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A STRONG STIELTJES MOMENT PROBLEM
BY

WILLIAM B. JONES, W. J. THRON AND HAAKON WAADELAND1

Abstract. This paper is concerned with double sequences of complex numbers
C = [cn}^x and with formal Laurent series Lq(C) = 2f - c_mzm and /.„(C) =
2o°cmz~m generated by them. We investigate the following related problems: (1)
Does there exist a holomorphic function having L0(C) and LX(C) as asymptotic
expansions at z — 0 and z = oo, respectively? (2) Does there exist a real-valued
bounded, monotonically increasing function <f>(f) with infinitely many points of
increase on [0, oo) such that, for every integer n, c„ = / 5°(-0" dty(t)l The latter
problem is called the strong Stieltjes moment problem. We also consider a modified
moment problem in which the function ¡f/(t) has at most a finite number of points
of increase. Our approach is made through the study of a special class of continued
fractions (called positive 7"-fractions) which correspond to L0(C) at z = 0 and
LX(C) at z = oo. Necessary and sufficient conditions are given for the existence of
these corresponding continued fractions. It is further shown that the even and odd
parts of these continued fractions always converge to holomorphic functions which
have Lq(C) and LX(C) as asymptotic expansions. Moreover, these holomorphic
functions are shown to be represented by Stieltjes integral transforms whose
distributions ^°\t) and ^'"'(O solve the strong Stieltjes moment problem. Neces-
sary and sufficient conditions are given for the existence of a solution to the strong
Stieltjes moment problem. This moment problem is shown to have a unique
solution if and only if the related continued fraction is convergent. Finally it is
shown that the modified moment problem has a unique solution if and only if there
exists a terminating positive T-fraction that corresponds to both Lq(C) and ¿„(C).
References are given to other moment problems and to investigations in which
negative, as well as positive, moments have been used.

1.  Introduction.  In this paper we are concerned with  double sequences of
complex numbers

c - i^n«»      c„ec,
and with formal Laurent series (fLs) generated by them as follows

UC) =   I   - c_mzm,       LX(C) =   I cmz-m. (1.1)
m = 1 m = 0

We seek to determine functions G(z), holomorphic for z in some open region D,
having 0 and oo as boundary points, which have L0(C) and LX(C) as asymptotic
expansions, with respect to D, at z = 0 and z = oo, respectively.
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We recall (see, for example, the recent treatment by Henrici [2, Chapter 11]) that
a series 2„=r/4iz""> 's cahed an asymptotic expansion of /(z) at z = oo, with
respect to a region S which has oo as a boundary point, if there exist sequences of
positive numbers {tj„} and {p„} such that, for each n = 0, 1, 2,. . . ,

W*) -   2  dmz~
m = 0

< v for |z| >p„zÉ 5. (1.2)

Similarly, S^=0^mz"1 is called an asymptotic expansion of g(z) at z = 0, with
respect to a region U which has 0 on its boundary, if there exist sequences of
positive numbers {an} and {8„} such that, for each n = 0, 1, 2, . . . ,

m=0
< aJzl for Izl < 5„, z S (7. (1.3)

One way of obtaining solutions to the above problem is to ask under what
conditions on the double sequence C is it possible to find a general ^-fraction,

Fxz F2z F3z
(I 4)1 + Glz + 1 + G2z + 1 + G3z + " " ' v ' '

satisfying Fn > 0, Gn > 0 for all « > 1, which corresponds to L0(C) at z = 0 and
to LX(C) at z = oo. The definition of correspondence will be given in §2. Unless
otherwise stated, continued fractions in this article will be nonterminating.

Hereafter, general T-fractions (1.4) satisfying Fn > 0, Gn > 0 for all n > 1 shall
be called positive T-fractions.

The notation H£"\C) will be used for Hankel determinants as follows:

Hi"\C) =
C„ + 2 Cn + k

L/i + /t-l cn + 2k-2\

n =0, ±1, ±2, ...,Á: = 1,2, 3,-
The conditions on the double sequence C for there to exist a positive T-fraction
corresponding to L0(C) and L^C), respectively, will be shown to be

Hi~:\{C) > 0,  n > 0;  ff^C) > 0, H£??X\C) < 0,   « > 1.
Positive T-fractions are shown to have integral representations of the form

z a\p(t)

(1.5)

G(z) = f z + t
z G R, *.

Here

(1.6)

(1.7)R = [z: |arg z| < wl,

and ^ is the set of all real-valued monotone nondecreasing functions \¡/(t) defined
on 0 < t < oo, with \j/(0) = 0 and lim,^^ \p(t) < oo. ^ is further subdivided into
the set ^/r of those functions which have only a finite number of points of increase
and the set ^ of those functions \¡/ having an infinite number of points of
increase.
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In addition to R it is convenient to introduce the regions

Ra = [z: |arg z\ < a],       0 < a < w.

The function \p occurring in (1.6) will be in ^F iff the positive T-fraction is
terminating and in ^^ if the T-fraction is nonterminating. Further, the function ^
in (1.6) satisfies the conditions

cn = f°°(-0" 4K0.        « = 0, ± 1, ±2, . . ., (1.8)
and is thus a solution of a moment problem for the double sequence C. By a strong
Stieltjes moment problem we shall mean the following: For a given double sequence
C = {c^Toa, does there exist aife Sr^ satisfying (1.8)? There also is a moment
problem for \¡/ e tyF. This will be called a modified moment problem.

The functions G(z) defined in (1.6) have the series L0(C) and LX(C) as
asymptotic expansions, with respect to Ra c R, 0 < a < it, at z = 0 and z = oo,
respectively.

A natural question to ask is the following: If a general T-fraction converges to a
function /(z), holomorphic in a region Z), having 0 and oo on its boundary, are the
fLs, to which the general T-fraction corresponds, asymptotic expansions of /(z)
with respect to some region D' c Ö? Surprisingly the only general class of cases
known so far in which the question has an affirmative answer is that of the positive
T-fractions.

Other questions relating to a doubly infinite sequence of moments have been
previously considered by Covindarajula [1], Kabe [7], Mendenhall and Lehman [10]
and Thomas [14].

The contents of this paper are as follows. In §2, necessary and sufficient
conditions for the existence of a general T-fraction corresponding to two given fLs
are obtained. §3 is devoted to a study of positive T-fractions. We characterize those
double sequences C for which there is a positive T-fraction corresponding to L0(C)
and LX(C). The convergence behavior of positive T-fractions is then investigated
and it is shown that the odd and even parts of positive T-fractions always have
integral representations. In §4 we establish that (1.8) holds for the given double
sequence C and the functions i//(o) obtained from the integral representations of the
positive T-fraction corresponding to L0(C) and LM(C). It is also proved that the
functions G(a\z), to which the odd and even parts of the positive T-fraction
converge, have L0(C) and LX(C) as asymptotic expansions. §5 is concerned with
terminating positive T-fractions and a solution of the modified moment problem.
In §6, necessary and sufficient conditions for the solvability of the strong Stieltjes
moment problem, as well as for the uniqueness of the solution, are given.

We conclude this introduction by summarizing a few elementary facts about
continued fractions that will subsequently be used. A continued fraction is an
ordered pair <<{a„}, {¿>„}>, {/„}>> where av a2, . . ■ and b0, by, b2, ■ ■ ■ are
complex numbers with «„^0 for all n and where {/„} is a sequence in the
extended complex plane defined by

/„ = 5„(0),       n = 0, 1, 2, . . . . (1.9a)
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Here {Sn(w)} is the sequence of linear fractional transformations

So(w) = s0(w);        S„(w) = Sn_x(sn(W)),       n = 1, 2, 3, ... ,        (1.9b)

where

s0(w) = b0+ w;       sn(w) = - °^w ,       n » 1, 2, 3,.... (1.9c)
w

The numbers an, bn are called the elements of the continued fraction and/„ is called
the nth approximant. For convenience we usually denote a continued fraction
«K}> {/„}>> {/*}> °y one of the symbols

t}     b°+nKMj     °r     ¿0^ + ^+^+---- 0-10)

A continued fraction is said to converge if its sequence of approximants {fn}
converges to a point in the complex plane. When convergent, the continued
fraction is said to have the value given by lim/„. The symbols (1.10) may be used to
denote both the continued fraction and its value. When {a„} and {b„} are infinite
sequences, then b0 + K(an/bn) is called an infinite (or nonterminating) continued
fraction. It is called a. finite (or terminating) continued fraction if {a„} and {b„}
have only a finite number of terms ax, a2, . ■ ■ , am and b0, bx, b2, . . . , bm. A
continued fraction is assumed to be nonterminating unless otherwise stated.

Corresponding to each continued fraction b0 + K(an/b„), there are sequences of
complex numbers {An}, {Bn} defined by the second order linear difference equa-
tions

A_x = 1,       A0 = b0,       B_x = 0,       B0 = 1, (1.11a)

A„ = bnAn_l+anAn_2,        n = 1,2,3,..., (1.11b)
Bn  =  bnBn-i+"nBn-2> «=1,2,3,.... (l.llc)

The numbers An and Bn are called the «th numerator and denominator of b0 +
K(an/bn), respectively. Some basic properties of the An and Bn are the following:

,   .      A„ + A„   ,w
^(w)=-ÎT-^-i ¿nBn    I" An-\Bn^^ « = 0,1,2,...,"V    ' B„ +  B„    ,W "    ""' "    l    "

n n — 1

(1.12)

/n = 5„(0) = 4I,       « = 0,1,2,..., (1.13)
n

AnBn_x-An_xBn = (-\y-xYtak,       «=1,2,3,.... (1.14)
*=i

Equation (1.14) is called the determinant formula. In the following sections we also
deal with continued fractions K(an(z)/b„(z)) whose elements an(z) and ¿>„(z) are
polynomials in the complex variable z with complex coefficients. The definitions
and elementary properties given above are easily extended to include this case.

2. Existence of general T-fractions corresponding to given fLs at 0 and oo. The
concept of correspondence of a continued fraction to a fLs plays an important role
in the sequel. Hence it will now be defined. First we note that the set £ of all

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A STRONG STIELTJES MOMENT PROBLEM 507

formal Laurent series (fLs)
00

L=   2   <V",       r an integer, an G C, (2.1)
n**-r

with increasing powers of z, forms a field with respect to addition and multiplica-
tion defined in the manner suggested by (2.1). L = 0 is the zero element of £. If
/(z) is a function meromorphic at the origin (i.e. in an open disk containing the
origin), then its Laurent expansion, which is convergent in a deleted neighborhood
of the origin, will be denoted by \(f). A continued fraction K(a„(z)/6„(z)), where
a„(z) and bn(z) are polynomials in z for all « > 1, will be said to correspond to a
fLs, L G £, at z = 0 if there exists a sequence {&„} of positive integers, with
Ihtl   „, k„ = oo, such that

^(W) ) "L=^+*n+iz*"+1+• • • •      (2-2)

Here An(z) and 5„(z) are the nth numerator and denominator of K(a„(z)/6n(z)),
respectively.  Both An(z) and  Bn(z)  are polynomials in z  and hence the nth
approximant An{z)/Bn{z) is a rational function of z.

Similarly the set of fLs
00

T* =   2   «V~">   * an integer, a!„ e C, (2.3)
n = -s

with decreasing powers of z, forms a field £*. We denote by AM(/) the Laurent
expansion at z = oo of a function/(z) meromorphic at z = oo. Then we say that a
continued fraction K(an(z)/bn(z)), where an(z) and b„(z) are polynomials in z,
corresponds at z = oo to a fLs, L* G £*, if

- L* = n„z-^ + «n+1z-^-'-i-..., (2.4)

where {«!„} is a sequence of positive integers with lim,,^^ mn = oo.
By the order of correspondence we mean the two sequences {k„} and {«?„},

respectively.
In 1948, Thron [15] introduced continued fractions (1.4) with Fn = 1, n > 1, as a

means of expanding an arbitrary power series. Perron [12, pp. 173-175] generalized
this to continued fractions equivalent to (1.4) with the restriction Fn ¥= 0, n > 1,
and observed that this continued fraction also corresponds to a fLs at z = oo
(provided Gn ¥" 0, n > 1). This phenomenon was further studied by Waadeland
[17] and Jefferson [3].

Here one starts with an arbitrary fLs, L G £, finds a continued fraction ^T
corresponding to L at z = 0 and then observes that K corresponds to another fLs,
L* G £*, at z = oo. Schematically this can be written T —» K—> L*. The structur-
ally different question, namely, given L and L* to determine conditions on their
coefficients to insure that there exists a continued fraction (1.4) corresponding to L
at 0 and L* at oo, was first considered by Murphy and McCabe [8], [9] and
independently somewhat later by Jones and Thron [4], [6], [16]. It is this question
which is now answered by the following theorem. A proof is included since it has

A„
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not been completely proved in any of the above references. The approximants of
(1.4) turn out to be in the two-point Padé table determined by L and L*. We
restrict ourselves here to the case where r = -1 and í = 0.

Theorem 2.1. Let fLs

L = 2 oinzn    and   L* =  2 «V" (2.5)
n = 0

be given. There exists a general T-fraction (1.4) which with Fn J= 0 and Gn ¥= Ofor all
n > 1 corresponds to L at z = 0 and to L* at z = oo iff

A„ ̂  0    and    $„ ^ 0   for all n = 0,1,2,_ (2.6)
Here

\=i;     a„ =

S-(«-l)        S_(„_2)
S-(n-2)       ^-(n-3)

s,

«I

« = 1, 2, 3,

(2.7a)
and

% =

S_(„-l)        ̂ -(«-2)

s.

«1

5*+l

(2.7b)

The 8k are defined by

(2.8)sk = «* - «*>
where it is understood that ak = 0 /or k < 0 antf" a * = 0 /or A: > 1. T«e order o/
correspondence is {« + 1} at z = 0 a«</ {n} ai z = oo. The Fn and G„ of (1.4) are
given by

Fx = -*,;
A  2$„n — 2.    n

G. =

n = 2, 3, 4,

n = 1, 2, 3, .

(2.9a)

(2.9b)a„<ï>   ■ 'n     n — 1

Proof. In our proof we shall use the equivalent form for the general T-fraction
(1.4) given by

e, + dxz + e2 + d2z + e3 + d3z +

where the Fn, Gn and en, dn are related by

J_ _ 1
ei

*> = F„ = n = 2, 3, 4, . . .,

(2.10)

(2.11a)
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Gn=^,       n = 1,2,3,.... (2.11b)

The nth approximants of (1.4) and (2.10) are identical. Letting A„(z) and Bn(z)
denote the nth numerator and denominator of (2.10), respectively, we obtain from
(1.11) that An(z) and Bn(z) can be written in the forms

Ax{z) = z, (2.12a)

An(z) = anAz + anaz2 + ■ ■ ■ + annzn,       n = 2, 3, 4, . . .,        (2.12b)

where

a„.i = e2e3 ■ ■ ■ en,       ann = d2d3 ■ ■ ■ d„, (2.12c)

and

*„(*) = Ko + *ki* + • • • + b^z",       n = 1, 2, 3, . . ., (2.12d)
where

¿>„,0 = exe2 ■ ■ ■ en,       bnn = dxd2 ■ ■ ■ d„. (2.12e)

We now assume that there exists a general T-fraction in the equivalent form
(2.10) with en f4 0 and dn =£ 0 for all n > 1 corresponding to L at z = 0 and to L*
at z = oo. By use of the determinant formula (1.14), we have

4.+.(*)     A„(z)        (-1VV+'
*„+.(*)       ¿»„(z)      5„(z)fi„ + 1(z)-

Expanding the right side in increasing powers of z, we obtain, with the help of
(2.12), a fLs of the form

A„ + l(z)      AJz)             (-l)"z" + 1"+1V '-"v ' =-v    '   -+e    ,z"+2 + e    ,z"+3 +
B.+ M      B„(z)      (exe2.--en)\+x+8"+2Z *"*       + ""

(2.14)
Similarly, expanding the right side of (2.13) in decreasing powers of z, we obtain
with the help of (2.12) a fLs of the form

An+x(z)_A¿z±     _(-i)V*_ ,-0.+»+A z-(-2) +
Bm+M      Bn{z)      (dxd2.--d„fdn+x        -("+1) -("+2)

(2.15)
It follows from (2.14) and (2.15) that the order of correspondence of (2.10) to L is
{« + 1} and to L* is {«} as asserted. Thus we can expand the nth approximant
An(z)/ Bn(z) in the form

A.(y||) = «i* + «2^2 + • • • + «„*" + YÍ2i*"+1 + Y^n+2 + - • -,

(2.16a)
where

c,   - v$0) = — •        «       - v(n), =_^    '_ n = 1  2 3«1 YÎ > "n+l Yn+1 2 > " 1, ¿, J, . . ■ ,
e* («i«2- • • e„) e„ + 1

(2.16b)
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and in the form

Mü) - «*+<z~l + + a* (n-\y
-(«-!)

where

«o*-Ao0) = ^-;
(-1)"

(2.17a)

X1Í =
(dxd2- ■ ■ dn) dn+x

« = L 2, 3,

(2.17b)
It follows from (2.16) that LBn{z) — An(z) is a fLs of the form

LBn(z) - An(z)

= (exe2 ■ ■ ■ en)(an+x - y^z"*1 + h+2z"+2 + Mn+3^+3 + • • • •

Equating coefficients of like powers of z on both sides and using (2.12), we obtain
the equations

«cA,o + a-A,\ + • • • +ot-„b„,n = a„,o = 0,

«A,0 +  «(A,l  +   •   •   •   +«-(«- \)K.n  =  an,l>
«2¿>„,0 +  aA.\  +   •   •   •   + «-A,„ =  an,2

«A,0 +  <*n-A,l  +  ■   ■   ■   +<*Obn,n =  an,n

(2.18a)

(2.18b)

and

«n + finfi +  «A,l +  •••   + <*A,n = «1*2 '  '   "  ««(«»+1 ~  YÍÍÍi).        (2.18c)
We recall that a¿ = 0 for k < 0. Similarly, L*Bn(z) — An(z) has a fLs of the form

L*B„(z) - ¿„(z) = (dxd2 ■ • • </„)(«_„ - Ai"„>)z-" + r_(„+1)z-(" + ') + . . . ,

and equating coefficients of like powers of z gives the equations

<*lbn,n + a2bn,n-l + "'m   + <*Z+Afl = 0,

«o¿„.„ + <*1K,n-\ + ■ ■ • +oc*bnfi = ann

<X-A,n   +   aObn,n-l   +   ■   ■   ■    + «*- Afi =  an,n-\

«-(»-D*»,» + «-(n-2)6„,„_, + • • ■ +a*6„0 = anl

(2.19a)

(2.19b)

and

«-*A„ + «î(-i)\,-i + • • • + «uA,o = dxd2 ■ ■ ■ d„(a*n - \i"J).        (2.19c)

Again we recall that af = 0 if k > 1. By subtracting corresponding equations in
(2.18) from (2.19), so as to eliminate anX, an2, . . . , ann, we obtain (by use of (2.8))
the equations

d„(a*n - M?),  (2.20a)8-nbn,n + $-(n-\A(n-l)un,n-\ + 80bnfi = d¿I"2
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S-(n-lA.n +  8-{n-2A,n-\  +  '  '  '   + 5<Ä,1  =  -§A,0
8-(n-2)bn,n  +  8-(n-lA,n-1  +   "   '   "   + 8A,\  =  -82bn,0

8A,n + 5A,„-i + • • • +5n_,6n>1 = -Snbnfi
(2.20b)

and

«l*»,» +   82bn.n-l  +   -   ■    + *„-A.0 = ~*1«2 "   '   '   *»(«„+l  ~  TT» l)-     (2.20c)
The determinant of the system (2.20b) is A„. Therefore an application of Cramer's
rule yields the equations

AA,i - ~bn,0

(2.21)

AA„ = (-l)Xo

Now expanding the determinant A„+, by cofactors along the first row and applying
(2.21) gives

(-DX,
An + 1 = '(8-nbn,n + «-(»-1)^-1 + *  "  "   + V>„,o)-

Combining this with (2.12e), (2.20a) and (2.17b) gives

A,=^;       A"+1 = (eie2---en)(dxd2---dndn+x)'       " = l' % X ' ' ' '

(2.22)
It follows by induction from (2.22) that

A„ * 0,        n = 1, 2, 3, . . . . (2.23)
Similarly, if $n+1 is expanded by cof actors along the last column, and (2.21) is

applied, we obtain

$„+.  = -TT^xKn + «2*1,.»-1 +  •'•  '   +8n+A,0)-

Combining this with (2.20c), (2.12e) and (2.16b) gives

•i-
1

*»+!   =
(-1)""^

(exe2- ■ ■ e„) en+x
n = 1, 2, 3, . . . .     (2.24)
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It follows from this and (2.23) that

$„ # 0,       n = 1, 2, 3, . . . . (2.25)

Using (2.11), (2.22) and (2.24), one can easily derive (2.9).
Conversely, we assume now that conditions (2.6) are satisfied. Then a general

T-fraction (1.4) is defined by (2.9) and its coefficients satisfy Fn ^ 0, G„ =£ 0 for all
n = 1, 2, 3, . . . . It follows from (2.14) and (2.15) that the continued fraction
corresponds to a fLs

L = 2 <V"

at z = 0 and to a fLs

L* =  2 «!„z'n

at z = oo. Now the procedure used in the first part of the proof to define the
coefficients Fn and G„ in terms of the an and a* can be applied to the â„ and â*
and this will yield the same Fn and Gn. It is readily shown that sequences {Fn},
{Gn} uniquely determine sequences {«„}, {a*} by means of the relations (2.9).
Thus we conclude that an = ân and a* = â* for all n. This completes the proof.

It follows from (2.12) that, for the general T-fraction considered in Theorem 2.1,
the nth numerator An(z) and denominator Bn(z) are polynomials in z of degree n.
Thus the nth approximant An(z)/Bn(z) is the (n, n) two-point Padé approximant
determined by the pair of fLs L, L*.

3. Positive T-fractions and their integral representations. General T-fractions (1.4)
for which all Fn and G„ are positive are of particular interest because they have
integral representations. We begin by characterizing double sequences C for which
there exists a positive T-fraction corresponding to L0(C) at z = 0 and to L^C) at
Z   =   00.

Theorem 3.1. Let C = {c„}!^ be a double sequence of real numbers and let L0(C)
and LX(C) be defined by (1.1). There exists a positive T-fraction

F„>0,       Gn>0,       « = 1, 2, 3, ...,1 + Gxz + 1 + G2z +

corresponding to L0(C) at z = 0 and to LX(C) at z = oo iff

(3.1)

H(~:\{C) > 0,       n = 0, 1, 2, . . ., (3.2a)
Htn2n)(C) > 0,       HJsfft~lHC) < 0,       n = 1, 2, 3, . . . . (3.2b)

Proof. We apply Theorem 2.1 with a„ = -c_„ for n > 1, a*n = cn for n < 0.
Then

. » Í0-Í-O,       « = 1,2,3,...,
"      \c_„-0,       n = 0,-1,-2, ....
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Thus Sn = c_n for all n. Hence by (2.7),

A. =

n-\

'n-2

Ln-2

c0 C-("-l)

n = 1, 2, 3,

and

d>       =vn+l

1-2

n = 0, 1, 2, .

-1 c-2 '   '   ' c-(n+l)

Elementary operations on these determinants then leads to

A„ = //„-(""'»(c), n > 1,    and    $„+1 = //<-+<í+1))(C), n > 0.       (3.3)

From (2.9) we have that Fn > 0 and Gn > 0 holds for all n iff
A„ > 0,       n = 1, 2, 3, . . ., (3.4a)

and
*2»-i<0,        $2„>0,       «=1,2, 3, .... (3.4b)

Substituting (3.3) into (3.4) completes the proof of the theorem.
Existence of integral representations for continued fractions was proved for the

case of K(a„z/1), a„ > 0, by Stieltjes [13]. For K(z/(1 + d„z)), d„ > 0, it was done
by Jones and Thron [5]. Both proofs depend on an analysis of the zeros of the
denominators Ä„(z) of the approximants An(z)/Bn(z) of the continued fraction.
For K(z/(1 + dnz)), dn > 0, this analysis was carried out in [15]. The results for
positive T-fractions parallel those in [5]. We shall now sketch the steps involved in
the proof.

Let An(z) and Bn(z) denote the nth numerator and denominator, respectively, of
the positive T-fraction (3.1). Then by the difference equations (1.11), one can see
that An(z) and Bn(z) are polynomials in z of degree n of the forms

An(z) = Fxz + ■ ■ ■ + T,

Bn{z) = 1 + • • •  +

« > 2;       Ax(z) = Fxz,

« = 1, 2, 3,

One now shows that the zeros r„j°, m = 1, 2, . . . , n, of Bn(z) are distinct and
negative. This is proved by the difference equations (1.11), observing that the zeros
of Bn(z) are separated by those of Bn_x(z). Further, the zeros of P„(z) = An(z)/z
separate the zeros of Bn(z). This together with the fact that P„(0)/Bn(0) = Fx > 0
insures that P„(z)/ B„(z) has a partial fraction expansion of the form

Bn{z)        ~,

,(«)

,(«)'
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where a\\p%\ m = 1,.. ., n, are positive. Finally,

£     , . zPn(z) A„(z)      Fx2   /#> = Hm   -ff = lim   -f-[ - -î- > 0.
Now arrange the zeros r{kn) of 5„(z) as follows,

0 < -r\n) <

and define the step function \p„(t) by

0 < -r[n) < -r2n) < ■ ■ ■ < -

"kW    =

0,    for 0 < t < -r\"\
k

2   P%\    for -4") < t < -4")„ 1 < * < n,
m=l

-r,   for-r<"> <i < oo.

(3.5)

Then \p„(t) G ^ for all n > 1 and the nth approximant of (1.3) can be written as a
Stieltjes integral

A„(z)      f<*> z <%,(/)
•'oB„(z)     J0       z + t

These results can be summarized as follows.

Theorem 3.2. Let An(z) and Bn(z) denote the nth numerator and denominator of a
positive T-fraction (3.1). Then An(z) and Bn(z) are polynomials in z of degree n and
the zeros r^ of Bn(z) are all distinct and negative and can be arranged in order such
that

0 < -r[n) < -r2"> < • • •  < -r<n).

The nth approximant An(z)/Bn(z) has the partial fraction decomposition

BM   ¿i z-W    n    1'AJ'--"

where p^ > 0/or m > 1 and 2^=i/>m) = Fi/Gx. Ifi>„(t), 0 < t < oo, is defined by
(3.5), then \pn(t) G *, n > 1, and

An(z)       ,~ z d¡,n(t)
BH(z)

=   I        ———, « = 1, 2, 3, .
J0 z + t

To proceed we shall make use of the following result, sometimes referred to as
"Grommer's selection theorem."

Let {^„(0} be a sequence of real-valued nondecreasing functions defined on
-oo < t < oo, such that c < *p„(t) < C for all -oo < / < oo, n = 1, 2, 3, . . . . Then
there exists a real-valued nondecreasing function \p(t) defined on -oo < t < oo such
that c < \p(t) < C for all -oo < t < oo, and there exists a subsequence {nk} of
positive integers such that lim^^, ^v(i) = \p(t) for -oo < / < oo. Moreover, if g(t)
is a continuous complex-valued function of the real variable t such that lim,_,±00 g{t)
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= 0, then

lim    ¡"git) <ty (/) = Cg(t) ¿Kt).
*->00    •'-oo •'-00

The preceding result is based on a lemma due to Helly and Bray. Proofs of the
result can be found in [11, p. 240, Theorem 6], [12, pp. 207-211] and [18, p.
246, Theorem 64.2]. Before applying this result we study the convergence behavior
of positive T-fractions.

Theorem 3.3. Let fn(z) denote the nth approximant of a positive T-fraction (3.1).
Then: (A) The sequences {/2„_i(-z)} and {/2n(z)} converge uniformly on every
compact subset of R = [z: |arg z\ <ii\.

(B) Let {en} and {dn} be sequences of positive numbers defined by

. « — 1 n

e\=-Er'>        e2n-\ =  II F2k/ II F2k_x,       n>2;F¡ k=\ k=\

e2k =  II F2k_x/ Ü4,       n > 1; (3.6a)
k=\ k~\

dn = Gnen,       n = 1, 2, 3, . . . , (3.6b)

(note that (3.6) is equivalent to (2.11)) so that the positive T-fraction (3.1) is
equivalent to

TTT^ + ̂ T^ + TTT^-r---'     e">0'     d">0-     (3"7)

The continued fraction (3.1) converges uniformly on every compact subset of R iff
OO 00

2 en = oo    or     2 dn = <»• (3-8)
n=\ n=\

Proof. It is readily shown that (3.1) is equivalent to (3.7) which in turn is
equivalent to

/          1                         1                         1 \w\-     -     -      * * *   I
\ dxw + ex/w + d2w + e2/w + d3w + e3/w + )

where w2 = z. We choose w so that |arg w\ < tr/2 and hence z G R. Since dn > 0
and e„ > 0, we have |arg(i/„w + ^/w)! < |arg w\ < m/2. By Van Vleck's criterion
(see, for example, [12, p. 73]) we obtain the uniform convergence of {/2„-i(^)} and
{/2„(z)} on compact subsets of R. The continued fraction converges iff

I   dnw + ^ = oo. (3.9)
« = i w

Clearly (3.9) holds iff (3.8) is satisfied. This completes the proof.
A continued fraction whose nth approximant is the (2« — l)th (or 2«th) ap-

proximant f2n-X(z) (or /2n(z)) is called the odd (or even) part of the positive
T-fraction (3.1). Theorem 3.3(A) shows that both the odd and even parts of (3.1)
converge uniformly on compact subsets of R. Combining Theorem 3.3 with the
Grommer selection theorem (with g(t) = z/(z + t)), yields:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



516 W. B. JONES, W. J. THRON AND HAAKON WAADELAND

lim
n—»oo

Theorem 3.4. Let a positive T-fraction (3.1) be given and let fn(z) denote its nth
approximant. Then there exist two functions t//(o) G ¥, a = 0, 1, such that, for z G R,

A.+.« - f °° £T?r1 = G(0)(z)'    • - °> >•       <310)•'o z -r t

Since the sequences {f2„+a(z)} converge uniformly on compact subsets of R, it follows
that the functions G(a\z) are holomorphic for z G R, a = 0, 1. Iff 2"_,e„ = oo or
2"_,</„ = oo, then ^°\t) = i//(1)(f) = ^(t). Here the en and dn are defined by (3.6).

We note that a in <^(o)(0 and G(a\z) denotes merely an index, not a derivative. In
§5 we shall show that the ^(o) are actually in ^fx.

4. Asymptotic expansions of positive T-fractions. In §2 it was shown that a
positive T-fraction (3.1) corresponds to a fLs L0(C) at z = 0 and to a fLs LX(C) at
z = oo. We shall now show (in several steps) that the functions G(<7)(z), to which
the odd and even parts of (3.1) converge in R, have L0(C) and LX(C) as
asymptotic expansions.

Theorem 4.1. Let a double sequence C = {cn}^ satisfying (3.2) be given. Let (3.1)
be the positive T-fraction that corresponds to L0(C) at z = 0 and to LX(C) at
z = oo. Let fn(z) denote the nth approximant of (3.1) and let \^(0\t) and \piX\t) denote
functions in 'ir (whose existence is asserted by Theorem 3.4) such that

z ¿Aj/(g)(Q
>-»°° ./o      z + ;

Then

ck=C{-t)k<W\t),       k = 0,±\,±2,..

Proof. The fact that the positive T-fraction (1.3) corresponds to L0(C) at z = 0
implies that, for n = 1, 2, 3, ... ,

/„(*)-   2   - c_mz™ + z"+\(z), (4.1)

where hn(z) is holomorphic in some circular disk about the origin. Next in terms of
the step functions \p„(t) of (3.5) (see Theorem 3.2), we have, for all z G R,

•<»zd4>n(t)
0 Z  +  /

.2 ,k I    ,\*+l

'o   \ t       t2 K    '       tk      t\z + t) )   ™ '

All integrals occurring above exist, since ^„(0 = 0 for 0 < t < -r\n) and ypn(t) =
Fx/Gx for -r^n) < t < oo, so that they are all proper Stieltjes integrals.

Subtracting the two expressions (4.1) and (4.2) with k = n obtained for/„(z) and
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\zm~2

dividing by z, we arrive at

\ 4>    (-/)"(z + I) / /
By letting z —» 0, one arrives at

c_, = H-/)-1 #„(')• (4-4)
•'o

Using (4.4) in (4.3) and repeating the process n times, one obtains

c-m = f °°(-')"m #„('),        1 < m < n. (4.5)
•'o

By expanding the nth approximant fn(z) and the integral in the last term in (4.2)
about oo, one gets in a similar manner

cm = Ci-tT df,„(t),       0 < m < n - 1. (4.6)
•'o

We next consider the integrals /~rm dip(a)(t). Let 0 < <5 < ¡i < oo. Then
/£f"m d4/(o)(t) exists for a = 0, 1 and m a positive integer. Moreover, for an
arbitrary e > 0, one can find ne(o) such that

Hence

f ^ < f^íí) + e < |C J + e,        forn >n<°>.
Js t Jq t

Since e is an arbitrary positive number in the inequality above we conclude that

k_J>     w > i.

From this both the existence of the integral as well as the inequality

f^<|c.J,       »>1, (4.7)•'0 »

follow. An analogous argument, where however we need not worry about the
integral near t = 0, allows us to conclude that

f V <#<«>(r) < |cm|,       m > 0, (4.8)
•'o

also holds.
Combining (4.2) with (4.5) and f„(z) = Jq(z/(z + t)) a\p„(t), we have, for 1 < k

< 2« + a,

A * + < ¿! -m Jo    U + J   (-t)k+l    • (      }
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gn.k(z)
1      r°°i    t   \ <fy„(t)

C_(* + i)Jo    U + í/(_í)*+1
Then, at least for real positive z, |g„>A:(z)| < 1. In (4.9) take the limit as n —» oo.
Since all of the other limits exist, hm^^ g2n+ak(z) = g^\z) also exists and

\gk°\z)\ < 1    forO <z < oo, k > 1. (4.10)
Here the a in gk°\z) denotes an index and not a derivative. Thus on the one hand
we have, for 0 < z < oo,

00 z dipia\t)       À „ ,„w ,  t..
J1 =   2   - c_mzm - cAk+X)gk°\z)zk + i.
1 m=lJ0 Z  +

On the other hand,

■>o   * + *    „.,     4   (-om        4 (-i)*(z + o
where all of the integrals exist since we know that

/•<*> z ¿ty(n)(Q r°° ayW
J0      z + t       an     J0     (_r)

(4.11)

(4.12)

exist. Now set

and

(-/)"

'a0 ^(g)(0 _ ,^
** — m

«1 > 1,

/•» d^"'(/j _
J0      (_,)»

C-(k+i)Jo    (-t)k + l(z + t)(-ty+,(z + t)

Here, as before, the a in hk^l)(z) denotes an index and not a derivative. Then, by
(4.7),

I4a)0)l < c- (*+i)
< i,

c-(k + \)

at least for positive z. From (4.12) we can write

•°°z#(g)(Q _     *
m=l

Subtracting (4.14) from (4.11), transposing and dividing by z, one obtains

S'^P-Î -<a.--«wr>(*'*'.
•'o       2 + ' m_i

(4.13)

(4.14)

¿V - c , = z( 22(c_m - ci^z-2 + c^+1)z*-'(glg)(z) - #>(,))).

Letting z tend to 0 (through positive values) one obtains c_, = ci*,. Repeating the
process yields

<^°\t)f (-/)'for all m = 1, 2, 3, ... . (4.15)
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Expanding J0K(z/(z + ()) d\p(a\t) about z = oo and using a similar argument to the
one described above, one arrives at

cm=C{-t)m^'\t),       m =0,1,2,.... (4.16)
•'o

This completes the proof.
Our next theorem is

Theorem 4.2. Let a double sequence C = {c„}™x be given and let \p G ¥ be such
that cm = /S°(-0m (ty(t), m = 0, ± 1, ±2,_Then

- z ^(f)

•'o z + /

is a holomorphic function of z, for z G R = [z: |arg z\ < w], and L0(C) and LX(C)
are the asymptotic expansions of G(z) with respect to Ra = [z: |arg z\ < a], 0 < a <
•n, at z = 0 and z = oo, respectively.

Proof. That G(z) exists and is holomorphic for z G R is well known (see, for
example, [12, p. 186]). Next we have

G(z)=/;(f_íi + ...+(,r.f:_í^)í,(;)

Set

w, H)lr ^(o    iziyL/-/_r_^.    (4.18)
" c_(n + 1)J0    i"(z + 0      c_(n+1)J0   W + f,  t" + 1

Note that, for </ > 0 and 0 < |a| < n/2, |1 + deia\ > 1, and that, for ir/2 < \a\ <
it, |1 + de""\ > |sin(77- - a)\ = |sin a\. Using this we have

1 1<
z + t

for 0 < í < oo, z G Äa, 0 < a < it. It follows that
1

1 + z/t\    ' |sin a|

fol

sin a

for z G Äa, 0 < a < w, n = 1, 2, 3, . . . . This establishes that L0(C) is the asymp-
totic expansion of G(z) with respect to Ra at z = 0. A very similar argument
establishes that ¿^(C) is the asymptotic expansion of G(z) with respect to Ra at
z = oo. This completes the proof.

An immediate consequence of the two preceding theorems is the following.

Theorem 4.3. Let a double sequence C = (c„}!^0, satisfying (3.2), be given. Let
(3.1) be the positive T-fraction that corresponds to L0(C) at z = 0 and to LX(C) at
z = oo. Finally, let Gx(z) and G0(z) be the limits of the odd and even parts of (3.1),
respectively. Then L0(C) and LX(C) are asymptotic expansions with respect to Ra,
0 < a < w, at z = 0 and z = oo, respectively, of both G0(z) and Gx(z).
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5. Terminating positive T-fractions. Our main result is as follows.

Theorem 5.1. Let C = {c„}™xbe a given double sequence. A terminating positive
T-fraction

n   I     Fmz    \
(5.1)

corresponds to L0(C) at z = 0 and to LX(C) at z = oo iff there exists a rational
function

H^-l^TT'      ^>0'       m=\,2,...,N, (5.2a)

0 < tx < • ■ ■ <tN, (5.2b)
such that

L0(C) = A0(T(z)),        LJC) = Ax(F(z)) (5.3)
(A is defined in §2). Conditions (5.3) are equivalent to

c„ =   2  (-tm)"pm,        n = 0, ± 1, ±2, . . . , (5.4a)
m = \

pm>0,       m = l,2,...,N,       0 < /, < t2 < ■ ■ ■ < tN. (5.4b)
Proof. Clearly (5.3) is equivalent to (5.4a), where F(z) is of the form (5.2). In §3

it was shown that a terminating positive T-fraction (the Nth approximant of a
nonterminating positive T-fraction) can be written in the form (5.2). It remains to
prove that, if F(z) is a rational function of the form (5.2) such that (5.3) holds, then
there exists a terminating positive T-fraction (5.1) corresponding to L0(C) at z = 0
and to LX(C) at z = oo.

We begin with the assertion that if there exist two sequences of fLs,

¿on) =   2  Y^m    and    I&> =   f  ß^z-m,
m = 1 m = 0

and two sequences of positive numbers {Fn}, {G„} such that L0(C) = L0l\ Lj(C)
= L(1) andoo   "■""

F z F z
nn) =- "      , +n,        L£ =-=-—-,        n= 1,2,3,...,

1 + Gnz + L^+,) 1 + Gnz + L^+1>

(5.5)
then the positive T-fraction "(Ä) (5.6)

corresponds to L0(C) at z = 0 and to LX(C) at z = oo. The continued fraction
(5.6) may be terminating. A proof of the correspondence to L0(C) can be made
from the fact that
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where S„ denotes the linear fractional transformation (1.9) for the continued
fraction (5.6). Letting An and Bn denote the nth numerator and denominator,
respectively, of (5.6), we obtain from (1.12) and (1.14) the relation

r   (C) A*_An  + ^-,4"+1) An  =   (-1)"F,T2 •   •  •  TnZ"4"+1) r57,
Bn      Bn + Bn_xnn + "      Bn~      Bn(Bm+B„_tLir+»)     '      K'}

Expanding the right side of (5.7) in increasing powers of z, we see that the first
nonzero term is of degree at least (n + 1). It follows that (5.6) corresponds to
L0(C) atz = 0. A similar argument applies to Lœ(C).

In view of the preceding result it will suffice to determine a sequence {Hn(z)} of
functions holomorphic both at z = 0 and at z = oo and satisfying Hx(z) = F(z)
and Hn(0) = 0, and to determine sequences of positive numbers {Fn}, {Gn} such
that

^)BTT^TÖJ'        «=1,2,3,.... (5.8)

For then (5.5) will be satisfied with L¿"> = A¿Hn) and L™ = A^HJ, « =
1, 2, 3, . . . . The process, if at all possible, is unique. If Hn + X =0 for some n, then
the positive T-fraction (5.6) terminates.

We now show that every rational function F(z) of the form (5.2) can be
expressed by

F(Z) = ^T' (59a)

where
n

T0(z) = «0,        Pn(z) = «„ II (z + S™),       n = 1, 2, 3, . . . ,       (5.9b)

cl„ > 0   for» -0, 1,2,..., (5.9c)

0<fír><?ÍT~I)<?írii, l<m<n, n-2,3,4,.... (5.9d)
In particular <xN = 1 and ^JV) = tm for 1 < m < N. In fact, it is clear that F(z) can
be written in the form F(z) = zQ(z)/PN(z), where

q(z) = 2 pm n (z + «*>).
m=1 v=\

v¥=m

Hence Q(z) is a polynomial in z of degree N — 1. Moreover,

Q(-SrN)) = 2 pm n (-^> + r«*>) -/>, n (rr» - «*>).
m=1 v=l »=I

v^=m v=S=r
I

It follows that Q(-Çr(N)) = (-l)r+lDr, where Dr > 0, r = 1,2, . . . , N. From this we
conclude that Q(z) has at least N — 1 distinct zeros on the negative real axis
separating the zeros of PN(z). This accounts for all of the zeros of Q(z). Finally
Q(z) > 0 for all z > -f,<;v) and hence Q(z) is of the form PN_x(z) as defined by
(5.9).
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We shall complete the proof of the theorem by showing that a sequence {H„}
can be found such that Hx(z) = F(z) and each Hn(z) has the form

*,(*) - ÍPh-ÁíÍ »       KiKiV-1. (5.10)

where the Pn(z) are polynomials of the form (5.9b, c, d) and where the H„(z) satisfy
equations (5.8). For if this is so, then

F,z F„_,z
F(z) = Hx(z) '■N-f

1 + Gxz + + 1 + GN_xz + zP0(z)/Px(z) ■

Now P0(z) = a0 > 0 and T,(z) = «,z + a,f ,(l), where a, > 0, f,(I) > 0. Hence if
we set FN = a0/ax¡;¡l) and G^, = 1/f i(l), we have

T(z) =
1 + Gxz + + 1 + GNz'

where all F„, G„, n = 1, 2, . . . , N, are positive.
From (5.8) and (5.10) we have, for 0 < n < N - 1,

'JV-!-,,(')        g¡£       n   .  r   , _ FnPN+x_n(z) - (1 + G„z)PN_n(z)
PN_a(z)     - Hn(z)      V + °»Z)- PN_n(z)

and hence

zPn^-^z) = FnPN+x_n(z) - (I + Gnz)PN_n(z),       0<H<N-l.     (5.11)

The requirement that PN^x_„(z) be a polynomial in z of degree N — 1 — ft
determines Tn and G„ completely

(W-n \       / N+\-n \

(Af-n \       / /V+l-n \

n   ^-n)j/(     n     ft**1-*». (5.12a)

Clearly all F„ and G„ are positive. Next from (5.11) we have

im rN-\-n\    am ) rnr N+\-n\   *m )

= (-l)mEiN -"-■>,       m- 1,2, ...,N-n,

where EmN~"~n > 0. This is the case since the zeros of PN-„(z) separate those of
PN+i-„(z) and all zeros are simple. It follows that, for n < N - I, the N - n — 1
zeros of PN_„_x(z) are all distinct, negative and separate those of PN_„(z).

Finally we shall show that <*„_,_„> 0 for 1 < n < N - n. Clearly aN = 1 > 0.
We assume that aN_„ > 0 and proceed by induction. By considering the coeffi-
cients of zN+i-" in (5.11), we obtain

(N+i-n \ I N-n \

2  e+i-")) - «N-„ - «*-„<*(w2 e-n)j.
(5.12b)
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From (5.12a) we obtain aN+x_nFn = aN_„Gn and hence (5.12b) becomes
(¡N+\-n N-n \ \

<?.(  2]  tír*1-0 - 2i tí?-*) - i).
Thus aN_x_„ > 0, provided the second factor on the right side of the preceding
equation is positive. In view of (5.12a) this is equivalent to the inequality

N+t-n N-n /N+\-„ N-„ \

n e+,-n)< n e-n)  2 tí?*1-*- 2 si?-*). (5.13)
m=l m=l \    m—1 m-1 /

For this purpose we define

a2J_x = 0*+»-> - 0*¿-">,       / = 1, 2, . . . , TV + 1 - n,

«2/ = ¿T"0 - tf-í '"n)-      y - L 2,..., iV - «.
It follows from (5.9d) that each a¡ is positive. Since ^}N+l'n) = ~Z2mZ.\am, j =
1, 2, . . . , N + 1 - n, and #"-"> = 22m.,am, / - 1, 2,..., N - n, (5.13) can be
written in the equivalent form

N+l-n ¡2k-\ \ N-n/    2k \lN+\-n \
Il 2   am   <   n      2   aJ      2     "2,-, • (5.14)

* = 1     \m=l / * = l\m=l        /\    j=\ f

Thus it will suffice to prove the inequality
1    ¡2k-\ \ <t-l /    2k \(    4 \
n      2   am   <  II     2   am     2  «*-, (5.15)

*=l\m=l / *=l\m = l /\y=l /

for arbitrary positive numbers a¡ and for all q = 2, 3, 4, . .. . Our proof is by
induction on q. For q = 2, (5.15) reduces to a^a, + a2 + a3) < (a, + a2)(ai + a3)>
which is easily verified. Now assume that (5.15) holds for a given value of q. It
remains to show that it also holds for q replaced by q + 1, that is,

<7+1 I 2k-\

k

This can be written as

,+ 1 ¡2k-\ \ 1     I    2k \[ 9+1 \
n      2    am   <   n      2   am     2   °y-\ (516)
:-l\m-l / A: = l\m=l / \ y — 1 /

<

or, equivalently,

1     t2k-\ \l    2q \ q     12k-\ \
n  2 am  s am + n  2 «mk+1
:=l\m=l /\m=l / k-l\w-l /

(2 «vJnf 2 «u) + «2,+.n(i «J

/   2?        \/   q \ «-' /   2/t        \        q   I2k-X      \
o<  2 -u  2 «v-, n  2 o- n   2 «J

\m=l /\y=l /A:=l\m=l / *=l\m-l /

+ «2,*,(n(2 J- n(22'«Jl (5.17)
That the first term on the right side of (5.17) is positive follows from the induction
hypothesis (5.15). That the second term on the right side of (5.17) is positive can be
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verified directly. This completes the induction and our proof of Theorem 5.1.
For the modified moment problem we have established the following.

Theorem 5.2. For a given double sequence C = (c„}!^„ there exists a unique
solution yp of the modified moment problem cn = /"(-*)" d\¡/(t), \¡/ G ^F, n =
0, ±1, ±2, . . . ,  iff there exists a rational function F(z) of the form

"       p  z
fW=2  7T7.       0 <*■,<• ••</„,      Pm>0,       m=l,2,...,N,

m=\   z  "•■  lm

such that L0(C) = Ao(F(z)) and LJC) = Ax(F(z)).

We conclude this section by observing that if a nonterminating positive T-frac-
tion is such that its odd (even) part converges to a function

_, k      r00 z cty(t)F(z)={  TTT'      *e**>

0 </,<•••< tN,       pm>0,       m=\,2,...,N,

and hence the positive T-fraction corresponds to A0(F(z)) at z = 0 and to
Ax(F(z)) at z = oo. This is impossible by Theorem 5.1. Therefore the ^(o) in
Theorem 3.4 satisfy i//(o) G "¡rx.

6. The strong Stieljtes moment problem. We begin with a result giving a necessary
condition for the strong Stieltjes moment problem to have a solution. The proof is
modelled on the corresponding proof for the ordinary moment problem.

Theorem 6.1. A function \¡/ G ^ will generate a given double sequence C =
{c«}^oo of moments, by means of the relations

c °°
cn = /    (-0" #('),       n = 0, ± 1, ±2, . . ., (6.1)

only if the double sequence C satisfies the condition (3.2), that is,

/7<-+1(C)>0,       n =0,1,2,..., (6.2a)
Hi~2nKC) > 0,        Ht„(2nr '»(C) < 0,       n = 1, 2, 3, . . . . (6.2b)

Proof. We consider the quadratic forms

i =-n j = -n

If the strong Stieltjes moment problem has a solution \p E 4^ then

Q(s, n) = rl f 2   2 {-tM-tiu\ dKt),

since, for finite sums, the order of summation and integration can be exchanged

then F(z) has the form

N
F{z) =   2

m=l

ZPm
Z + L

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A STRONG STIELTJES MOMENT PROBLEM i>¿0

even though the integration is improper. Thus

ß(,,/0-jp'( 2 (-/)'u,) #(/).

Since i// is assumed to have infinitely many points of increase, it then follows that
all Q(s, n) are positive definite quadratic forms. That all Q(s, n) are positive
definite quadratic forms is equivalent to the condition that all determinants,

(-i)V2„+J

(-1)^-2,,+ !+,

(     1) C-2n+\+s

(-i)V2n+2+i

(    1) C-2n + k + s

(_1) C-2n + *+l+i

(-0^-2» + k + s       ("0V 2n + * + l+i (-l)^_2fl + 2k + s

where k = 0, 1, ... , 2n, be positive (see, for example, [18, p. 88]). For s = 0 we get
Hk+\\c) > 0 and, for s = \, (-l)* + 1//i+(1n"1))(C) > 0. By choosing k = 2n - 1
and k = 2n for s = 0 and k = 2n — 1 and k = 2n - 2 for s = 1, one obtains the
inequalities (6.2). This completes the proof.

Our second result concerns the uniqueness of solutions to the strong Stieltjes
moment problem. We shall call two elements of ^ essentially equal if they differ in
at most their points of discontinuity.

Theorem 6.2. Let C = {c„}!
let the positive T-fraction

be a double sequence satisfying conditions (6.2) and

K   I     F"Z     \ (6.3)

corresponding to L0(C) at z = 0 and to LX(C) at z = oo be convergent on compact
subsets of R = [z: |arg z\ < it] (see Theorem 3.3). Then the strong Stieltjes moment
problem for the double sequence C has exactly one solution \p and it is contained in
4'00. Here, essentially equal solutions are considered as equal.

Proof. That the moment problem has at least one solution followed from
Theorem 4.1. Let ^ be a solution. Let An(z), B„(z) denote the nth numerator and
denominator of (6.3), respectively. Then, from Theorem 3.1 and Theorem 4.2,

An(z) = y        _
Bn(z)  „rJmZ + c„z-\n(z)

and

I iM =   2' cmz- cmz-X,(z),

where <p„(z) and x.(z) are bounded functions of z at least for 0 < M < z < oo.
Hence,

r°° zBn(z) <ty(t) \( r*LÉt<â   é¿u\

= Bn(z)cnz-"(x„(z) - <p„(z)) = ß„(z),       (6.4)
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where ß„(z) is bounded as z -^ oo through positive values. Next consider

r z(B„(z) - Bn(-t)) f°°zBn(-t)
/    -—ri-<w) - An(z) = /w) - I    "7X7 #(')•

The left-hand side of this equation is a polynomial in z of degree at most « with a
zero constant term. This follows from the fact that (Bn(z) — Bn(-t))/(z + t) is a
polynomial in z of degree n — 1. The right-hand side is a function which is
bounded as z —* oo through positive values. It follows that

r°ez(J,(z)-B,,H))     ..,,, ,,_*
^(Z)=J0    -FT!- #(,)- (6-5)

By considering the expansions of An(z)/ Bn(z) and Jq(z/(z + t)) a\p(t) at z = 0,
one obtains

/-« zß (z) <ty(r) , , , * .x
Í ny,,-An(z) = yn(z)-z» + \ (6.6)

•'O Z -r-  Í

where y„(z) is a bounded function of z for positive values of z near z = 0. Hence

/"'<*•"> If-'-"' #(0 - 4M - -<f ^ + r.M*»'.  (6.7)
Using (6.5) and (6.6), one gets

r°° zB (-t) " r00 B (-t) , rx B (-t) dé(t)f       nK   ' dMi) =   y   - zm(   ^^- cfy(t) + zn+l f      "V   }^K)
Jo      z + t      ¥W      mt, J0     (_,)*     VW J0    (-t)"(z + t)

= yn(z)z" + l. (6.8)

From this one concludes that fo(Bn(-t)/tm) cty(t) = 0 for m = 1, 2, . . . , n.
Hence, ¡ÔP(t)(Bn(-t)/tn) a\p(t) = 0 for all polynomials P(t) in < of degree less
than or equal to n — 1. Hence, in particular,

/•oo/ BJ-t) - B„(z) \ BJ-t)
/„ (    z + t    )-¿r #(0 = 0- (6>9)

It also follows from (6.7) that

/•«=      #„(-f) , , r00 BJ-t) d\b(t)
Í    ,   w x ^(t) = z-"(      "X   '"I" ' ■ 6.10•'o    (-/) (z + i) -'o z + '

Using (6.4) one arrives at

/•AÛ -KO-^Si*- AW--. (6.U)-/() Z    +     Í Z

Thus we obtain, from (6.10) and (6.11),

r~z((Bn(z)/z»)-(Bn(-t)/(-t)")) ^{t) _ A¿z)_
Jq Z   +    t Z

The left-hand side of the above equation is a polynomial in z"1 of degree at most
(« — 1). The right-hand side is of order z~n as z —» oo through positive values. It
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follows that

AM      rz((Bn(z)/z"
z"        Jo

From (6.9) and (6.12) we have

(Bn(z)f r°° z MO      Ani.z)BJz) _   o ^ f~ Bn(-t) cty(t)
(-t)"(z + 0

{Bn{-t)f

= fM(WO-W-»/W #(i). (6,2)
Jr\ Z   ~T   t

r~zaW) _Am(z)«„Kz, _ r
J0      z + t z" "v ;J0

<ty(t).
Jo    (-t)n(z + t)

Dividing both the left side and the right side of the above equation by (Bn(z))2/z",
one arrives at

r°°zd^(t)      An(z) =     z" + l      r~ (B„(-t))2 <ty(t)

J0      z + t        Bn(z)      (Än(z))2 J0      (-t)n(z + t)

For z > 0 one then concludes that

A2n(z)      r°"zcfy(t)      A2n_x(z)
B2n(z)     Jo     z + t   " 52n_,(z)'

<       ±^l< "*-'      ,       « = 1,2,3,...

Since \p here is an arbitrary solution of the moment problem, it is essentially equal
to the solution obtained from the convergent positive definite T-fraction (see, for
example, [12, pp. 184-190] and [19, Chapter 8, §7]). From Theorem 5.2 we know
that the solution obtained from a non terminating positive T-fraction is in 4,00. This
completes the proof of Theorem 6.2.

If the positive T-fraction (3.1) does not converge, then ^(0)(0 and >//(1)(i) are
distinct functions (see Theorem 3.4) and thus for every choice of a > 0, ß > 0 the
function

«MO =-^s-
is also a solution of the strong Stieltjes moment problem. Hence in this case there
are infinitely many solutions. We do not know whether the \paß exhaust the
possible solutions. The following result has now been proved.

Theorem 6.3. The strong Stieltjes moment problem for a double sequence C =
{c,,}!0«, has a solution iff H^\(C) > 0, n = 0, 1, 2, . . . , and H^2n\C) > 0,
H^2"~l)\C) < 0, n = 1, 2, 3, ... . The solution is unique iff the positive T-fraction
(3.1), corresponding to L0(C) at z = 0 and to LX(C) at z = oo, converges (or
equivalently iff 2en = oo or 2dn — oo, where en and dn are defined as in Theorem
3.3).
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