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A STRONG LAW OF LARGE NUMBERS FOR GENERALIZED
ALMOST SURE CENTRAL LIMIT THEOREMS

UDC 519.21

RITA GIULIANO ANTONINI AND LUCA PRATELLI

Abstract. We prove a Strong Law of Large Numbers in which the variables are
assumed to be asymptotically negligible and a generalized Almost Sure Central Limit
Theorem is given. As an application we obtain a result about the so-called intersective
ASCLT.

1. Introduction

In this paper we study the asymptotic behaviour of the “weighted” random variables

(1.1)
1

φ(n)

n∑
k=1

(
φ(k) − φ(k − 1)

)
Xk,

where (Xk)k≥1 is a sequence of mean square integrable random variables and φ is a
function increasing to ∞. Results concerning random variables such as (1.1) are known
as Almost Sure Central Limit Theorems (ASCLT) (see Berkes–Csáki [3] for an exhaustive
list of references). In Section 3 we state and prove our main result; it may be listed
among the most comprehensive ones about the ASCLT, and we get it as an application
of a generalized Strong Law of Large Numbers, where covariances of the random variables
involved are assumed to be asymptotically negligible (see Definition 2.2). We point out
that our result takes into account also almost orthogonal random sequences studied by
M. Weber. As an application of the main result, in Section 4 we prove a new version of
the so-called intersective law, more general than the one recently obtained by Giuliano
Antonini and Weber [8].

2. Preliminary results

In what follows we denote by (Xn)n≥1 a sequence of L2-random variables and by

ψ : R
+ → R

+

a decreasing function with
∫ ∞
1

ψ(t) dt < ∞. We start with two definitions.

Definition 2.1. A sequence (Xn)n is mean square controlled by a random variable Z if
there exists a number C such that, for each n, we have

E[X2
n] ≤ C

∫
{|Z|≤n}

Z2 dP.

If supn E[X2
n] is finite, (Xn)n is clearly mean square controlled by 1.
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2 RITA GIULIANO ANTONINI AND LUCA PRATELLI

Definition 2.2. A sequence (Xn)n has ψ-negligible covariance if, for every pair of inte-
gers p and q, with p < q, we have

|Cov(Xp, Xq)| ≤ ψ
(
log(q − p + 1)

)
.

Notice that the condition of ψ-negligible covariance yields

lim
q−p→∞

Cov(Xp, Xq) = 0.

The following result turns out to be a very useful strong law of large numbers.

Lemma 2.3. Let (Xn)n be a sequence of positive random variables such that supn E[Xn]
is finite; assume moreover that (Xn)n has ψ-negligible covariance and is mean square
controlled by an integrable random variable. Then the random variables

Yn =
1
n

n∑
k=1

(Xk − E[Xk])

converge to 0 in L2 and almost surely.

Proof. Let a ≥ 1 be fixed and put an = �an�. We note that (an)n is an ultimately
increasing sequence of integers. Moreover, since Xn is positive, for any integer m with
an < m < an+1 we have

1
m

(
anYan

−
m∑

k=an+1

E[Xk]
)

≤ Ym ≤ 1
m

(
an+1Yan+1 +

an+1∑
k=m+1

E[Xk]
)

.

If bm = (an+1 − m)/m and cm = (m − an)/m, from the above relation we get

|Ym| ≤
(
|Yan+1 |

an+1

m
+ bm sup

k
E[Xk]

)
∨

(
|Yan

|an

m
+ cm sup

k
E[Xk]

)

≤
(
|Yan+1 |a + 2(a−1) sup

k
E[Xk]

)
∨

(
|Yan

| + 2(a−1) sup
k

E[Xk]
)

≤ |Yan+1 |a + |Yan
| + 2(a−1) sup

k
E[Xk],

since an+1 ≤ am and bm ∨ cm ≤ 2(a − 1) for m = an + 1 + · · · + an+1. Hence it will be
enough to prove the statement for the subsequence (Yan

)n; to this end we show that∑
n≥1

E
[
Y 2

an

]
< ∞.

First, note that
∑
n≥1

|Z|a−2
n

an∑
k=1

I{|Z|≤k} =
∑
k≥1

|Z|I{|Z|≤k}
∑

an≥k

a−2
n ≤ 4a2|Z|

a2 − 1

∑
k≥1

I{|Z|≤k}k
−2 ≤ 8 +

4
a − 1

.

Since (Xn)n has ψ-negligible covariance and is mean square controlled by an integrable
random variable Z, we get

∑
n≥1

E
[
Y 2

an

]
≤

∑
n≥1

a−2
n

an∑
k=1

E
[
Z2I{|Z|≤k}

]
+2

∑
n≥1

a−2
n

an∑
q=2

q−1∑
p=1

ψ
(
log(q−p+1)

)

≤ E

[
|Z|

∑
n≥1

|Z|a−2
n

an∑
k=1

I{|Z|≤k}

]
+2

∑
n≥1

a−2
n

an∑
q=2

q∑
h=2

ψ
(
log(h)

)

≤
(
8 + 4(a − 1)−1

)
E[|Z|] + 2

∑
n≥1

a−1
n

an∑
h=2

ψ
(
log(h)

)
.
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Moreover, note that

∑
n≥1

a−1
n

an∑
h=2

ψ
(
log(h)

)
∼

∑
n≥1

a−n

∫ an

2

ψ
(
log(x)

)
dx ∼

∑
n≥1

a−n

∫ n log a

log 2

ψ(u)eu du.

Thus, it suffices to prove that
∑

n≥1 a−n
∫ n log a

log 2
ψ(u)eu du < ∞. We get the statement

thanks to the integrability of ψ on [1,∞[ since

∑
n≥1

a−n

∫ n log a

log 2

ψ(u)eu du =
∫ ∞

log 2

ψ(u)eu

(∑
n≥1

a−nI{u≤n log a}

)
du

=
∫ ∞

log 2

ψ(u)eu

( ∑
n≥u/ log a

a−n

)
du

≤
∫ ∞

log 2

ψ(u)eua−u/ log a a

a − 1
du =

a

a − 1

∫ ∞

log 2

ψ(u) du.

This completes the proof of the theorem. �

Remark 2.4. The above argument shows that the statement of Lemma 2.3 holds also
under the condition

n∑
q=2

q−1∑
p=1

Cov(Xp, Xq) ≤ ψ1

(
log(n)

)
, (2.1)

where ψ1 is a decreasing function with
∫ ∞
1

ψ1(t)/t3 dt < ∞. This condition does not
necessarily imply that (Xn)n has ψ-negligible covariance and is weaker than the condition
of Peligrad and Shao [14], used in a recent paper by Dudziński [6]. Moreover, we could
also weaken the assumption that the Xn are positive random variables by only requiring
that they are bounded from below by a constant.

We get a stronger result than Lemma 2.3 when (Xn−E[Xn])n is an almost-orthogonal
sequence, namely when the quadratic form defined on l2(N) by

(2.1) (xn)n 	→
∑
h,k

Cov(Xh, Xk)xhxk

is bounded. The condition of almost-orthogonality plays an important role in the study
of random series such as

∑
n cn(Xn − E[Xn]) (see Kac, Salem, and Zygmund [10]) since,

in this setting, the Rademacher–Menshov Theorem is still valid and
∑

n cn(Xn − E[Xn])
is almost surely convergent for any sequence (cn)n of real numbers with

∑
n

c2
n log2 n < ∞.

In particular, the almost-orthogonality of (Xn − E[Xn])n assures that, for any β > 3,
the random variable (n/ logβ n)1/2Yn converges to 0 almost surely. A condition which
assures almost-orthogonality has been introduced by Weber [16]; it states that

(2.2) sup
k≥1

∞∑
h=1

|Cov(Xh, Xk)| < ∞

implies the almost-orthogonality of (Xn)n. By assuming (2.3) we are able to prove the
following result.
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Lemma 2.5. Let (Xn)n be a sequence of random variables with ψ-negligible covariance
and supn Var[Xn] < ∞. If

∫ ∞
1

ψ(u) exp(u) du is finite, the sequence (Xn − E[Xn])n is
almost-orthogonal. In particular, for any β > 3, the random variable

(2.3)
1√

n logβ n

n∑
k=1

(Xk − E[Xk])

converges to 0 almost surely and in L2.

Proof. The relation

sup
k

∞∑
h=1

|Cov(Xh, Xk)| ≤ sup
k

Var(Xk) + 2
∞∑

l=2

ψ(log l)

≤ sup
k

Var(Xk) + 2ψ(log 2) + 2
∫ ∞

2

ψ
(
log(u)

)
du

≤ sup
k

Var(Xk) + 4ψ(log 2) + 2
∫ ∞

1

ψ(u)eu du

yields immediately that the sequence (Xn−E[Xn])n is almost-orthogonal and the random
variable defined in (2.4) converges in L2. Thus, the lemma is proven by the above remarks
on almost-orthogonality. �

3. The main result

With the notation of the previous section, let (Xn)n be a sequence of positive and
L2-random variables. We prove the following result:

Theorem 3.1. Let φ be an increasing positive function on R
+, with sup φ = ∞. More-

over, let ψ be a decreasing positive function on R
+, with

∫ ∞
0

ψ(u) du < ∞. For every
pair p and q of integers, with p < q, suppose

|Cov(Xp, Xq)| ≤ ψ
(
log(φ(q) − φ(p) + 1)

)
.

Then

Un =
1

φ(n)

n∑
k=1

(
φ(k) − φ(k − 1)

)(
Xk − E[Xk]

)

converges to 0 in L2 and almost surely. Moreover, if
∫ ∞
0

ψ(u) exp(u) du is finite, then
for any β > 3, Un[φ(n)/ logβ(φ(n))]1/2 converges to 0 in L2 and almost surely.

Proof. For every t > 0, put

Vt =
1
t

�φ−1(t)�∑
k=1

(
φ(k) − φ(k − 1)

)(
Xk − E[Xk]

)
.

Since Un = Vφ(n), it suffices to prove that, as t goes to ∞, the random variable Vt

converges to 0 in L2 and almost surely. Since, for any real number t ∈ ]m, m + 1],
m ∈ N, we have

1
t

(
mVm −

�φ−1(t)�∑
k=�φ−1(m)�+1

bk E[Xk]
)

≤ Vt ≤
1
t

(
(m + 1)Vm+1 −

�φ−1(m+1)�∑
k=�φ−1(t)�+1

bk E[Xk]
)

,
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SLLN FOR GENERALIZED ALMOST SURE CLT 5

where bk = φ(k) − φ(k − 1), it will be enough to prove the theorem for (Vm)m. To this
end, for k ≥ 1, put

X̃k =
�φ−1(k)�∑

j=�φ−1(k−1)�+1

(φ(j) − φ(j − 1))Xj

and ck = �φ−1(k)�. (If ck−1 +1 > ck, we mean X̃k ≡ 0.) Clearly X̃k is a positive random
variable that satisfies

‖X̃k‖L2 ≤
ck∑

j=ck−1+1

(φ(j) − φ(j − 1))‖Xj‖L2 ≤
(

sup
n

E[X2
n]

)1/2

.

Moreover, for every pair p and q, with p < q, we have
∣∣∣Cov

(
X̃p, X̃q

)∣∣∣ ≤
cp∑

i=cp−1+1

cq∑
j=cq−1+1

bibjψ
(
log(φ(j) − φ(i) + 1)

)

≤ ψ
(
log(φ(cq−1 + 1) − φ(cp) + 1)

)
≤ ψ

(
log(q − φ(cp))

)
≤ ψ

(
log(q − p)

)
≤ ψ̃

(
log(q − p + 1)

)
,

where ψ̃ is the mapping x 	→ ψ((x− log 2)+); hence the sequence (X̃n)n has ψ̃-negligible
covariance. Since Vm is equivalent to (X̃1 + · · · + X̃m)/m, the statement follows from
Lemmas 2.3 and 2.5 by simply remarking that ψ̃ has the same integrability properties
as ψ. �

Remark 3.1. It may happen that the condition of ψ-negligibility is not satisfied by the
whole sequence (Xn)n, but by suitable subsequences (Xnk

)k only. This is the case, for
instance, for sequences (Xn)n such that lim infn |Cov(Xn, X2n)| > 0 but

(3.1) |Cov(Xp, Xq)| ≤ r

(
g(p)
g(q)

)
,

where g is an increasing positive function on N, with sup g = ∞, and r is an increasing
function vanishing at 0. More specifically, if for a subsequence (nk)k (induced by an
increasing map f defined on R

+) there exists a constant c > 0 such that, for every pair p
and q, with p ≤ q,

(3.2) cg(nq) ≥ g(nq−p+1)g(np),

then (Xnk
)k has ψ-negligible covariance where ψ = r ◦ c

g◦f ◦ exp. So conditions (3.1)
and (3.2) yield ∣∣Cov(Xnp

, Xnq
)
∣∣ ≤ ψ

(
log(q − p + 1)

)
.

In what concerns the integrability of the function ψ, we remark that the condition sug-
gested by Weber, namely

(3.3) sup
m

m∑
h=1

r

(
g(hh)
g(nm)

)
+

∞∑
h=m+1

r

(
g(nm)
g(nh)

)
< ∞,

assures even the integrability of the function ψ ◦ log on [e,∞[ (i.e., the integrability of
u 	→ ψ(u)eu on [1,∞[). As a matter of fact, we have∫ ∞

e

ψ(log t) dt =
∫ ∞

e

r

(
c

g(f(t))

)
dt ≤

∞∑
h=1

r

(
c

g(nh)

)

≤ mr

(
c

g(n1)

)
+

∞∑
h=m+1

r

(
g(nm)
g(nh)

)
,
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6 RITA GIULIANO ANTONINI AND LUCA PRATELLI

where m is an integer such that g(nm) ≥ c. In other words, if the variances of (Xnk
)k

are bounded, conditions (3.1), (3.2), and (3.3) guarantee that (Xnk
− E[Xnk

])k is an
almost-orthogonal sequence. Some examples of almost-orthogonal subsequences will be
given in Section 4. We remark also that the integrability of ψ is assured by the condition

(3.4)
∫ ∞

1

dx

x2

∫ x

1

r

(
g(f(t))
g(f(x))

)
dt < ∞,

which is weaker than (3.3). Finally if, instead of (3.2), the condition

(3.5) c g(q) ≥ g(p)eC (φ(q)−φ(p)+1)

holds for a pair c and C of positive numbers and for an increasing positive function φ,
with sup φ = ∞, then we get

r(g(p)/g(q)) ≤ ψ̃(log(φ(q) − φ(p) + 1)),

where ψ̃ = r ◦ c · exp(−C exp). Hence conditions (3.1) and (3.5) yield that

Un

[
φ(n)/ logβ(φ(n))

]1/2

converge almost surely to 0, for every β > 3, if
∫ ∞
0

r(ce−Cx) dx < ∞.

4. Applications

Many situations in which the above results can be applied are listed in Berkes and
Csáki [4]. In this section, we study an example which generalizes the classical Almost
Sure Central Limit Theorem. More specifically, let (Wn)n≥1 be a sequence of independent
identically distributed random variables, with E W 2

1 = 1 and EW1 = 0, and put

Un =
W1 + · · · + Wn√

n
.

Moreover, consider the random variables

Xn = 1⋂bn
k=an

{Uk∈J},

where J is an interval and (an) and (bn) are two increasing sequences of integers, with
an ≤ bn. In the case an = bn = n, the classical ASCLT states that

∑n
j=1 j−1Xj/ log n

converges almost surely to N (0, 1)(J). In particular, for any M > 1, it follows that
(X�M1� + · · · + X�Mn�)/n converges almost surely to N (0, 1)(J). In Giuliano Antonini
and Weber [8] the classical ASCLT is generalized for an = n, bn = �Ln�, and L ≥ 1.

In the present situation, we remark that there exists a constant C, depending only on
the law of W1, such that, for every pair p and q of integers, with p ≤ q, we have

(4.1) |Cov(Xp, Xq)| ≤ C

(
bp

aq

)1/4

.

(See Giuliano Antonini [7] for a proof.) The above inequality does not guarantee that
the sequence (Xn) has ψ-negligible covariance for some function ψ. Nevertheless, by
Remark 3.2, if there exist two constants c1, c2 > 0 such that

(4.2) bp ≤ c1aqe
−c2(φ(q)−φ(p))

(i.e., condition (3.5) is verified), we deduce that

Un =
1√

φ(n) logβ/2
(
φ(n)

)
n∑

k=1

(
φ(k) − φ(k − 1)

)(
Xk − E[Xk]

)

converges to 0 almost surely, for any β > 3. In particular, we get the following result:
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Generalized ASCLT. Assume that condition (4.2) holds and

lim
n

bn/an = L, φ(k) − φ(k − 1) ∼ φ′(k).

Then
1

φ(n)

n∑
k=1

φ′(k)1⋂bk
j=ak

{Uj∈J}

almost surely converges to P(
⋂

1≤t≤L{Bt/
√

t ∈ J}), where (Bt)t denotes the standard
Brownian motion. In particular, if φ = log and (an/nc)n is an increasing sequence for
some positive constant c, condition (4.2) is verified and limn bn/an = L implies that

1
log n

n∑
k=1

1
k
1⋂bk

j=ak
{Uj∈J}

converges to P(
⋂

1≤t≤L{Bt/
√

t ∈ J}) almost surely; moreover, the random measure

1
log n

n∑
k=1

1
k

δsupak≤j≤bk
Uj

strictly converges to µ almost surely, where µ denotes the distribution of

sup
1≤t≤L

{Bt/
√

t}.

Proof. It is immediate to note that φ = log satisfies condition (4.2) if (an/nc)n is an
increasing sequence. Hence, by the remarks of the previous section, it is enough to prove
that

(4.3) lim
n

P

( bn⋂
k=an

{Uk ∈ J}
)

= P

( ⋂
1≤t≤L

{Bt/
√

t ∈ J}
)

.

To this end, for every real number t ≥ 1, let

Vn(t) =
1√
�ant�

�ant�∑
k=1

Xk.

By Donsker’s functional central limit theorem, (Vn(t))t≥1 converges in distribution (ac-
cording to Skorokhod’s distance) to the Gaussian process

V (t) =
Bt√

t
.

Let ε be a fixed positive number, with ε < L, and consider the functions g1 and g2,
defined on Skorokhod’s space by

g1(x) = I{supt∈[1,L−ε](−x(t))≤−c, supt∈[1,L−ε] x(t)≤d},

g2(x) = I{supt∈[1,L+ε](−x(t))≤−c, supt∈[1,L+ε] x(t)≤d},

where c and d are the endpoints of the interval J . Put Y = sup1≤t≤L+ε V (t). Then Y
has a density with respect to Lebesgue measure (see Nualart [12], Proposition 2.1.4),
hence g1 and g2 are almost surely continuous with respect to Y (P ). From Donsker’s
functional central limit theorem we deduce that

lim
n

E[g1(Vn)] = E[g1(V )], lim
n

E[g2(Vn)] = E[g2(V )],

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



8 RITA GIULIANO ANTONINI AND LUCA PRATELLI

so that

E[g1(V )] = lim inf
n

E[g1(Vn)] ≤ lim inf
n

P

( bn⋂
k=an

{Uk ∈ J}
)

≤ lim sup
n

P

( bn⋂
k=an

{Uk ∈ J}
)

≤ lim sup
n

E[g2(Vn)] = E[g2(V )].

Since the difference E[g2(V )] − E[g1(V )] converges to 0 as ε goes to 0 (the sample paths
of V are continuous), from the above relations we get (4.3), hence the theorem. �

Remark 4.1. Let (nk)k be the subsequence defined by nk = �ak� and assume that bn/an

converges to a real number L. From inequality (4.1) and relations (3.1) and (3.2), it is
not difficult to deduce that (Xnk

− E[Xnk
])k is an almost-orthogonal sequence if there

exists a constant c > 0 such that, for any pair p and q, with p ≤ q,

caq ≥ aq−p+1ap

and

sup
m

m∑
h=1

4

√
ah

am
+

∞∑
h=m+1

4

√
am

ah
< ∞.

In particular, if an = Mn and bn = LMn, with L ≥ 1 and M > 1, the above conditions
are verified and

1
n

n∑
k=1

1⋂bk
j=ak

{Uj∈J}

converges to P(
⋂

1≤t≤L{Bt/
√

t ∈ J}) almost surely. We can analogously get the result
for the random measures n−1

∑n
k=1 δsupak≤j≤bk

Uj
.
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