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Abstract. Although observations of species-rich communities have long served as a pri-
mary motivation for research on the coexistence of competitors, the majority of our empirical
and theoretical understanding comes from two-species systems. How much of the coexistence
observed in species-rich communities results from indirect effects among competitors that only
emerge in diverse systems remains poorly understood. Resolving this issue requires simple,
scalable, and intuitive metrics for quantifying the conditions for coexistence in multispecies
systems, and how these conditions differ from those expected based solely on pairwise interac-
tions. To achieve these aims, we develop a structural approach for studying the set of parame-
ter values compatible with n-species coexistence given the geometric constraints imposed by
the matrix of competition coefficients. We derive novel mathematical metrics analogous to
stabilizing niche differences and fitness differences that measure the range of conditions com-
patible with multispecies coexistence, incorporating the effects of indirect interactions emerg-
ing in diverse systems. We show how our measures can be used to quantify the extent to which
the conditions for coexistence in multispecies systems differ from those that allow pairwise
coexistence, and apply the method to a field system of annual plants. We conclude by present-
ing new challenges and empirical opportunities emerging from our structural metrics of multi-
species coexistence.

Key words: community dynamics; feasibility; invasion criterion; multiple competitors; niche and fitness
differences; pairwise effects; structural stability.

INTRODUCTION

The impressive diversity of species in ecological com-

munities has long motivated ecologists to explore how

this diversity is maintained (Darwin 1859, Hutchinson

1961). Given that some species are better competitors

than others, and that competitive imbalances should

lead to the exclusion of inferiors, the factors enabling

the coexistence of so many species pose an ecological

puzzle. Although observations of species-rich communi-

ties have served as a primary motivation for research on

coexistence (Hutchinson 1961, Hubbell 2001), the

majority of our empirical and theoretical understanding

of this topic comes from the study of pairwise mecha-

nisms (Case 2000, Chesson 2000, Kraft et al. 2015). The

reason is one of practicality—experiments and theory

devoted to understanding the interaction of two species

are simpler and more tractable than efforts to under-

stand the dynamics of many species (Case 2000).

Nonetheless, the focus on pairwise coexistence misses

some process that only emerge in diverse systems of

competitors and may ultimately maintain coexistence in

diverse ecosystems in nature (Billick and Case 1994).

Theory shows that embedding pairwise competitive

interactions into a network of other (still pairwise) com-

petitive interactions causes species to have indirect effects

on one another via changes in the abundance of other

species in the community (Vandermeer 1970, 1975, Levine

1976, Wootton 1993, Spiesman and Inouye 2015). These

“interaction chains” can reverse pairwise competitive out-

comes and strongly affect conditions for coexistence. For

example, “rock-paper-scissors” intransitive competition

can favor the coexistence of three species, even though

each pair cannot coexist in isolation (May and Leonard

1975, Kerr et al. 2002, Godoy et al. 2017b). With a differ-

ent set of interactions, conditions for coexistence may be

constrained by the more complex network of interactions

in diverse communities (May 1971, Roberts 1974, Svirez-

hev and Logofet 1983, Stone 1988). Although advancing

our understanding of coexistence in systems with many

competitors remains a priority for studies of species diver-

sity maintenance (Logofet 2005, Edwards and Schreiber

2010, Allesina and Levine 2011, Saavedra et al. 2014,
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Barab�as et al. 2016), tools for dissecting how coexistence

emerges from population dynamics in higher dimensional

systems are only beginning to be developed.

To understand how the structure of diverse competi-

tive networks influences the maintenance of species

diversity, ecologists require metrics that both character-

ize the opportunities for coexistence in n-species systems

and quantify how much of this coexistence depends on

mechanisms that require more than two species. The

approach most commonly applied to understanding

coexistence in diverse communities is local stability anal-

ysis (May 1972, Logofet 1993, Case 2000). Though

related to concepts of stability across the natural

sciences, local stability has some central limitations.

First, local stability may consider a system stable when

not all the constituent species from the community

attain positive abundances at equilibrium. This means

the system is stable but not feasible (Roberts 1974, Rohr

et al. 2014). Second, the degree to which species coexis-

tence depends on mechanisms that require more than

two species cannot be readily calculated from the local

stability properties of the n-species equilibrium. Finally

and most fundamentally, in local stability analysis the

perturbations act on state variables, limiting the analysis

to changes in species abundances only. These perturba-

tions may not represent realistic scenarios of changes in

species abundances and demographics. Therefore,

opportunities for coexistence may be more intuitively

and directly evaluated by measuring the robustness of

coexistence to both large and small changes in the demo-

graphic rates and interactions of the competitors (i.e.,

the parameters of population dynamics models).

To address these issues above, one can study coexis-

tence from a mutual invasibility perspective, where spe-

cies’ invasion growth rates can be decomposed into

stabilizing niche differences that increase the conditions

for coexistence and average fitness differences that drive

competitive exclusion (Chesson 2000, Adler et al. 2007).

Because coexistence requires each of the two competi-

tors to have a positive growth rate when rare, the stabi-

lizing niche difference can be regarded as a metric of the

opportunity for coexistence (i.e., how large a fitness dif-

ference can be tolerated). Under Modern Coexistence

Theory (MCT; Chesson 2000), niche differences include

all processes that cause intra-specific interactions to be

more limiting than interspecific interactions, and thereby

benefit species that drop to low relative abundance. Fit-

ness differences include all factors that favor one com-

petitor over the other, and can arise for example from

species differences in their innate demographic potential

or tolerance of competition (e.g., species differences in

their R* sensu Tilman [1982]).

Unfortunately, this two species framework based on

invasion growth rates is not easily extended to include

mechanisms that only emerge with more than two spe-

cies. More formally, the invasion criterion can only be

used to evaluate n-species coexistence when depressing

each species to low abundance allows the remaining

n � 1 species to coexist (see Appendix S1). Consider, for

example, the coexistence of three species via rock-paper-

scissors competition. Depressing any one species to low

density leads to the elimination of one of the residents.

The fact that each species can invade a system with one

resident is insufficient to conclude that all three species

can coexist (Barab�as et al. 2016). Past efforts have

extended the two species coexistence framework by

quantifying the determinants of population growth rate

when invading a system with multiple resident species

(Chesson 2003). This advance has proven useful for

understanding how functional trade-offs (Angert 2009),

seed pathogens and predators (Chesson and Kuang

2010, Stump and Chesson 2015), and bioclimatic factors

(Holt and Chesson 2014) influence community-level

metrics of niche differentiation (see also Carroll et al.

2011). Nonetheless, by building from invasion growth

rates and/or averaging over the pairwise niche and fit-

ness differences, these approaches do not readily reveal

the contribution of higher dimensional mechanisms to

coexistence. In sum, the current set of tools for evaluat-

ing species coexistence in diverse communities are not

well suited for differentiating the effects of pairwise

mechanisms from those emerging due to the indirect

effects among a diverse set of competitors.

In this manuscript, we propose that quantifying the

opportunities for coexistence in diverse systems requires

moving from mutual invasibility to structural appro-

aches. Recognizing the value of the coexistence metrics

developed for two species systems, we develop structural

measures analogous to niche differences that quantify

opportunities for coexistence in systems of n-competing

species. The new measures we propose are based on a

structural stability approach previously used to under-

stand the persistence of ecological networks (Rohr et al.

2014, Saavedra et al. 2014, 2016a, b). Developing multi-

dimensional metrics is important because ecologists ulti-

mately aim to understand the coexistence of many

species, not just pairs of competitors. Moreover, the

structural metrics we develop allow ecologists to both

visualize and quantify the contribution to coexistence of

interaction chains that only emerge in systems with more

than two species. Though we acknowledge that in spe-

cies-rich systems each species’ per capita effect on

another can be modified by the presence of a third spe-

cies (higher order interactions; Billick and Case 1994),

this paper will only explore coexistence in competitive

systems with species interactions that are fundamentally

pairwise. Doing so facilitates quantitative analysis, and

also permits the closest connection between our metrics

and empirical approaches designed to readily quantify

pairwise interactions.

In the first half of the paper, we provide background

on the concept and mathematical conditions for species

coexistence as achieved through traditional approaches

and compare these to the structural approach developed

here. We show how structurally derived measures map

onto the stabilizing niche difference and average fitness
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difference developed algebraically for systems of two

competing species, and then demonstrate how they can

be extended to n-species communities. In the second half

of the paper, we use our structural measures to develop

an approach for quantifying the contribution to coexis-

tence of indirect interactions that only emerge with more

than two competitors. We then quantify the contribution

of indirect effects to coexistence of three- and four-

species assemblages of annual plant species occurring in

California. We conclude by presenting the empirical and

theoretical challenges and opportunities emerging from

a structural approach.

SPECIES COEXISTENCE IN SIMPLE MODELS

To study species coexistence, first we require a dynam-

ical system describing the change in species abundances

through time. The simplest competitive system (but still

incorporating the basic elements of a competitive

dynamic) for which we have the most analytic results is

the Lotka-Volterra model (Volterra 1931, Lotka 1932,

Case 2000)

dNi=dt ¼ Ni ri �
Xn

j¼1

aijNj

 !

where the variable Ni denotes the abundance (or bio-

mass, depending on the chosen dimension) of species i;

and the parameters ri > 0 and aijP0 represent the intrin-

sic growth rate of species i and the competitive effect of

species j on species i, respectively. Note that the term

inside the parenthesis ri �
PS

j¼1 aijNj

� �

is called the per

capita growth rate of species i. Importantly, this simple

dynamical system can exhibit various complex behav-

iors: a unique globally stable equilibrium point, multiple

locally stable equilibrium, or even limit cycles (Hofbauer

and Sigmund 1998, Case 2000).

Analyses of the Lotka-Volterra population dynamics

model have analytically demonstrated that a necessary

condition for species coexistence (see Appendix S2 for

further details) is the existence of a feasible equilibrium

point (Hofbauer and Sigmund 1998). An equilibrium

point N�
i is called feasible when the abundance of each

species is positive (N�
i [ 0). If such a feasible equilib-

rium point exists, it has to be the solution of the follow-

ing set of i linear equations (with one equation for each

species i):

ri ¼
XS

j¼1

aijN
�
j :

These equations make explicit that one needs a partic-

ular combination of species demographic parameters (ri)

and interspecific interactions (aij) to have a positive solu-

tion and provide the necessary conditions for species

coexistence.

However, feasibility is necessary but not sufficient to

guarantee species coexistence in n-species systems. For

example, in the textbook case of two competing species

(Hofbauer and Sigmund 1998, Case 2000), the equilib-

rium point may be feasible but unstable, and thus one of

the competitors will go extinct. While the stability of a

feasible equilibrium point is not required for coexistence

in higher dimensional systems (Hofbauer and Sigmund

1998), it has been shown that the global stability of a

feasible equilibrium point is a sufficient condition for

species coexistence (persistence; Svirezhev and Logofet

1983, Logofet 1993, 2005, Rohr et al. 2014, Saavedra

et al. 2016a, b). Therefore, species coexistence can be

studied by looking into the necessary conditions for spe-

cies permanence (that is feasibility) and the necessary

and sufficient conditions (that is feasibility and global

stability) for species persistence (Takeuchi 1996,

Hofbauer and Sigmund 1998, Rohr et al. 2014). Unfor-

tunately, in many cases, global stability is very difficult

to prove (Logofet 1993), and one may only rely on the

necessary conditions for species coexistence.

TRADITIONAL ALGEBRAIC APPROACH FOR EVALUATING

TWO-SPECIES COEXISTENCE

To illustrate how species coexistence has traditionally

been approached by theory, let us assume that the popu-

lation dynamics of two competing species can be

described by the Lotka-Volterra model, i.e.,

dN1

dt
¼ N1 r1 � a11N1 � a12N2ð Þ

dN2

dt
¼ N2 r2 � a21N1 � a22N2ð Þ

(

: (1)

Then, if one is interested in the sufficient conditions

for coexistence, one needs to find whether there exists a

feasible equilibrium point (N�
1[ 0, N�

2[ 0) and if it is

globally stable (see Appendix S3 for a review of global

stability).

Traditionally, to find these feasibility and stability

conditions, one can draw the non-trivial isoclines, i.e., the

two lines defined by r1 - a11N1 - a12N2 = 0 and

r2 - a21N1 - a22N2 = 0 (see Fig. 1A for a graphical exam-

ple). A feasible equilibrium point exists if the two isoclines

cross at a positive abundance, and this equilibrium point is

globally stable under the condition a11a22 > a12a21

(Case 2000). The solution of this dynamical system is

given by N�
1 ¼ ða22r1 � a12r2Þ=ða11a22 � a12a21Þ and

N�
2 ¼ ð�a21r1 þ a11r2Þ=ða11a22 � a12a21Þ. Because the

denominator of these two expressions is assumed to be

positive, the feasibility conditions can be written as

a22r1 � a12r2[ 0

�a21r1 þ a11r2[ 0

�

: (2)

These two inequalities can be combined into one

equation (given that all parameters are strictly positive)
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a11

a21
[

r1

r2
[

a12

a22
(3)

which gives the upper and lower bounds within which

the relationship of intrinsic growth rates need to fall to

allow the feasibility of the system (i.e., a positive solution

of the system).

Under the MCT framework (Chesson 2000), one

derives niche and fitness difference metrics from the

mutual invasion criterion (rather than the intersecting

isocline analysis above, see Appendix S1). Importantly,

these metrics for the Lotka Volterra model can also be

produced by multiplying each term of Eq. 2 by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a22a21=a11a12
p

. This multiplier describes the ratio of

species’ sensitivities to competition. This results in the

inequalities between niche overlap and the fitness differ-

ence, given by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a11a22

a12a21

r

|fflfflfflfflffl{zfflfflfflfflffl}

ðNiche overlapÞ�1

[
r1

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a22a21

a11a12

r

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Fitness difference

[

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a12a21

a11a22

r

|fflfflfflfflffl{zfflfflfflfflffl}

Niche overlap

ð4Þ

By assuming that the niche overlap is less than one,

i.e., a12a21 < a11a22, the global stability of the equilib-

rium point in a two-species Lotka-Volterra competition

model is guaranteed (Case 2000).

In this framework, two competing species will coexist

if the stabilizing effect of their niche difference (1 – niche

overlap) exceeds their average fitness difference (Fig. 2)

(Chesson 1990, 2000, 2012). The greater the stabilizing

niche difference (or the smaller the niche overlap), the

greater the opportunity for coexistence. Stabilizing niche

differences emerge from functional differences between

species that cause intra-specific limitation to exceed

interspecific limitation, as may arise, for example, from

species differences in phenology, habitat specialization,

or interactions with specialist consumers (Levine and

HilleRisLambers 2009, Carroll et al. 2011, Kraft et al.

2015). The average fitness difference is a measure of

average competitive ability reflecting species differences

in their demographic potential and sensitivity to compe-

tition. In the absence of stabilizing niche differences,

the species with the higher average fitness excludes the

fitness inferior.

A STRUCTURAL APPROACH FOR SPECIES COEXISTENCE

As shown in the prior section, the classic algebraic

approach for finding the conditions for both feasibility

and global stability of a two-competitor system is

straightforward. However, this approach becomes diffi-

cult if not impossible for n species (Svirezhev and Logo-

fet 1983, Logofet 1993, 2005, Takeuchi 1996). In Box 1,

we illustrate how extending this algebraic approach to

study the feasibility conditions of more than two species

gets into a circularity problem with no solution. More-

over, as noted in the introduction, the mutual invasion

criterion, an alternative approach to evaluating coexis-

tence, does not work with more than two species when

1st isocline: r1 = α11N1+α12N2 

2nd isocline: r2 = α21N1+α22N2 

Abundance sp1 (N1)

A
b

u
n

d
a

n
c
e

 s
p

2
 (
N

2
)

A

Slope = 
α21

α11

Slope = 
α22

α12 [r1,r2]

Feasibility domain

Intrinsic growth rate sp1 (r1)

In
tr

in
s
ic

 g
ro

w
th

 r
a

te
 s

p
2

 (
r 2

)

B

FIG. 1. Algebraic and structural representation of two-species coexistence. Panel A shows the classic algebraic approach of assess-
ing whether two competing species coexist by looking at the non-trivial isoclines. Panel B depicts the structure or parameter space
(feasibility domain) leading to species coexistence, given a matrix of competition coefficients. The feasibility domain is given by the
area between the two green lines, and it is defined by the range of intrinsic growth rates under which the two isoclines cross at positive
abundances (in Panel A). To ensure coexistence (provided that the stability condition is satisfied, see Appendix S3), the intrinsic growth
rates (represented by the brown vectors) have to fall inside the two green lines. [Color figure can be viewed at wileyonlinelibrary.com]
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the depression of one competitor to low density leads to

the loss of residents (see Appendix S1). Thus, with

traditional approaches, ecologists have limited tools to

evaluate the conditions for feasibility and stability in

n-species systems. To address this challenge, we suggest

to shift from an algebraic to a structural approach

(Vandermeer 1970, Svirezhev and Logofet 1983, Logofet

1993). Importantly, this structural approach allows ecol-

ogists to evaluate the contribution of indirect effects

emerging in multispecies systems to coexistence in

diverse communities.

The structural approach involves the study of how the

qualitative behavior (e.g., species coexistence as defined

by globally stable and feasible solutions) of a dynamical

system depends on the parameters of the system itself

(Thom 1972). Nonetheless, as we detail below, this

approach parallels developments in coexistence theory

aiming to characterize coexistence as a function of

stabilizing niche and fitness differences. Thus, the

approach is conceptually aligned with how ecologists

have been approaching the problem of the coexistence of

two species.

Contrary to the algebraic approach where it is neces-

sary to solve the system of linear equations to derive the

inequalities leading to feasibility (N�
1[ 0 and N�

2[ 0),

the structural approach directly evaluates the set of

intrinsic growth rates (r1 and r2) leading to feasibility

given by the geometric constraints imposed through the

matrix of competition coefficients a. The elements of

this matrix correspond to the change in the per capita

growth rate of species i under a small change in the den-

sity of species j. The matrix a defines then the stability

constraints and the range of conditions (parameter val-

ues) compatible with feasible solutions (see Appendix S3

Box 1: Algebraic approaches to feasibility cannot be extended to more than two species.

One might attempt to extend the two-species isocline approach to evaluate feasible equilibria in systems of

n competing species. However, the inequalities derived for two species do not exist for three or more species.

That is, first one would have to solve the linear equations defining the feasible equilibrium point

N�
1 ¼ 1

detðaÞ ða22a33 � a23a32Þr1 þ ða13a32 � a33a12Þr2 þ ða12a23 � a22a13Þr3ð Þ

N�
2 ¼ 1

detðaÞ ða23a31 � a33a21Þr1 þ ða11a33 � a13a31Þr2 þ ða13a21 � a23a11Þr3ð Þ

N�
3 ¼ 1

detðaÞ ða21a32 � a31a22Þr1 þ ða12a31 � a32a11Þr2 þ ða11a22 � a12a21Þr3ð Þ

8

><

>:

which is basically the inverse of the matrix a multiplied by the vector of intrinsic growth rates r. Then the

feasibility constraints would result in the following three inequalities:

ða22a33 � a23a32Þr1 þ ða13a32 � a33a12Þr2 þ ða12a23 � a22a13Þr3[ 0

ða23a31 � a33a21Þr1 þ ða11a33 � a13a31Þr2 þ ða13a21 � a23a11Þr3[ 0

ða21a32 � a31a22Þr1 þ ða12a31 � a32a11Þr2 þ ða11a22 � a12a21Þr3[ 0

8

<

:
:

These inequalities would have to assume that det (a) > 0, which is a necessary condition for global stability.

At the point at which one would try to combine these inequalities, we would enter into a circularity problem

without any way to solve it. For example, let us take the two first inequalities and let us derive and upper and

lower bound between which the ratio r1/r2 has to fall to provide a positive solution to the system. Inevitably,

these upper and lower bounds will be a function of the intrinsic growth rate of the third species (r3). The

same schema repeats with species 2 and 3, and with species 3 and 1, in a circular way. Therefore, we cannot

derive simple inequalities defining the feasibility of n species, such as those given in two-species systems.
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FIG. 2. Modern coexistence theory for two-species coexis-
tence. This figure illustrates how the niche and fitness difference
define the domain of coexistence of pairs of species. It is derived
from Eq. 4 and assuming, without loss of generality, that
r1 > r2. [Color figure can be viewed at wileyonlinelibrary.com]
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for a review about stability conditions). That is, changes

in the matrix of competition coefficients correspond to

changes in the range of stability and feasibility condi-

tions. This approach has been used to estimate the maxi-

mum number of coexisting species (Bastolla et al. 2005,

2009), or how the conditions of feasibility (assuming

explicitly global stability) are modulated by species inter-

action networks (Rohr et al. 2014, Saavedra et al.

2016a, b).

Focusing on the feasibility conditions in the structural

approach, given a fixed matrix of competition coeffi-

cients (a), the set of intrinsic growth rates leading to a

feasible equilibrium point is the so-called feasibility

domain DF(a). Following a Lotka-Volterra model, this

domain can be mathematically written as

DFðaÞ ¼ r ¼
r1
r2

� �

2 R2, such that a�1r[ 0

)

:

(

(5)

Note that the expression a
-1r > 0 corresponds to the

condition for an equilibrium point to be feasible (posi-

tive solution, N* > 0), that is when the two non-trivial

isoclines cross at a positive abundance for both species.

The elements of the feasibility domain can be written as

positive linear combinations of the competitive inter-

action strengths a, i.e,

DFðaÞ ¼

�
r1

r2

� �

¼N�
1

a11

a21

� �

þN�
2

a12

a22

� �

;

with N�
1[ 0 and N�

2[ 0

	

:

(6)

Geometrically, the feasibility domain is described by

the set of elements between the lines defined by the two

column-vectors a11 a21½ � and a12 a22½ �. These two

lines have a slope of a21/a11 and a22/a12, respectively.

Fig. 1B provides an illustration of the feasibility domain,

and shows that this domain is structurally described by a

cone. Note that the inequalities derived under an alge-

braic approach define the exact same domain. Indeed, a

vector of intrinsic growth rates will fall inside the feasi-

bility domain, if and only if its slope given by r2/r1 is,

respectively, larger and smaller than the slope of the line

defining the bottom border of the feasibility cone

(r2/r1 > a12/a11) and the slope of the line defining the top

border of the feasibility cone (r2/r1 < a22/a12), which is

equivalent to the inequalities of Eq. 2.

It is worth noting that the feasibility domain is defined

in the same way for any dynamical model for which the

feasible equilibrium point can be described by a linear

equation, i.e., r = aN*. The Lotka-Volterra model is the

classical example of such a model, but a large class of

competition models can be described in this way, includ-

ing models with saturating effects of each additional

competitor, the discrete time Lotka-Volterra model, and

even the seed banking annual plant competition model.

In the next sections, we illustrate our structural

approach with the Lotka-Volterra model. However, in

Appendix S4 we summarize models to which our struc-

tural framework can be applied; explain how the feasi-

bility domain can be computed; and show how the

stability constraints of a feasible equilibrium can be

studied. Note that for the majority of population mod-

els, the strongest condition of stability that one can

derive is local asymptotic stability. However, this does

not preclude us from applying the structural framework

to find the necessary conditions for species coexistence

(feasible solutions) in different models. The conditions

for stability then remain under the scope and limits of

the research question.

CONDITIONS FORCOEXISTENCE IN ATWO-SPECIES SYSTEM

Here we show how one can derive structural measures

that parallel algebraic metrics of niche and fitness differ-

ences for understanding pairwise coexistence. The struc-

tural analog of the niche difference, what we call Ω,

corresponds to the normalized solid angle of the cone

describing the feasibility domain. This normalization is

done such that when the cone of feasibility covers the

entire set of positive growth rates (the entire quadrant

shown in Fig. 2A), the solid angle equals one (Ω = 1).

Note that the absolute magnitude of the growth rates

does not change the angle. This gives a probabilistic

interpretation to the structural analog of the niche dif-

ference, i.e., it corresponds to the fraction of positive

intrinsic growth rate vectors leading to feasible solutions

when sampling uniformly with a fixed norm (e.g., the

vector shown in Fig. 2A) (Svirezhev and Logofet 1983,

Logofet 1993, Saavedra et al. 2016a). The structural

analog of the fitness difference, what we called h, corre-

sponds to the extent to which the vector of intrinsic

growth rates (r) deviates from the centroid of the domain

of feasibility. This deviation is computed by the angle

between the centroid of the feasibility domain, what we

called rc, and the actually observed vector of intrinsic

growth rates. Thus, the centroid of the feasibility domain

corresponds on average to the best set of intrinsic growth

rate values that can tolerate small random changes

without pushing any of the species to extinction

(Rohr et al. 2014, 2016, Saavedra et al. 2014). Fig. 3A

shows a graphical representation of the structural

analogs of the niche and fitness differences for two

species.

Mathematically, the normalized solid angle (Ω) is

computed as follows:

XðaÞ ¼
2

p
arcsin

a11a22 � a12a21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a211 þ a221

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a212 þ a222

q

0

B
@

1

C
A (7)

and the centroid of the feasibility domain is defined by

the following vector:
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rc ¼
1

2

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a211 þ a221

q
a11

a21

� �

þ
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a212 þ a222

q
a12

a22

� �

0

B
@

1

C
A: (8)

Similarly, analogous to the fitness difference, the devi-

ation (measured in degree) between a given vector of

intrinsic growth rates r (i.e., that observed in nature),

and that which maximizes the likelihood of a feasible

solution rc is computed based on the scalar product of

the two vectors

h ¼ arccos
r � rc

krk � krck


 �

: (9)

Therefore, following a structural approach, the feasi-

bility conditions of two competing species will be ful-

filled when the vector defining the intrinsic growth rates

of species falls inside the feasibility domain, i.e., when

the structural analog of the fitness difference (h) is small

enough relative to the structural analog of the niche dif-

ference (Ω). Specifically, these feasibility conditions will

be guaranteed as long as h < 45 � Ω (taking h as degree).

Fig. 3B illustrates this inequality, which is qualitatively

in line with Modern Coexistence Theory’s notions

(Chesson 2000) of niche and fitness differences for

species coexistence. In general, the figure shows that the

higher the structural analog of the niche difference (Ω),

the higher the tolerated structural analog of the fitness

difference (h) leading to feasible solutions. Note that in

this two-species case, the global stability conditions only

depend on the matrix of competition coefficients a and

are fulfilled when a12a21 < a11a22.

EXTENSION TO MULTISPECIES COEXISTENCE

The power of the structural approach is that it is read-

ily extended to n species, and thereby includes and quan-

tifies the contribution to coexistence of the indirect

interactions that emerge in systems of three or more

competitors. To do so, as in the two-species case, we

need to study the set of intrinsic growth rates compatible

with the feasibility of equilibrium points of the system

given by a matrix of competition coefficients a. The two-

species deasibility domain (Eq. 5) can easily be extended

to n-species. As in the two-species case, we assume that

the feasible equilibrium of the dynamical system is the

solution of a linear system (r = aN*). This framework

can be extended to other population models, such as the

seed banking annual plant model (see Appendix S4).

The feasibility domain for an n-species community, can

be written as
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FIG. 3. Structural analogs of the niche and fitness differences defining two-species coexistence. Panel A shows the structural
analogs of the niche difference (Ω) and fitness difference (h) for an arbitrary matrix of competition coefficients a fulfilling global
stability conditions (see Appendix S3). The green lines define the border of the feasibility domain. The normalized solid angle Ω

between these two green lines corresponds to the structural analog of the niche difference. The brown vector (r) corresponds to a
given set of intrinsic growth rates, the dashed orange line corresponds to the centroid of the cone (rc), and the angle (measured in
degree) between the centroid and the vector of intrinsic growth rates corresponds to the structural analog of the fitness difference.
Panel B corresponds to the analysis of two-species coexistence following the structural approach. The bottom green region corre-
sponds to the area of coexistence. [Color figure can be viewed at wileyonlinelibrary.com]

476 SERGUEI SAAVEDRA ET AL. Ecological Monographs
Vol. 87, No. 3



DFðaÞ ¼ r 2 Rn
[ 0, such that a�1r[ 0

� 
: (10)

Writing the elements of the interaction strength matrix

a into column vectors, we obtain

a ¼

a11 � � � a1n

.

.

.
.
.

.
.
.
.

an1 � � � ann
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7
5 ¼
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.

v1 v2 vn
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5

(11)

and the elements of the feasibility domain are explicitly

given by all the positive linear combinations of these col-

umn vectors. Thus, the feasibility domain can be rewrit-

ten in the form

DFðaÞ ¼
�
r ¼ N�

1v1 þN�
2v2 þ � � � þN�

nvn;

with N�
1[ 0;N�

2[ 0; ;N�
n[ 0


:

(12)

This domain is the conical hull made by the positive

combinations of the vectors v1, v2, . . ., vn forming the col-

umns of the matrix of competition coefficients a. Geo-

metrically, such a domain is called an algebraic cone. In

Fig. 4, this algebraic cone is represented by the volume

formed by the column vectors of a given matrix of compe-

tition coefficients a (green lines). Therefore, the structural

analogs of the niche and fitness differences for n-species

coexistence can be calculated in a similar fashion as in the

two-species case. The structural analog of the niche differ-

ence (Ω) corresponds to the normalized solid angle of the

cone describing the feasibility domain. As for two species,

the normalization is done such that in the absence of

interspecific competition (aij = 0 for all species i 6¼ j) the

structural analog of niche difference is equal to one.

The structural analog of the fitness difference (h) cor-

responds to the angle between the vector of intrinsic

growth rates r and the centroid of the cone defining the

feasibility domain (rc). Feasible solutions will be granted

as long as the vector of growth rates is inside the cone

defining the domain of feasibility. As in the two-species

case, the structural analog of the niche difference Ω in

the general n-species case gives the probability of feasible

solutions. Note that in n-dimensional systems, the struc-

tural analog of fitness difference is inherently a commu-

nity-level measure, while in MCT it is a pairwise

measure even when averaged over multiple invader–resi-

dent pairings. See Discussion and Appendix S5 for a

detailed comparison between the structural approach

and MCT).

The mathematical expressions of these quantities are

the following:

XðaÞ ¼
j detðaÞj
n
ffiffiffiffiffiffiffiffi

p=2
p

Z

� � �

Z

R
n
� 0

e�x
T
a
T
axdx: (13)

rc ¼
1

n

v1

kv1k
þ

v2

kv2k
þ � � � þ

vn

kvnk


 �

(14)

h ¼ arccos
r � rc

krk � krck


 �

: (15)

The mathematical derivation, as well as the numerical

evaluation, of the structural analog of niche difference Ω

are provided in Appendix S6. Note that Svirezhev and

Logofet (1983) have already developed a similar formula

to compute the normalized solid angle of the feasibility

domain for competition systems (see also Saavedra et al.

2016a). Their formula estimated the proportion of the

feasibility domain intersecting the unit simplex, and can

be interpreted as a normalized solid angle in what is

called the topology L1. Note that a unit simplex is the

generalization of a triangle with unit area to n dimen-

sions. The R code for computing the structural niche

and fitness difference is provided on Dryad (Saavedra

et al. 2017).

It is worth recalling that the feasibility condition, in

and of itself, is a necessary but insufficient condition for

persistence or permanence and therefore coexistence (see

Appendix S2). Assuming the feasibility conditions are

satisfied, the global stability of the feasible equilibrium

point is a sufficient condition of coexistence. In dimen-

sion 2, the global stability condition is trivial (Case

2000), but it may become very difficult in dimension n.
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FIG. 4. Illustration of the structural approach for multi-
species coexistence. For an arbitrary positive-definite matrix of
competition coefficients a with three competing species, the fig-
ure illustrates the structural analogs of the niche Ω and fitness
differences h. The coordinates in the figure correspond to the
parameter space of intrinsic growth rates. The structural analog
of the niche difference is the solid angle (Ω) of algebraic cone of
feasibility, under which the community can sustain stable and
feasible solutions. This cone is delimited by the column vectors
of the matrix of competition coefficients a. The structural ana-
log of the fitness difference corresponds to the angle (h) between
any observed vector of intrinsic growth rates r (brown solid vec-
tor) and the centroid of the feasibility domain rc (dashed line).
[Color figure can be viewed at wileyonlinelibrary.com]
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These types of conditions have been intensively investi-

gated for linear and non-linear Lotka-Volterra models

(Svirezhev and Logofet 1983, Logofet 1993, 2005,

Takeuchi 1996). We summarized these stability condi-

tions in Appendix S3 and then we explain how they can

be applied to several population dynamical models in

Appendix S4.

As mentioned above, the feasibility domain is geomet-

rically represented by a cone. To simplify this geometric

representation, we can draw one of its sections by pro-

jecting it on the unit simplex (Svirezhev and Logofet

1983, Logofet 1993). For instance, in the two-species

case this projection is given by a line (Fig. 5A). The gray

line represents the full domain of the parameter space of

intrinsic growth rates, but normalized such that their

sum is equal to one (projection on the unit simplex).

Each ending of the gray line represents the case where

only one species has an intrinsic growth rate of 1. In

turn, the green line represents the projection of the cone

defining the feasibility domain on the unit simplex. The

two green dots and the orange dot correspond to the

two green lines and the orange line of Fig. 3A, respec-

tively. Therefore, they define the borders and the cen-

troid of the feasibility domain on the geometric

projection, respectively.

This geometric projection on the unit simplex can be,

in a similar way, extended to n species. Fig. 5B and C

provide an illustration for the case of three and four spe-

cies. In the case of three species, the unit simplex is repre-

sented by the gray triangle and the feasibility domain is

represented by the inner green triangle. For four species,

the unit simplex is represented by a pyramid (gray) with

triangular faces, and the feasibility domain by an inner

green pyramid. In these two cases, as in the two-species

case, the green dots represent the extreme borders of the

feasibility domain, and the orange dot corresponds to

the centroid. The R code for reproducing the figures is

provided on Dryad (Saavedra et al. 2017)

DISENTANGLING THE SOURCES OF COEXISTENCE

As mentioned in the introduction, one of longest-

standing questions in community ecology concerns the

importance for coexistence of indirect interactions that

emerge when pairwise interactions are embedded into a

network of competitors (Yodzis 1988, Wootton 1993,

Billick and Case 1994). A central challenge has been dif-

ferentiating the effects of pairwise interactions from

those emerging from the indirect effects generated in the

population dynamics of multispecies systems. While the

indirect effects of competitors, as emerge in rock-paper-

scissors competitive dynamics, have been studied under

a game theoretical approach (Kerr et al. 2002, Allesina

and Levine 2011) and partly determine the stability

properties of the community matrix (Case 1990), it has

remained unclear how to embed these population

dynamics into metrics that show their influence on the

potential for coexistence, such as the stabilizing niche

difference.

Our basic approach for evaluating the contribution of

interaction chains to coexistence (i.e, how much of the

conditions for community coexistence is due to indirect

competitive effects vs. pairwise niche differences)

involves two steps. First, the structural approach is used

to calculate the feasibility domain of a community, what

we denoted by DF. Note that this feasibility domain is

the region of intrinsic growth rates compatible with the

coexistence of n species as defined by the matrix of com-

petition coefficients. Second, the structural approach is

used to identify the region of intrinsic growth rates com-

patible with the coexistence of each pair of species, what

we denote by Dij. In turn, the intersection of all the

FIG. 5. Geometric projection of the cone defining the feasibility domain. For arbitrary, positive-definite, interaction strength
matrices a, Panels A–C illustrate the geometric projection of the feasibility domain on the unit simplex for two, three, and four spe-
cies, respectively. These projections give an easier geometric representation of the feasibility domain. The unit simplex is defined by
the set of all positive intrinsic growth rates that sum to one. In each panel, each of the extremes on the line corresponds to the case
where one species has an intrinsic growth rate of 1 and the others have an intrinsic growth rate of zero. In the middle of each line,
the two corresponding species have the same intrinsic growth rate of 0.5. In the two-species case, this geometric projection corre-
sponds to a line, in the three-species case corresponds to a triangle, and in the four-species case corresponds to a pyramid. [Color
figure can be viewed at wileyonlinelibrary.com]
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pairwise feasibility domains corresponds to the region of

intrinsic growth rates compatible with the coexistence of

all pairs, what we denote by Dall = D12 ∩ D13 ∩ . . .

∩ D1S ∩ . . . ∩ DS�1,S, but not necessarily the same as

the simultaneous coexistence of all competitors DF.

We illustrate this approach for the coexistence of three

species based on an arbitrary and globally stable three-

species competition system given by the positive definite

matrix

a ¼
1 0:4 0:3
0:5 1 0:6
0:05 0:5 1

2

4

3

5 in Fig. 6:

The feasibility domain for the pair formed by species 1

and 2 (D12) is represented by the green inner triangle

(Fig. 6A). This feasibility domain corresponds to the set

of vectors of growth rates over which species 1 and 2 will

coexist assuming species 3 is absent. Away from the

bottom axis of the simplex, species 3 has positive growth

and is therefore present in the system. However, in these

projections of purely pairwise coexistence, the ratio of the

growth rates of species 1 and 2 compatible with their

coexistence is independent of the effects of species 3.

Hence, with increasingly greater growth of species 3

(moving upward in Fig. 6A), a green triangle is drawn

that retains the ratio of species 1 and 2’s growth rates

compatible with their coexistence. This pairwise feasibility

domain can then be illustrated for all three species pairs,

as in Fig. 6B. The intersection of the three green inner tri-

angles (the darkest green area) gives the domain of coex-

istence for all pairs (Dall), i.e., each pair of species can

coexist in the absence of the third species. Importantly

however, and consistent with predictions from algebraic

approaches (e.g., Case 1990), the intersection of the three

pairwise feasibility domains does not properly predict the

conditions for three-species coexistence (see Fig. 6C).

The different set of growth rates compatible with the

FIG. 6. Community vs. pairwise effects on coexistence. Panel A depicts the feasibility domain of the pair formed by species 1
and 2 (D12). If one chooses a vector of intrinsic growth rates inside the green triangle, then in absence of species 3, species 1 and 2
will coexist. Panel B shows the three domains of feasibility for each pair of species (Dij). Note that if one chooses a vector of intrinsic
growth rates at the intersection of these three domains, then any pair of species will coexist in the absence of the third species (Dall).
Panel C shows the domain of feasibility of the three species together (DF). Panel D shows the overlap between the domain of feasi-
bility of the triplet (DF) with the pairwise domains (Dall). This is depicted by scenario (i). It can also be seen that pairwise coexis-
tence does not automatically imply triplet coexistence (ii), and vice versa (iii).The difference between these two domains is indicative
of the importance of indirect interactions for multispecies coexistence. [Color figure can be viewed at wileyonlinelibrary.com]
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coexistence of all pairs (Dall) vs. the coexistence of the tri-

plet (DF) is visualized by overlaying the two feasibility

domains (see Fig. 6D).

Our example (Fig. 6D) identifies three regions of com-

munity dynamics with a different match between pair-

wise coexistence (Dall) and the full community

coexistence (DF): (i) all pairs show coexistence as does

the triplet (the region of overlap, Dall ∩ DF 6¼ ∅); (ii) all

pairs show coexistence but not the triplet (the region of

Dall not overlapping with DF); (iii) not all pairs show

coexistence but the triplet does (the region of DF not

overlapping with Dall). Importantly, these cases illustrate

the varying effects that indirect effects among competi-

tors can have on coexistence. These indirect effects can

create conditions for coexistence that do not otherwise

occur with purely pairwise mechanisms (as in iii), they

can constrain coexistence (as in ii), or they can have no

effect on the qualitative outcome of competition (as in i).

The example in Fig. 6, where the feasibility domain

for the full community (DF) is only partially the same as

that predicted by the intersection of pairwise coexistence

(Dall) proves to be just one of three general cases. The

first general case is that in which the n-species feasibility

domain may lie entirely within the feasibility domain

predicted by the coexistence of all pairs (Fig. 7A), as

occurs with the globally stable matrix defined by interac-

tion coefficients

a ¼
1 0:4 0:5
0:5 1 0:6
0:4 0:5 1

2

4

3

5:

In this case, the indirect interactions emerging in the

three-species system contract the conditions for coexis-

tence relative to that predicted by pairwise mechanisms

alone. For instance, if the set of intrinsic growth rates is

located anywhere inside the dark region (e.g., orange

point), species in all the three pairs and the triplet will

coexist.

The second general case is that shown in Fig. 7B (the

same network is shown in Fig. 6), where there is partial

overlap between the feasibility domain of the entire com-

munity and that of pairwise coexistence. Importantly,

even though the two feasibility domains are of roughly

comparable area, the indirect interactions in this case

cause three species coexistence to require different com-

petitor growth rates than the coexistence of all pairs. For

instance, if the set of intrinsic growth rates is located at

the orange point (inside the region of overlap), the spe-

cies in all the pairs and the triplet will coexist. However,

if the set of intrinsic growth rates is located at the red

point (outside the region of overlap), then we can

observe triplet coexistence but not the coexistence of the

pair formed by species 2 and 3.

The third general case is that in which there is no over-

lap between the feasibility domain of the entire commu-

nity and that of pairwise coexistence. This is exemplified

by Fig. 7C, where the interaction coefficients

a ¼
1 1:5 0:1
0:1 1 0:6
1:6 0:5 1

2

4

3

5

produce a rock-paper-scissors competitive loop. In this

example, the feasibility domains for all three pairs do

not overlap and thus there exists no set of growth rates

that allow all pairs to coexist (Dall = ∅). If one chooses

a vector of intrinsic growth rates in the middle of the

darker region (red point), species 3 outcompetes species

2 in absence of species 1 (the point is outside of the

Sp. 1Sp. 2

Sp. 3

Sp. 1

A

Sp. 1Sp. 2

Sp. 3

Sp. 1

B

Sp. 1Sp. 2

Sp. 3

Sp. 1

C

FIG. 7. Three general cases of community and pairwise coexistence. Panel A shows an example where the feasibility domain of
the triplet (DF) is completely inside the pairwise coexistence domain (Dall). If the vector of intrinsic growth rates is located at the
orange dot, each pair coexists in isolation and the three species can coexist. Panel B shows the case where pairwise (Dall) and com-
munity coexistence (DF) do not fully overlap. The orange dot corresponds to the scenario describe in Panel A, whereas the red dot
corresponds to a scenario where the triplet coexists, but not species 2 and 3 in isolation. Panel C corresponds to a rock-paper-scis-
sors case. This figure shows a community in which the feasibility domain of the three pairs do not intersect (Dall = ∅). If we choose
the vector of intrinsic growth rate at the red dot, we obtain a rock-paper-scissors dynamic, i.e, each species is out-competed by
another species in absence of the third. [Color figure can be viewed at wileyonlinelibrary.com]
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pairwise region described by the left side of the outer tri-

angle, and closer to species 3), species 1 outcompetes

species 3 in absence of species 2 (the point is outside of

the pairwise region described by the right side of the

outer triangle, and closer to species 1), and species 2 out-

competes species 1 in absence of species 3 (the point is

outside of the pairwise region described by the bottom

side of the outer triangle, and closer to species 2).

Nonetheless, the feasibility domain for the full three-spe-

cies systems is not empty, indicating that the indirect

interactions caused by the rock-paper-scissors competi-

tive structure increase the opportunity for coexistence.

To quantify the contribution to coexistence of indirect

interactions only emerging with more than two competi-

tors, one can calculate a pair of related metrics. The first

metric, what we call community-pair differential (D),

quantifies the degree to which coexistence is more or less

easily obtained with the inclusion of indirect effects only

emerging with more than two species. Specifically, one

can calculate the difference in the size of the feasibility

domain for the full n-species community vs. that allow-

ing the coexistence of all pairs. Mathematically, this is

given by D = Ω - Ωall, where Ω is the structural analog

of niche difference and Ωall is the fraction of intrinsic

demographics compatible with the coexistence of all

pairs in the community. We calculated Ωall using a simple

Monte Carlo approach by randomly sampling vectors of

intrinsic growth rates uniformly on the sphere (R code

provided on Dryad; Saavedra et al. 2017). Note that this

metric can only take values between [ - 1, 1]. A positive

value indicates greater opportunities for coexistence in

the full community (as in Fig. 7C), a negative value indi-

cates less opportunities for coexistence (as in Fig. 7A).

In other words, a positive value of community-pair dif-

ferential indicates that indirect interactions promote

more opportunities of coexistence as it would be

expected from the intersection of pairwise niche differ-

ences, and vice versa for negative values.

The community-pair differential, however, tells us

nothing about the degree to which the pairwise mecha-

nisms actually explain the coexistence of all n species,

i.e., the degree to which the two feasibility domains over-

lap. Thus, the second metric, what we call community-

pair overlap (x), involves calculating the proportion of

the feasibility domain for the entire community (DF)

that lies inside the feasibility domain under which all

pairs coexist (Dall). We calculated x following the same

Monte Carlo approach used for the previous metric

(code in R provided as Supplemental Material). This

metric can only take values between [0, 1]. The smaller

the value, the more the coexistence of the n-species

requires demographic rates different than those allowing

pairwise coexistence. In other words, the smaller the

value, the stronger the importance of indirect interac-

tions for species coexistence. For instance, a value of one

would indicate complete overlap as in the case shown in

Fig. 7A, whereas a value of zero would indicate no over-

lap as in the case of Fig. 7C.

In sum, these two metrics evaluate whether the coexis-

tence of all n-species is more easily obtained than the

equivalent coexistence for all pairs of n species (D), and

the degree to which the conditions for pairwise coexis-

tence are the same as those required for the coexistence

of all species in the community (x). Of course, the alter-

native arrangements of the feasibility domains can be

visually inspected in the three species simplex. However,

for systems with more than three species, where the feasi-

bility domains cannot be directly examined, these met-

rics are essential for evaluating the effects of indirect

interactions. Note that this approach can be applied to

any competition matrix regardless of its stability proper-

ties (with its corresponding dynamical interpretation).

Both the community-pair differential and the commu-

nity-pair overlap describe regions of the feasibility

domain, which correspond to the necessary conditions

for species coexistence.

QUANTIFYING THE SOURCES OF COEXISTENCE

IN A FIELD SYSTEM

To illustrate how the structural approach can quan-

tify the extent to which indirect effects influence coexis-

tence in nature, we applied our methods to a field

system of annual plant competitors occurring on ser-

pentine soils. In prior work (Godoy et al. 2014, Kraft

et al. 2015), we have quantified the pairwise interac-

tions between 18 annual plant species in experimental

gardens established in the field in California, USA. We

did so by establishing a density gradient of each com-

petitor, and sowing all competitors as focal individuals

into that density gradient. We then fit relationships

between the fecundity of the focal individuals and the

density of a surrounding competitor to estimate each

pairwise interaction coefficient. In addition, we quanti-

fied all key demographic rates for the 18 species (germi-

nation, survival of ungerminated seeds, and innate

fecundity), which in combination with the fitted inter-

action coefficients (a), can be used to parameterize a

standard model of competing annual plants with a seed

bank (see Appendix S4). Data are provided on figshare

(Godoy et al. 2017a).

Using the fitted pairwise interactions, we formed all

possible communities of three and four species of the 18

species, and filtered (giving 27% and 6% of the total

number of triplets and quadruplets) those that generated

D-stable matrices. Note that D-stable matrices are those

that are locally stable for any feasible equilibrium point

(see Appendix S3). Recall that conditions for global

stability with this annual plant model in n-dimensional

systems are not known (Case 2000). Importantly, our

results were qualitatively the same without filtering. We

then calculated the metrics of community-pair differen-

tial (D) and community-pair overlap (x) for all D-stable

triplets and quadruplets. Thus, results correspond to

the necessary conditions for species coexistence and

D-stable systems.

August 2017 A STRUCTURAL APPROACH FORCOEXISTENCE 481



As an illustration of the empirical cases, Fig. 8 shows

the feasibility domains (projected onto a unit simplex) of

two different triplets and one quadruplet formed with

the empirically measured pairwise interactions. These

feasibility domains can be located anywhere within the

unit space of species demographic values, and can over-

lap (Fig. 8A) or not overlap (Fig. 8B) the feasibility

domain allowing for the coexistence of all pairs within

the triplet. In fact, we found that in only 11 out of 138

stable triplets (7%) the feasibility domain of the commu-

nity DF lies completely inside the intersection of all pair-

wise feasibility domains Dall. In 80% of cases DF lies

partially inside Dall, and in the other 13% of cases DF is

completely different from Dall. For empirically con-

structed quadruplets, we found that in 51 out of 81

(63%) cases DF lies partially inside Dall, and in the

remaining 37% of cases DF has no overlap with Dall.

Thus, these qualitative analyses indicate that indirect

effects among competitors frequently change the demo-

graphic rates required for coexistence. To provide a

quantitative analysis of these effects, we can apply the

community-pair differential and community-pair over-

lap measures to all these communities.

We find that the feasibility domain for the triplets and

quadruplets is most frequently of comparable size to the

domain allowing the coexistence of all pairs (D � 0;

Fig. 9A). In some cases, the opportunity for coexistence

is less than that for all pairs of species, and in modestly

more cases, the opportunity for coexistence is greater.

This suggests that indirect effects have no systematic

effect on the conditions for coexistence in triplets and

quadruplets of the studied annual plant species. A

related question is how much of the opportunity for

coexistence in the three or four-species assemblages rests

on indirect effects, i.e., demographic rates different than

those allowing the coexistence of all pairs.

Fig. 9B shows that although in the majority of cases the

feasibility domains of the triplets and quadruplets overlap

with the domains that allow all pairs to coexist (x > 0),

only in about 15% of triplets and <5% of quadruplets this

FIG. 8. Illustration of feasibility domains for triplets and quadruplets of annual plant species in a California field system. Panels
A and B show the feasibility domains for two triplets, and Panel C for a quadruplet based on the empirically measured interaction
coefficients (Godoy et al. 2014, Kraft et al. 2015). These feasibility domains are all projected on a unit simplex as shown for artifi-
cially constructed interaction matrices in Figs. 5-7. Here, the demographic rates compatible with coexistence correspond to the
seeds produced per seed lost from the system as explained in Appendix S4. The four-letter species codes correspond to Agoseris
heterophylla (AGHE), Centaurea melitensis (CEME), Hemizonia congesta (HECO), Lasthenia californica (LACA), Lotus
wrangeliensis (LOWR), Clarkia purpurea (CLPU), Navarretia atractyloides (NAAT), and Geranium carolinianum (GECA). [Color
figure can be viewed at wileyonlinelibrary.com]
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overlap is more than 0.9. In fact, the most likely commu-

nity-pair overlap is near zero (x � 0) indicating that

demographic rates allowing the coexistence of all three

species in the triplets and quadruplets are completely dif-

ferent than those allowing the coexistence of all pairs

within the communities. In these cases, coexistence at least

partly depends on indirect effects among the competitors

as the reduction of the system to a series of isolated pairs

would not give the coexistence of all species.

Overall, these results reveal that in this annual plant

community, indirect effects emerging with more than two

species can help stabilize coexistence, but these effects are

almost equally likely to harm coexistence, and in most

cases, have modest effects. Moreover, as one may antici-

pate, pairwise interactions become less reliable indicators

of species coexistence with increasing species richness.

DISCUSSION

Understanding the processes enabling the coexistence

of three or more competitors has long proven challeng-

ing because the outcome of their interaction depends on

the combined effects of pairwise coexistence mechanisms

and those emerging from the indirect interactions that

only emerge in multispecies systems (Levine 1976, Stone

1988). A major hurdle to understanding has been the

dearth of metrics that can be used to characterize oppor-

tunities for coexistence in multispecies systems. We

believe that the structural approach developed here bet-

ter positions ecologists to overcome these challenges.

The proposed structural measures of multispecies

coexistence are directly derived from the population

dynamics of the n-competing species, as can be described

by a range of continuous and discrete time models (see

Appendix S4). Different from an algebraic approach, the

structural approach allows one to compare the coexis-

tence predicted by simple pairwise interactions to that

predicted when those interactions are embedded in a net-

work of other interactions. With these metrics, ecologists

parameterizing models of competition can evaluate the

extent to which observed coexistence rests on the indi-

rect interactions that emerge when species are embedded

in competitive networks. It is important to recall that

these metrics allow us to understand the necessary (feasi-

bility) conditions for species coexistence. Sufficient con-

ditions (e.g., global stability) are very difficult to derive

for n-dimensional systems in some population dynamics

models (Logofet 1993, Hofbauer and Sigmund 1998),

but they can certainly be investigated in future research.

We would also like to stress that the approach to quan-

tifying pairwise niche differences and average fitness

differences under MCT (Chesson 2000) and the struc-

tural approach presented here are similar to one another

but not the same. The similarity lies in the fact that coex-

istence requires the (structural) fitness differences to lie

within the bounds set by the (structural) niche difference.

However, the fitness difference defined under MCT

includes species differences in their innate demographic

potential discounted by their general sensitivity to com-

petition (with details varying by model), as this determi-

nes the competitive dominant in the absence of any

stabilizing niche difference. By contrast, in the structural

approach, species differences in their sensitivity to com-

petition shift the feasibility domain and can affect its

width. Moreover, in contrast to the two-species case, mul-

tispecies coexistence cannot be predicted with structural

analogs of the niche and fitness differences only. This

arises because feasibility domains of the same extent can

FIG. 9. Quantifying the sources of multispecies coexistence in annual plant assemblages. For fitted competition coefficients
obtained in an annual plant system (Godoy et al. 2014, Kraft et al. 2015), panels A and B show the community-pair differential (D)
and the community-pair overlap (x), respectively. The community-pair differential evaluates whether the coexistence of all n species
is more easily obtained than all pairs of n species. Positive values indicate that the feasibility domain for the community (DF) is lar-
ger than the feasibility domain of pairwise coexistence (Dall). The community-pair overlap evaluates the degree to which the condi-
tions for pairwise coexistence are the same as those required for the coexistence of all the species in the community. The smaller the
value, the more the feasibility domain of the community differs from the feasibility domain allowing pairwise coexistence. [Color
figure can be viewed at wileyonlinelibrary.com]
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differ in their geometry (see Appendix S7), implying that

communities with the same likelihood of coexistence may

be robust to different directions of environmental distur-

bances (changes to the demographic rates).

Unfortunately the limitation above for multispecies

systems is not easily solved, but one possible solution

involves computing the asymmetry of the feasibility

domain to study how different drivers can change

regions of coexistence. This asymmetry can be estimated

by the variation among all the n faces of the given multi-

dimensional cone, and computed by the variance of all

the n-structural analog of niche differences generated

after independently removing each of the n species from

the community (see Appendix S7). This measure of

asymmetry may lead to a better understanding of the

dynamical relationship between a community’s toler-

ance to perturbation and changing pairwise interactions.

We acknowledge that ideally the MCT and structural

approaches would perfectly match, but the structural

approach we develop here has the advantage of being

scalable to multispecies communities, and we encourage

future work to find better analogs between the MCT and

structural approaches.

Importantly, our structural approach gives empirical

ecologists new tools to explore the controls over coexis-

tence in networks of pairwise interactions. Prior

approaches show how one can quantify the impact of

species on one another via chains of indirect interactions

(Yodzis 1988, Wootton 1993), and classic theory can be

used to evaluate how the addition or removal of species

from communities influences local stability of the multi-

species equilibrium (May 1972, Roberts 1974). But these

methods do not easily reveal the contribution to coexis-

tence of indirect effects that only emerge in multispecies

systems, as can be understood from the structural stabil-

ity metrics developed here.

Of course, using these metrics requires that empiricists

parameterize models of competition with field data, a

task that can be quite labor intensive in diverse systems.

Nonetheless, an increasing number of studies parameter-

ize competition models with information on the demo-

graphic performance of focal individuals, and their

response to variation in competitor density and identity

(e.g., Godoy et al. 2014, Chu and Adler 2015). These

parameterization should be constrained to the spatial

scale under investigation. With the structural metrics

developed here, one can then evaluate a range of prob-

lems about multispecies coexistence in field settings.

First, the structural analog of niche difference reveals

the likelihood of coexistence given different innate

growth rates for the competing species. This metric can

therefore be compared across communities in different

experimental contexts to evaluate how different factors

contribute to the robustness of coexistence. For example,

one can ask how climate warming modifies opportuni-

ties for coexistence in systems of three or more competi-

tors, and whether its effects on diversity result from

changes to the interaction coefficients or species’ innate

growth rates. Second, by quantifying how robust coexis-

tence is to variation in the growth rates of competitors,

ecologists can evaluate the variation among species pairs

in the strength of their niche differences. One can ask,

for example, how evenly distributed is niche differentia-

tion among the members of a community, revealing

whether the persistence of some species is more robust

to changing growth rates than others.

Finally, and as demonstrated here for assemblages of

annual plant species, one can evaluate how chains of

interactions among competitors contribute to, or detract

from, multispecies coexistence. As illustrated in

Figs. 6-9, this contribution or detraction can be mea-

sured by predicting the growth rates compatible with the

coexistence of all species pairs (in isolation from the rest

of the community), and comparing this region to the

growth rates compatible with the coexistence of all

species embedded in the full matrix of interaction coeffi-

cients. Based on the analysis of the annual plant system

presented here, we anticipate that many communities

should exhibit regions of separation between n-species

and pairwise coexistence, indicating a significant contri-

bution of indirect effects to possible coexistence. Further

empirical measures of interaction coefficients in other

systems are of course needed to properly test the gener-

ality of these predictions. More generally, our field

annual plant example illustrates that the structural

approach can be applied with competition models quite

different than Lotka-Volterra, and that it can be fully

parameterized with field data.

Looking ahead, we see several interesting theoretical

directions following from the work developed here. As

we have shown, one challenge that arises from mecha-

nisms of coexistence emerging in n-dimensional systems

is that the coexistence of the entire community in no way

guarantees that sub-units of that community are also

feasible and stable (Fig. 7). This raises the interesting

question of how such communities assemble from less

diverse systems (consider assembling a community with

rock-paper-scissors competition one species at a time).

Fortunately, our metrics and approach could also be

useful for understanding the most likely order of assem-

bly and disassembly in ecological communities. Each

change in the composition of a community brings

together a change in the feasibility domain, widening or

shrinking the conditions compatible with the coexistence

of all residents with a new species. In fact, previous work

has shown that during the assembly and disassembly of

ecological communities, feasibility is either maximized

or preserved through time (Saavedra et al. 2016a, b),

suggesting that the order of assembly and disassembly

might be anticipated based on the feasibility properties

of the community.

A second promising opportunity to build on the

approach developed here involves the inclusion of

higher-order interactions that emerge in species-rich

competitive systems. The insights gained from our met-

rics rest on the assumption that the interactions between
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species are fundamentally pairwise. A more holistic view

of indirect interactions in diverse competitive communi-

ties acknowledges that species can affect one another by

altering the abundance of shared competitors, but also

by modifying the per capita effect of one species on

another (Wootton 1993, Billick and Case 1994). Ecolo-

gists have limited understanding of the importance of

these higher-order interactions, in part because quantify-

ing their importance in field systems with many competi-

tors is exceedingly difficult. Thus, while our approach

focused on pairwise interactions is a useful and realistic

first step for empirical studies (Vandermeer 1969), future

theory exploring how and whether higher-order interac-

tions in multispecies systems influence coexistence would

be an important next step.
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