Sαpi

)− µt(Sαpi+1
)
)
≤ (1− ε/2)µt(Sα)

since the sum telescopes. Let Zj = (p∗q)j ∩ {p, q}≤t0 be the set of all strings of length up to t0 that end
in a q and have a total of j q’s. The above for α = λ implies that µt(

⋃
β∈Z1

Sβ) ≤ (1 − ε/2)µt(R). We
can also apply the above to all α ∈ Zj to yield that µt(

⋃
β∈Zj+1

Sβ) ≤ (1− ε/2)µt(
⋃

α∈Zj
Sα) and thus by

induction that µt(
⋃

α∈Zj
Sα) ≤ (1− ε/2)jµt(R). Finally, since Sαp ⊆ Sα for any α we derive that

µt

 ⋃
α∈{p,q}t0 : #q(α)=j

Sα

 = µt(
⋃

α∈Zj

Sαpt0−|α|
) ≤ µt

 ⋃
α∈Zj

Sα

 ≤ (1− ε/2)jµt(R)

and the claim is proved.
Thus the total

µt(
⋃

α∈{p,q}t0 : #p(α)<t0/2

Sα) = µt(
⋃

α∈{p,q}t0 : #q(α)>t0/2

Sα) ≤ (2/ε)(1− ε/2)t0/2µt(R)

Putting it all together we have

µt(R ∩ (f t)−1(VT0)) ≤ µt(Et0) + µt(
⋃

α∈{p,q}t0

Sα)

= µt(Et0) + µt(
⋃

α∈{p,q}t0

#p(α)≥t0/2

Sα) + µt(
⋃

α∈{p,q}t0

#p(α)<t0/2

Sα)

≤ 2t02−mt + 2t0K2t02−t0m/2 + (2/ε)(1− ε/2)t0/2µt(R).

Since − log2(1− ε/6) > −
√

2 ln(1− ε/6) ≥
√

2ε/6 and ε > 12mt/2m/8, K = d−mt/ log2(1− ε/6)e <
2m/8/23/2 and therefore

2t0K2t02−t0m/2 < 2−t0m/4/22t0 .

Therefore, because the condition on ε implies that m ≥ 24, if µt(R) ≥ 2−t0m/6 then

µt(R ∩ (f t)−1(VT0)) < 2t02−mt + 2−t0m/4/22t0 + (2/ε)(1− ε/2)t0/2µt(R)

< 2−t0m/4 + (2/ε)(1− ε/2)t0/2µt(R)

≤ 2−t0m/12µt(R) + (2/ε)(1− ε/2)t0/2µt(R)

≤ 2−t0µt(R) + (2/ε)(1− ε/2)t0/2µt(R)

≤ (1− ε/2)t0/2µt(R) + (2/ε)(1− ε/2)t0/2µt(R)

≤ (3/ε)(1− ε/2)t0/2µt(R)

as required.
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The following is a direct product theorem for randomized communication complexity derived from
corruption bounds on cross product distributions on rectangles.

Theorem 4.5. Let f : X × Y → {0, 1} and let µ be a rectangular distribution on X × Y . Let b ∈ {0, 1},
p = µ(f−1(b)), and ε < p be given. There are constants c, c′ > 0 and δ ≤ e−pε/144 < 1 such that for any
integer t ≤ 2corrbdb

µ(f,ε)/16/8 such that pt ≥ 8 and ε ≥ 18 ln(pt)
pt ,

R2
1−δt(f t) ≥ D2,µt

1−δt(f t) ≥ cpt · corrbdb
µ(f, ε)− c′pt.

Proof. Assume without loss of generality that b = 0. Set m = corrbd0
µ(f, ε). Set O′ = {~v ∈

{0, 1}t | ~v has ≥ pt/4 0’s}, and let Is be the set of all inputs (~x, ~y) ∈ Xt × Y t such that f t(~x, ~y) contains
precisely s 0’s. By definition µt(Is) = Pr[B(t, p) = s] where B(t, p) is the binomial distribution that is
the sum of t Bernoulli trials with success probability p. Therefore by a standard tail bound (Proposition 2.5)
µt(

⋃
s<pt/4 Is) ≤ 2−pt/2 and thus µt((f t)−1(O′)) ≥ 1− 2−pt/2.

For simplicity, we will choose c ≤ c′/72 so that the bound will be trivial for m ≤ 72; we now assume
that m ≥ 72. Since ln(x)

x is a decreasing function of x for x ≥ 8, p ≤ 1, m ≥ 72, and t ≤ 2m/16/8,

18 ln(pt)
pt

≥ 18 ln(t)
t

≥ 144 ln(2)(m/16− 3)2−m/16 >
3
2
m2−m/16 ≥ 12mt2−m/8.

It follows by hypothesis that ε > 12mt2−m/8 and so we may apply Theorem 4.2 with t0 = pt/4. This shows
that for every ~v ∈ O′ we have corrbd~v

µt(f t, 1− γ) ≥ (pt/4)m/6 = ptm/24 for γ = (3/ε)(1− ε/2)pt/8.
Now define γ′ = (4/ε)(1− ε/2)pt/8 and let g = f t. Because ε < p ≤ 1, we have that

1− γ′

1− γ
= 1− (γ′ − γ)

1− γ

≤ 1− (γ′ − γ)

= 1− (1/ε)(1− ε/2)pt/8

≤ 1− 2−pt/8

≤ µ(g−1(O′)).

Therefore, 1− γ′ ≤ µ(g−1(O′))(1− γ) and we may apply Lemma 3.5 to obtain

R2
1−γ′(g) ≥ D2,µt

1−γ′(g) ≥ ptm

24
− log2(

1
µ(g−1(O′)− (1− γ′)/(1− γ))

).

Moreover,

µ(g−1(O′))− (1− γ′)/(1− γ) ≥ 1− 2−pt/2 − (1− 2−pt/8) = 2−pt/8 − 2−pt/2 ≥ 2−pt/2

since pt ≥ 8. Therefore R2
1−γ′(g) ≥ D2,µt

1−γ′(g) ≥ ptm/24− pt/2. Now since ε ≥ 18 ln(pt)
pt ,

γ′ = (4/ε)(1− ε/2)pt/9(1− ε/2)pt/72

≤ (4/ε)e−εpt/18(1− ε/2)pt/72

≤ 4pt

18 ln(pt)
e− ln(pt)(1− ε/2)pt/72

≤ (1− ε/2)pt/72.
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Thus for δ = (1 − ε/2)p/72 ≤ e−pε/144 < 1, we have γ′ ≤ δt and choosing c = 1/144 and c′ = 1/2 we
obtain the claimed bound. (Note that by explicitly including an extra condition that ε > 12mt2−m/8 in the
statement of the theorem we could have increased c to 1/24.)

We can show something even stronger than Theorem 4.5, namely that simply approximating f t with
significant probability requires a similar number of bits of communication.

Definition 4.6. Let ∆ be the usual Hamming distance on {0, 1}t. For 0 ≤ α ≤ 1 and g, h : Xt ×
Y t → {0, 1}t we say that g is an α-approximation of h if and only if for every (~x, ~y) ∈ Xt × Y t,
∆(g(~x, ~y), h(~x, ~y)) ≤ αt; i.e. the function values differ on at most an α fraction of coordinates.

Theorem 4.7. Let f : X × Y → {0, 1} and let µ be a rectangular distribution on X × Y . Let b ∈ {0, 1},
p = µ(f−1(b)), and 0 < ε < p be given. There are absolute constants c, c′, c′′, c′′′, c′′′′ > 0 such that for
0 < α ≤ c′′′ε/ log2(1/ε), δ ≤ e−c′′′′εp < 1, and for any integer t ≤ 2corrbdb

µ(f,ε)/16/24 such that pt ≥ 8
and ε ≥ c′′ ln(pt)

pt and for any function g : Xt × Y t → {0, 1} that is an αp approximation of f t,

R2
1−δt(g) ≥ D2,µt

1−δt(g) ≥ cpt · corrbdb
µ(f, ε)− c′pt.

Proof. The proof follows the outline of the proof of Theorem 4.5. Assume without loss of generality that
b = 0 and set m = corrbd0

µ(f, ε). Set O′ = {~v ∈ {0, 1}t | #0(~v) ≥ pt/4}. As above, µt((f t)−1(O′)) ≥
1 − 2−pt/2. Let O′′ = {~v ∈ {0, 1}t | #0(~v) ≥ (1/4 − α)pt}. Since g is an αp approximation of f t,
g−1(O′′) ⊇ (f t)−1(O′) so µt(g−1(O′′)) ≥ 1− 2−pt/2.

Let t0 = (1/4− 2α)pt. Since g is an αp approximation of f t, for every input (~x, ~y) ∈ O′′ the functions
f t and g agree on at least t0 coordinates with value 0. Fix any ~v ∈ O′′. Let S ⊆ {1, . . . , t} be the set of 0
coordinates of ~v and s = |S|. Assume that α ≤ 1/24; then s ≥ (1/4 − α)pt > pt/5. Let t0 = s − αpt
which is ≥ s− 5αs.

Fix any rectangle R in Xt×Y t with µt(R) ≥ 2−t0m/6 We bound µt(g−1(~v)∩R). Let (~x, ~y) ∈ g−1(~v).
Since g is an αp approximation of f t, f t(~x, ~y) has value 0 on at least t0 of the coordinates in S. There are
at most

(
s

5αs

)
≤ 2H2(5α)s different ways to choose a set T0 ⊆ S of size t0 where H2 is the binary entropy

function. For each set T0 ⊆ S, by the properties of our parameters as in the previous proof, we can apply
Theorem 4.2 to f (this time using part (a)) to show that

µt((f t)−1(VT0) ∩R) ≤ (3/ε)(1− ε/2)t0/2µt(R)

≤ (3/ε)(1− ε/2)s(1−5α)/2µt(R)

where VT0 = {~v′ ∈ {0, 1}t | v′i = 0 for all i ∈ T0}. By construction

g−1(~v) ⊆
⋃

T0⊆S, |T0|=t0

(f t)−1(VT0).
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Therefore,

µt(g−1(~v) ∩R) ≤
∑

T0⊆S, |T0|=t0

µt((f t)−1(VT0) ∩R)

≤
∑

T0⊆S, |T0|=t0

(3/ε)(1− ε/2)s(1−5α)/2µt(R)

≤ 2H2(5α)s(3/ε)(1− ε/2)s(1−5α)/2µt(R)

= (3/ε)[(1− ε/2)(1−5α)/22H2(5α)]sµt(R)

≤ (3/ε)[(1− ε/2)(1−5α)/22H2(5α)]pt/5µt(R).

Therefore we have µt(g−1(O′′)) ≥ 1− 2−pt/2 and for any ~v ∈ O′′ we have corrbd~v
µt(g, 1− γ) ≥ t0m/6 =

ptm/30 for γ ≤ (3/ε)[(1− ε/2)(1−5α)/22H2(5α)]pt/5.
Now for α ≤ c′′′ε/ log2(1/ε) for a sufficiently small constant c′′′ > 0, the quantity (1−ε/2)(1−5α)/22H2(5α)

is at most e−c∗ε for some constant c∗ > 0. Then, by an analogous argument to one in the previous proof we
may apply Lemma 3.5 to g and use our assumptions on the parameters to obtain that

R2
1−γ′(g) ≥ D2,µt

1−γ′(g) ≥ cptm− c′pt

for suitable constants c, c′ > 0 and for γ′ ≤ δt for some δ ≤ e−c′′′′εp < 1. This proves the theorem.

Disjointness

Recall the disjointness predicate DISJ2,n : {0, 1}n × {0, 1}n → {0, 1} such that DISJ2,n(x, y) = 1 if and
only if x ∩ y 6= ∅.

Let µ be the rectangular distribution on X × Y = {0, 1}n × {0, 1}n given by Prµ[xi = 1] = Prµ[yi =
1] = n−1/2 independently for (x, y) ∈ X×Y . Babai, Frankl, and Simon [2] proved the following corruption
lower bound on DISJ2,n under distribution µ.

Proposition 4.8. [Babai, Frankl, Simon[2]] Let µ be the rectangular distribution defined as above. Then
µ(DISJ−1

2,n(0)) is Ω(1) and for any sufficiently small constant ε > 0, corrbd0
µ(DISJ2,n, ε) is Ω(

√
n).

Combining the Proposition 4.8 with Theorems 4.2 and 4.5 gives the following corollary.

Corollary 4.9. There is a δ < 1 and a constant c > 0 such that for t ≤ 2c
√

n the following hold:

(a) Let µ be defined as above. There is a constant c′ > 0 such that for any ~v ∈ {0, 1}t with #0(~v) ≥ t0,
corrbd~v

µt(DISJt2,n, 1− δt) ≥ c′t0
√

n.

(b) R2
1−δt(DISJt2,n) is Ω(t

√
n).

Remark 1. Using the direct sum property for conditional information complexity and the lower bound
of [7], for fixed error ε < 1 one can obtain the bound R2

ε (DISJt2,n) is Ω(tn). However this bound is
incomparable to the above corollary because the direct product result guarantees that correctness is at most
(1− ε)Ω(t) whereas the direct sum result only guarantees that correctness is at most 1− ε.
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5 3-party Number-on-the-forehead Communication Complexity of Disjoint-
ness

We consider the computation of DISJ3,n in two models, the randomized Z → (Y ↔ X) model and the
general 3-party model.

5.1 Z → (Y ↔ X) Protocols

Nisan and Wigderson [26] suggested the study of 3-party one way communication complexity as a potential
approach to obtaining size-depth trade-offs in circuit complexity. In particular, they proved lower bounds
on the communication complexity of functions of the form f(x, h, i) = h(x)i, where x is drawn from a set
X , h from a family H of universal hash functions from X to {0, 1}n, and i from [n]. Their lower bound
argument also applies to Z → (Y ↔ X) protocols for Z = [n] and Y = H . Using our new direct product
results on corruption we apply a similar argument to yield lower bounds for DISJ3,n in this model.

Theorem 5.1. DZ→(Y↔X)(DISJ3,n) is Ω(n1/3) and for ε < 1/2, RZ→(Y↔X)
ε (DISJ3,n) is Ω((1−2ε)2n1/3).

Proof. We follow the general approach of [26] but use a direct product bound for corruption in place of a
discrepancy bound for universal hash function families. Note that although the basic approach and bound
of [26] is correct, there is an issue with the proof in [26] that is discussed and corrected below.

Fix any Z → (Y ↔ X) protocol P computing DISJ3,n and let C(P ) be the total number
of bits communicated in P . Let t = n1/3. View each string x, y, z as a sequence of t blocks,
x1, . . . , xt, y1, . . . , yt, z1, . . . , zt ∈ {0, 1}n/t.

Given P we first construct a Z → (Y ↔ X) protocol P ′ that computes
(DISJ2,n/t(x1, y1), . . . , DISJ2,n/t(xt, yt)) in which the Z-player sends C(P ) bits and the X and Y
players together send tC(P ) bits: Consider runs of the protocol P with different choices of z ∈ Z, in par-
ticular with zj = 0(j−1)n/t1n/t0(t−j)n/t for j = 1, . . . , t. For z = zj , DISJ3,n(x, y, z) = DISJ2,n/t(xj , yj).
Also observe that for each of these choices, the message mZ(x, y) sent by the Z-player is independent of
the choice of z. On input (x, y), the new protocol P ′ simulates P on inputs (x, y, zj) for j = 1, . . . , t except
that, since the message sent by the Z-player is the same in each case, the Z-player sends this message only
once. P ′ then outputs the tuple of results.

The function computed by P ′ does not depend on the choice of z, so it can be viewed as a two-player
protocol with advice for computing DISJt2,n/t(x, y). Define a protocol P ′′ in which the Z-player receives
(x, y) as input as before but the X player only receives x and the Y player only receives y. (To conform
with the standard two-player notation, we say that player X can see input x and player Y can see input y.)
The Z player sends the message that he would under protocol P ′. After the Z-player’s communication of
C(P ) bits, the X- and Y -players exchange tC(P ) bits in order to compute DISJt2,n/t(x, y).

Consider the distribution ν on X×Y ×Z in which we choose z uniformly at random from {zj | j ∈ [t]},
and independently set each bit of x and each bit of y to 0 with probability 1−n−1/3 and to 1 with probability
n−1/3. Observe that the induced distribution on Xt × Y t given by ν is µt

n/t where µn/t = µn2/3 is the dis-

tribution µ used in Proposition 4.8 for input strings of length n/t = n2/3. Let p = Prν [DISJ2,n/t(xj , yj) =
0] = Prµn/t

[DISJ2,n/t(xj , yj) = 0], the probability that x and y intersect in block j (which is independent

of j) and observe that p = (1− n−2/3)n2/3
= Ω(1).

Since the set of possible messages is prefix-free and |mz| ≤ C(P ), there is some mz such that
Prν [mZ(x, y) = mz] ≥ 2−C(P ). Fix that mz .
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At this point in [9] we gave a direct argument using Theorem 4.2 to derive the claimed lower bound.
Here, we apply Theorem 4.5 instead. Let Smz ⊆ X × Y be the set of inputs on which mZ(x, y) = mz .
Define a deterministic 2-party protocol P ′′

mz
of complexity t · C(P ) on X × Y that is given by protocol

P ′′ with the advice given by communication mZ = mz fixed. Since P ′′ is always correct, P ′′
mz

correctly
computes DISJt2,n/t on Smz . Now by our choice of mz , the measure of Smz within X × Y satisfies

µt
n/t(Smz) = Prν [mZ(x, y) = mz] ≥ 2−C(P )

and thus P ′′
mz

correctly computes DISJt2,n/t on a set with µt
n/t measure at least 2−C(P ). Let ε < p be

a sufficiently small positive constant that Proposition 4.8 applies and that also satisfies ε ≥ 9 ln(pt)
pt . By

Proposition 4.8 and Theorem 4.5, there are constants c, c′ and δ < 1 such that

D
2,µt

n/t

1−δt (DISJt2,n/t) ≥ cpt · corrbd0
µn/t

(DISJ2,n/t, ε)− c′pt

≥ c′′t
√

n/t

for some constant c′′ > 0. This says that no algorithm that sends fewer than c′′t
√

n/t bits can correctly
compute DISJt2,n/t on at least a δt measure of inputs under µt

n/t. Thus, either 2−C(P ) < δt or C(P ′′
mz

) =

t · C(P ) ≥ c′′t
√

n/t. It follows that C(P ) is Ω(min{t,
√

n/t}) which is Ω(n1/3) since t = n1/3.
One can use a similar argument in the case of randomized complexity to derive a lower bound of the

form Ω((1 − 2ε)2n1/3/ log n) by first applying Lemma 2.6 to reduce the probability of error below 1/(4t)
and then applying Yao’s lemma with distribution ν to obtain a protocol that correctly computes DISJt2,n/t

on at least 3/4 of the µt
n/t measure of X × Y and then fix a popular communication mz on which a 2-party

protocol has large success to derive a bound as in the deterministic case. There is a Θ( log t
(1−2ε)2

) = Θ( log n
(1−2ε)2

)
factor lost compared to the deterministic case due to the amount of amplification required.

Instead, in the case of ε error randomized complexity we apply an argument based on Theorem 4.7
instead of Theorem 4.5. Let α = c′′′ε/ log2(1/ε) > 0 where c′′′ > 0 is the constant in Theorem 4.7. We
apply Lemma 2.6 to reduce the error in randomized protocol P from ε to ε′ = αp/4. This increases the
communication complexity by a factor that is O

(
1

(1−2ε)2

)
. We then use Yao’s lemma with the distribution

ν to derive a deterministic protocol P ∗ with complexity C(P ∗) that is O( 1
(1−2ε)2

C(P )) and has error at
most ε′ over the distribution ν.

We apply the argument from the deterministic case with P ∗ replacing P to obtain a protocol P ′′ com-
puting DISJt2,n/t(x, y) in which the Z-player sends C(P ∗) = O( 1

(1−2ε)2
C(P )) bits based on (x, y) and

the X and Y players interact sending a total of tC(P ∗) bits based on x and y respectively. Now, in con-
strast with the simpler argument for randomized protocols sketched above, the error in P ∗ is too large
to guarantee that the protocol P ′′ computes DISJt2,n/t on any portion of the input space. However, we
see that for most inputs P ′′ produces a good approximation of DISJt2,n/t. Let G = {(x, y) ∈ X × Y |
∆(P ′′(x, y), DISJt2,n/t(x, y)) ≤ αpt}. Since P ∗ has error at most ε′ = αp/4 under ν and ν gives all t of the
zj equal measure independent of the probability it assigns to x and y, by Markov’s inequality at most a 1/4
measure of (x, y) under ν have more than 4ε′t = αpt inputs zj for which P ′′ on input (zj , x, y) does not
output DISJ2,n/t(xj , yj). Therefore µt

n/t(G) ≥ 3/4.
For each binary string m of length at most C(P ), let Sm = {(x, y) | mZ(x, y) = m}; these sets

partition X × Y ⊇ G. Let M = {m | µt
n/t(Sm ∩G) ≥ µt

n/t(Sm)/2}. Since µt
n/t(G) ≥ 3/4, by Markov’s
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inequality we have that µt
n/t(

⋃
m∈M Sm) ≥ 1/2. Because there are only 2C(P ∗) choices of m, we may

choose mz ∈ M so that µt
n/t(Smz) ≥ 2−C(P ∗)−1 and thus µt

n/t(Smz ∩G) ≥ 2−C(P ∗)−2. Fix this mz .
As above we consider the deterministic 2-party protocol P ′′

mz
which has complexity t · C(P ∗). By

construction, for every input (x, y) ∈ Smz ∩G, we have ∆(P ′′
mz

(x, y), DISJt2,n/t(x, y)) ≤ αp. Thus there is
a function g that is an αp approximation to DISJt2,n/t such that P ′′

mz
computes g on every input in Smz ∩G

which is a set of measure at least 2−C(P ∗)−2 under µt
n/t. Applying Theorem 4.7 instead of Theorem 4.5, by

the same argument as in the deterministic case we have that either 2−C(P ∗)−2 < δt or tC(P ∗) ≥ c′′t
√

n/t
and thus C(P ∗) is Ω(n1/3). Therefore C(P ) is Ω((1− 2ε)2n1/3) as required.

5.2 General 3-party Number-on-the-forehead Computation

In this section we prove an Ω(log n) lower bound on the unrestricted three-party number-on-the-forehead
communication complexity of DISJ3,n. Although this is not yet strong enough to imply lower bounds for
lift-and-project proof systems it is of independent interest since it uses a multiparty number-on-the-forehead
corruption bound that does not follow from a discrepancy bound.

Theorem 5.2. For any ε < 1/2, R3
ε (DISJ3,n) is Ω((1− 2ε)2 log n).

To prove this theorem we use the following simple characterization of three-dimensional cylinder inter-
sections.

Proposition 5.3. A set E is a three-dimensional cylinder intersection on X × Y × Z if and only if there
is a family of combinatorial rectangles Rz ∈ P(X) × P(Y ), for z ∈ Z, and a set S ⊆ X × Y such that
E =

⋃
z∈Z((Rz ∩ S)× {z}).

Proof. “If”: Let E be a set of the form E =
⋃

z∈Z((Rz ∩ S) × {z}). For each z ∈ Z, choose Xz ⊆ X
and Yz ⊆ Y so that Rz = Xz × Yz . Set CX = {(x, y, z) ∈ X × Y × Z | y ∈ Yz}, CY = {(x, y, z) ∈
X ×Y ×Z | x ∈ Xz}, CZ = {(x, y, z) ∈ X ×Y ×Z | (x, y) ∈ S}. Clearly CX is an X-cylinder, CY is a
Y -cylinder, and CZ is a Z-cylinder. Moreover, (x, y, z) ∈ CX ∩ CY if and only if (x, y) ∈ Xz × Yz = Rz .
Therefore, (x, y, z) ∈ CX ∩ CY ∩ CZ if and only if (x, y, z) ∈ (Rz ∩ S)× {z}.

“Only if”: Let E be a three-dimensional cylinder intersection. By definition, E is the intersection of an
X-cylinder CX , a Y -cylinder CY , and a Z-cylinder CZ . For each z ∈ Z, let Xz = {x | ∃y (x, y, z) ∈ CY }
and Yz = {y | ∃x (x, y, z) ∈ CX} and Rz = Xz×Yz . Because CX is an X-cylinder and CY is a Y -cylinder,
for each z ∈ Z, (x, y, z) ∈ CX ∩ CY if and only (x, y) ∈ Xz × Yz = Rz . Write CZ = S × Z for some
S ⊆ X×Y . We now have that (x, y, z) ∈ CX∩CY ∩CZ if and only if (x, y, z) ∈ (Rz × {z})∩(S × Z) =
(Rz ∩ S)× {z}.

Proof of Theorem 5.2. Let t = n1/3. Define a distribution ν on X×Y ×Z as follows: Choose z uniformly at
random from {zj = 0(j−1)(n/t)1n/t0(t−j)n/t | j ∈ [t]}, and independently set each bit of x and each bit of y

to 0 with probability 1−n−1/3 and to 1 with probability n−1/3. Clearly ν(DISJ−1
3,n(0)) = (1−n−2/3)n2/3

=
Ω(1). Set p = ν(DISJ−1

3,n(0)).
Let Γ be the set of all cylinder intersections on X × Y × Z. We prove that for all ε′ < 1,

ε′-mono0
ν,Γ(DISJ3,n) = O(n−1/3 log n). The claimed lower bound then follows by applying Proposition 2.6

to reduce the error below p/2 and then applying Corollary 3.6 with ε′ = p/2.
Let ε′ < 1 be given. Let E be a cylinder intersection in X × Y × Z. Apply Proposition 5.3 and write

E =
⋃

z∈Z((S∩Rz)×{z}) for S ⊆ X×Y and Rz rectangles on X×Y . Suppose that ν(DISJ−1
3,n(1)∩E) ≤

ε′ · ν(E). It is sufficient prove that ν(E) is O(n−1/3 log n).
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Because the support of ν is {0, 1}n×{0, 1}n×{zj | j ∈ [t]}, we may assume without loss of generality
that E =

⋃t
j=1(S ∩ Rzj ) × {zj}. For each j ∈ [t], all x ∈ {0, 1}n, all y ∈ {0, 1}n, set xj = x ∩ zj

and yj = y ∩ zj . For each (x, y) ∈ S let J(x,y) ⊆ [t] be the set of j ∈ [t] for which (x, y) ∈ Rzj

and DISJ3,n(x, y, zj) = 0. This implies that for all j ∈ J(x, y), DISJ2,n/t(xj , yj) = 0. Let t0 = d(1 −
ε′)ν(E)t/2e and let S′ = {(x, y) ∈ S | |J(x,y)| ≥ t0}. Let E′ = {(x, y, zj) ∈ E | (x, y) ∈ S′} be the set
of elements of E whose (x, y) components are in S′. Notice that E′ is a cylinder-intersection. Let µ be the
measure induced on X × Y by ν.

ν((E − E′) ∩ DISJ−1
3,n(0)) ≤

t∑
j=1

ν
(((

Rzj ∩ S
)
× {zj}

)
−

((
Rzj ∩ S′

)
× {zj}

))
and since ν(S) =

∑
(x,y)

|J(x,y)|
t µ({(x, y)}) this is

≤ t0 − 1
t

µ(S − S′)

<
(1− ε′)ν(E)t/2

t
µ(S)

≤ (1− ε′)ν(E)/2

By the error assumption for E, ν(E∩DISJ−1
3,n(0)) ≥ (1−ε′)ν(E). Therefore ν(E′) ≥ ν(E′∩DISJ−1

3,n(0)) ≥
(1− ε′)ν(E)/2 and thus µ(S′) ≥ ν(E′) ≥ (1− ε′)ν(E)/2.

We now break up the rectangles Rzj into smaller rectangles to partition E′ into a family of sub-cylinder-
intersections. For j = 1, . . . , t write Rzj = Aj × Bj for Aj ⊆ X and Bj ⊆ Y . For α, β ∈ {0, 1}t define
the rectangle

Rα,β = (
⋂

j:αj=1

Aj ∩
⋂

j:αj=0

Aj)× (
⋂

j:βj=1

Bj ∩
⋂

j:βj=0

Bj).

Some simple facts follow immediately from the construction of the Rα,β’s:

1. For (α, β) 6= (α′, β′), Rα,β ∩Rα′,β′ = ∅

2. For each j ∈ [t], Rzj =
⋃

α:αj=1

⋃
β:βj=1 Rα,β

3. E′ =
⋃t

j=1

⋃
α:αj=1

⋃
β:βj=1 (Rα,β ∩ S′)× {zj}

4. For all (α, β), and all (x, y), (x′, y′) ∈ Rα,β , {j ∈ [t] | (x, y) ∈ Rzj} = {j ∈ [t] | (x′, y′) ∈ Rzj}

As a corollary of Property 4, each Rα,β has an associated set Jα,β ⊆ [t], |Jα,β| ≥ t0, such that for all
(x, y) ∈ Rα,β ∩ S′, and all j ∈ Jα,β , DISJ3,n(x, y, zj) = 0. This implies that for all j ∈ Jα,β , and all
(x, y) ∈ Rα,β ∩ S′, DISJt2,n/t(x

j , yj) = 0.

By Corollary 4.9(a) there are some constants c, δ > 0 and such that for any α, β if µ(Rα,β) ≥ 2−ct0
√

n/t

then µ(Rα,β ∩ S′) ≤ δt0µ(Rα,β). Since there are 22t choices of (α, β), by the union bound, at most

22t−ct0
√

n/t measure of points in S′ can be covered by rectangles Rα,β for which µ(Rα,β) < 2−ct0
√

n/t.
Since the rectangles Rα,β covering S′ are disjoint, by the corruption bound the total measure of the part of S′

covered by rectangles Rα,β with µ(Rα,β) ≥ 2−ct0
√

n/t is at most δt0 . Therefore µ(S′) ≤ δt0 + 22t−ct0
√

n/t

which, for t = n1/3, is at most δt0 + 2−(ct0−2)t. Therefore

(1− ε′)ν(E)/2 ≤ δt0 + 2−(ct0−2)t.
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By definition t0 ≥ (1 − ε′)ν(E)t/2. If ct0 < 3 then µ(E) is O(1/t) = O(n−1/3) and we are done.
Otherwise, since t0 ≤ t we have constants c1, c2 > 0 such that ν(E) ≤ c12−c2ν(E)t. Taking logarithms
yields log2 ν(E) ≤ −c2ν(E)t + c3 for some constant c3. Thus 1

ν(E) log2
1

ν(E) is Ω(t) It follows that ν(E)

is O( log t
t ) = O( log n

n1/3 ) as required.

Observe that the corruption bound under the distribution used in the proof of Theorem 5.2 is asymptoti-
cally tight: The X or Y player sends dlog2 te bits specifying the value of j and then the Z player computes
DISJ3,n(x, y, zj). There are natural distributions for which we doubt that the corruption bound of Theo-
rem 5.2 is tight. For example, the distribution that independently sets each bit of each string, with each bit
set to 1 with probability n−1/3 and 0 with probability 1 − n−2/3. The Ω(log n) corruption bound holds in
this case as well, although the proof is a little more involved. Distributions such as this may have potential
utility in deriving super-logarithmic lower bounds, although we have not yet been able use them to derive
such bounds. The key limitation of the method of proof of Theorem 5.2 is the step in which we refine of the
set of rectangles.

6 k-party Number-on-the-Forehead Communication Complexity

In this section, we establish an Ω(n1/(k−1)/(k − 1)) lower bound for the case of randomized simultane-
ous communication and use this to derive an Ω((log n)/(k − 1)) lower bound for the general randomized
number-on-the-forehead model.

6.1 Simultaneous k-party Number-on-the-forehead Computation

The communication complexity of disjointness in the number-on-the-forehead simultaneous messages model
can be analyzed using the techniques of Babai, Gal, Kimmel and Lokam [3]. Following [3] we directly an-
alyze the complexity of this problem in the slightly stronger model in which one player, player k, receives
simultaneous communication from the other players and outputs an answer based on their communication
and input xk ∈ Xk; clearly R

X1||...||Xk
ε (f) ≥ R

(X1||...||Xk−1)→Xk
ε (f).

The key idea of the approach in [3] is to find a small collection of possible inputs Qi in each of the input
sets Xi = {0, 1}n, for i ∈ [k−1], with the property that taking all their combinations together yields a large
number of different subproblems player k might need to solve. The only information that player k receives
about xk is from the other players so the information from all their possible messages must be enough to
differentiate among these possibilities.

Definition 6.1. For C and D subsets of {0, 1}n write C uD = {x ∩ y | x ∈ C, y ∈ D}.

Proposition 6.2. For ` ≥ 1 there exist Q1, . . . , Q` ⊆ {0, 1}n such that |Qi| = n1/` and Q1 u · · · u Q` is
the set of all singleton sets in [n].

Proof. Let m = n1/` and view [n] as an `-dimensional cube with sides of size m. Let Qi = {Qi,1, . . . , Qi,m}
be the partition of [n] into subsets of size m`−1 given by the m layers along the i-th dimension in this cube.
Since the different sets within each Qi are disjoint, all-nonempty sets in Q1 u · · · u Q` are disjoint. An
element j ∈ [n] can be indexed by its coordinates (j1, . . . , j`) in each of the ` dimensions of this cube.
Clearly {j} = Q1,j1 ∩Q2,j2 ∩ · · · ∩Q`,j`

.

Let H be the binary entropy function and for 0 ≤ ε ≤ 1 define H2(ε) = ε log2
1
ε + (1− ε) log2

1
1−ε . Our

argument uses basic properties of these functions that can be found for example in [15].
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Theorem 6.3.
R

(X1||···||Xk−1)→Xk
ε (f) ≥ (1−H2(ε))n1/(k−1)/(k − 1).

Proof. We apply Yao’s lemma and analyze the complexity C(P ) of an ε-error deterministic protocol P
under distribution µ given as follows: Apply Proposition 6.2 with ` = k − 1 to obtain sets Q1, . . . , Qk−1 ⊆
{0, 1}n with |Qi| = m = n1/(k−1) such that Q1 u · · · u Qk−1 contains all singleton subsets of [n]. For
each j ∈ [n] we can identify a (unique) tuple ~xj = (xj

1, . . . , x
j
k−1) ∈ Q1 × · · · × Qk−1 such that {j} =

xj
1 ∩ · · · ∩ xj

k−1. Define distribution µ on X1 × . . . ×Xk by by choosing j uniformly at random from [n]
and independently choosing a uniformly random subset xk ⊆ [n] to produce the tuple (xj

1, . . . , x
j
k−1, xk).

Observe that for inputs in the support of µ, DISJk,n(~xj , xk) = 1 if and only if j ∈ xk. It follows that
the vector (DISJk,n(~xj , xk))j∈[n] completely determines xk. If the protocol P were always correct, then we
could encode xk by listing all the possible messages that could be sent by players 1, . . . , k − 1 for any of
the possible extensions ~xj on the first j coordinates since these would be sufficient to determine the values
of {DISJk,n(~xj , xk)}j∈[n] and thus the bits of xk. Although there are n = mk−1 different extensions of xk,
for each player 1, . . . , k − 1, given xk there are only mk−2 = n1−1/(k−1) different messages possible since
player i’s message does not depend on the i-th coordinate. Thus the total number of bits required would
be at most (k − 1)n1−1/(k−1)C(P ) which must be at least n since they are sufficient to encode xk and we
would obtain C(P ) ≥ n1−1/(k−1)/(k − 1).

Since P has error at most ε this vector ~v of possible messages is sufficient to determine each bit of
xk with error at most ε under distribution µ. Let Xk be random variable for the string xk as selected
by the distribution µ, and let ~V be the random variable for the strings ~v as selected by µ. By Fano’s
inequality, for each j ∈ [n], the entropy H(Xk,j | ~V) ≤ H2(ε). Thus by the sub-additivity of entropy,
H(Xk | ~V) ≤ H2(ε)n. Therefore

n = H(Xk) ≤ H(~V) + H(Xk | ~V) ≤ (k − 1)n1−1/(k−1)C(P ) + H2(ε)n

Rearranging, we have (k − 1)n1−1/(k−1)C(P ) ≥ (1−H2(ε))n which yields the claimed bound.

6.2 General k-party number-on-the-forehead Computation

We obtain lower bounds for general k-party number-on-the-forehead communication complexity as a simple
consequence of Theorem 6.3 using a simulation of general protocols by simultaneous protocols.

Theorem 6.4. For any ε < 1/2, Rk
ε (DISJk,n) is log2 n

k−1 −O(1).

Proof. Given an ε-error k-party number-on-the-forehead protocol P for DISJk,n of communication cost
Rk

ε (DISJk,n), define a simultaneous protocol P ′ for DISJk,n as follows: Each player sends a vector of length
2Rk

ε (DISJk,n) of all bits that the player would have sent in protocol P for every prefix of communications in
which it is his turn to speak. An application of Theorem 6.3 shows that:

2Rk
ε (DISJk,n) ≥ (1−H2(ε))n1/(k−1)/(k − 1)

and thus

Rk
ε (DISJk,n) ≥ log2

(
(1−H2(ε))n1/(k−1)/(k − 1)

)
≥ log2 n

k − 1
− log2

(
k − 1

1−H2(ε)

)
= Ω

(
log n

k − 1

)
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7 Discussion

Gievn the proximity of our Ω(log n) lower bounds to the ω(log4 n) or ω(log2 n(log log n)2) lower bounds
required for the proof complexity consequences in [8], it might seem that we have come most of the way to
our goal. However, an improvement from Ω(log n) to ω(log n) seems non-trivial at this time, and we are
nowhere near to reconciling the lower bound of Ω(log n) with the upper bound of O(n/2k).

Even for restricted models, such as one-way multi-player protocols, getting lower bounds for the com-
munication complexity of DISJk,n seems difficult. It is not at all clear how the bound in Theorem 5.1, or
even the one-way lower bound in [4], could be extended to four or more players. Moreover, it is not at
all clear how to prove a direct product theorem (or even direct sum theorem) for multi-player number-on-
the-forehead communication complexity. An impediment to extending our bounds to this case is the failure
of the three-party analogue of our method for Lemma 4.4. Even for a product distribution, the density of
a three-dimensional cylinder intersection is not determined by the densities of the cylinders in a simple
manner (as is the case for rectangles).

We have shown two different methods for deriving Ω(log n) lower bounds on the general three-party
number-on-the-forehead complexity of disjointness. One reason to consider both methods is that the prop-
erties from which they are derived seem to be incomparable. The proof of Theorem 5.2 yields bounds on
corruption for large three-cylinder intersections that may be give useful insight into obtaining larger bounds.
These bounds do not seem to follow from Theorem 6.4 but this has the advantage of a somewhat simpler
proof and a result that applies more generally.

In our applications, for example in the proof of Theorem 5.1, we did not need the full power of a strong
direct product theorem. The original protocol was converted into t independent runs, each with the same
complexity C. We combined these into a single protocol with complexity tC and used the strong direct
product theorem but, as Shaltiel (private communication) observed, it would have sufficed to maintain these
as separate protocols each of which has access to the inputs of the others. This “forest of protocols” is
precisely the kind of situation that occurs in arguments for Raz’s Parallel Repetition Theorem for 2-prover
protocols [28, 27]. In fact, Parnafes, Raz, and Wigderson [27] have extended the theorem from 2-prover
protocols to communication complexity and refined the bounds to show that if a single protocol using C bits
of communication succeeds with probability δ < 1 on distribution µ then t protocols running on µt, each
of which can see the others’ inputs and uses C bits of communication, succeeds with probability at most
δΩ(t/C).

This result applies to arbitrary distributions µ. By applying this result to the Z → (Y ↔ X) model
using a different value of t and a non-rectangular distribution µ yields an alternative proof of Theorem 5.1
that uses the stronger two-party disjointness lower bound of [31] rather than that of [2]. More precisely,
using t = n2/3 blocks of size n1/3 and the distribution from [31] on Xj × Yj in each block one can use
C = Ω(n1/3) to derive success probability δΩ(t/C) = δΩ(n1/3) and this can be substituted in the rest of our
proof of Theorem 5.1.

Whether the C in the δΩ(t/C) bound can be removed is an open question. An analogous term cannot be
removed in the general 2-prover protocols of Raz [28] but it is open in the special case of communication
complexity. Such a result would almost seem to be a strong direct product theorem for randomized compu-
tation, which Shaltiel has shown to be false [33], but, as Shaltiel has observed, it has the critical difference
that the allocation of resources to each subproblem has a uniform bound C. Non-uniform allocation of
resources to subproblems was the key method exploited to derive the counterexample in [33].

Finally, we note that independent of this work Klauck, Spalek, and de Wolf [23] derive similar bounds
to Corollary 4.9(b) for two-party quantum communication complexity using the polynomial method.
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