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A STRUCTURAL APPROACH TO SOLVING
THE 6TH HILBERT PROBLEM

UDC 519.21

YU. I. PETUNIN AND D. A. KLYUSHIN

Abstract. The paper deals with an approach to solving the 6th Hilbert problem
based on interpreting the field of random events as a partially ordered set endowed
with a natural order of random events obtained by formalization and modification
of the frequency definition of probability. It is shown that the field of events forms
an atomic generated, complete, and completely distributive Boolean algebra. The
probability distribution of the field of events generated by random variables is studied.
It is proved that the probability distribution generated by random variables is not
a measure but only a finitely additive function of events in the case of continuous
random variables (both rational- and real-valued).

Introduction

In 1900 in his lecture [1] David Hilbert formulated the problem of axiomatization of
probability theory. Here is the corresponding quote from his lecture:

“The investigations on the foundations of geometry suggest the problem:
To treat in the same manner, by means of axioms, those physical sciences
in which mathematics plays an important part; in the first rank are the
theory of probabilities and mechanics.

As to the axioms of the theory of probabilities, it seems to me desirable
that their logical investigation should be accompanied by a rigorous and
satisfactory development of the method of mean values in mathematical
physics, and in particular in the kinetic theory of gases.”

As is well known [2], there is no generally accepted solution of this problem so far.
Therefore we will try to build a structural model of the empirical probability theory, that
is, the model of the part of probability theory used in mathematical statistics as well as
in related natural and social sciences.

First, let us consider an informal description of basic concepts of the empirical prob-
ability theory, with their properties and interplay. There exist four basic notions in
modern probability theory: a random trial, a random experiment, a random event, and
the probability of a random event.

We begin this description with the notion of a random trial whose position between
other concepts is dominating: there was, there is, and there will be no probability theory
without random trials, since one cannot rigorously define probability characteristics of
random events and random variables, operations with them and any mathematical study
of stochastic phenomena without having given a rigorous definition of random trials.
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166 YU. I. PETUNIN AND D. A. KLYUSHIN

Moreover, the lack of a strict definition of a random event leads to confusion and to
absurd statements.

We interpret as a trial T any action D carried out in a system S [3, 4] implying a
certain response R. The trial T is usually identified with the action D. If the result of
repeated accomplishing of the trial T is that, based on information on the system S, one
can exactly predict the reaction R before carrying out (repeating) the trial T , the trial
is called deterministic. Otherwise, if the reaction of the system cannot be determined in
advance, before the trial is accomplished, we call it non-deterministic.

Let us give a mathematical definition of deterministic and non-deterministic trials. In
the set of actions τ incoming to the system S, in the set σ of states of the system, and in
the set R of reactions of the system, introduce a distance between its elements (actions,
states, and reactions). Therefore the sets τ , σ, and R become metric spaces. A trial T is
a function mapping each action and each state of the system to a reaction of the system
T : τ × σ → R. If this function is continuous, the trial is considered to be deterministic;
if the function is discontinuous, the trial is said to be non-deterministic.

Non-deterministic trials can be divided into two classes: random and non-random. In
order to distinguish between these two classes, we need some mathematical formalism.

Consider a trial T having two consequences: A and Ā. Introduce the following quan-
tity:

xk =

{
1 if the kth repetition of the trial T leads to the consequence A,
0 otherwise.

The numerical sequence x1, x2, . . . of zeros and ones is called a Bernoulli sequence of
order p, 0 ≤ p ≤ 1, if

lim
n→∞

hn(T, A) = lim
n→∞

1
n

n∑
k=1

xk = p.

It turns out that the knowledge of results of the one and only sequence

X = {x1, x2, . . . }

is not sufficient for a mathematical definition of a random trial. One needs to be aware of
results of a series of trials X1, X2, . . . conveniently represented by the following matrix:

Θ(T ) =

⎛⎜⎜⎜⎜⎝
x11 . . . x1n . . .
x21 . . . x2n . . .
. . . . . . . . . . . .
xn1 . . . xnn . . .
. . . . . . . . . . . .

⎞⎟⎟⎟⎟⎠ .

This matrix is called the characterization matrix of the trial T . Let

Xi = (xi1, xi2, . . . , xin, . . . )

be rows and X∗
j = (x1j , x2j , . . . , xnj , . . . ) be columns of the characterization matrix Θ(T ).

It is easy to observe that each row Xn and each column X∗
n of the matrix Θ(T )

generate real numbers αn and α∗
n belonging to the interval [0, 1]. Indeed, put

αn = 0.xn1xn2 . . . xnn . . . and α∗
n = 0.x1nx2n . . . xnn . . .

and consider these expressions as binary fractions. Denote the sets of numbers αn and α∗
n

by M and M∗, respectively.
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Definition 1. A non-deterministic trial T is called random if the following conditions
are satisfied:

1) all rows Xn and all columns X∗
n (n = 1, 2, . . . ) of the characterization matrix

Θ(T ) are Bernoulli sequences of the same order p ∈ [0, 1];
2) the sets of numbers M and M∗ generated by rows and columns of the character-

ization matrix Θ(T ), respectively, are everywhere dense in the interval [0, 1].

Definition 2. An infinite series of repetitions of a random trial T is called a random
experiment E.

Definition 3. A result R of a random trial T generating a random experiment E is
called the random event (E, R).

Remark 1. The result R can be a consequence either of A or of Ā.

Definition 4. The order p ∈ [0, 1] of a Bernoulli sequence formed by the results of a
random trial T generating a random experiment E is called the probability p(E, A) of
the random event (E, A).

Remark 2. Let us emphasize that the concept of a random event and that of the probabil-
ity of this event can only be defined given that a random experiment E is accomplished,
not a random trial T , since we need an infinite series of repetitions of the trial T .

Remark 3. Generally speaking, the analysis of randomness is carried out in practice
using finite matrices. The following criterion can be used for this purpose: a trial T is
considered to be random if

1) all rows Xi and all columns X∗
i (i = 1, 2, . . . , n) of the truncated characterization

matrix Θn(T ) are segments of Bernoulli sequences of the same order p ∈ [0, 1];
2) for any ε > 0 there exists n such that the sets of numbers Mn and M∗

n generated
by rows and columns of the truncated characterization matrix

Θn(T ) =

⎛⎝x11 x12 · · · x1n

· · · · · · · · · · · ·
xn1 xn2 · · · xnn

⎞⎠
form an ε-net on the interval [0, 1].

Definition 1 of a random trial T whose set of sample consequences is formed by two
sets A and Ā can easily be extended to random trials having any set of sample conse-
quences. Let A be a consequence of the trial T . Denote by TA a non-deterministic trial
having two sample consequences A and Ā.

Definition 5. The trial TA is called the restriction of a trial T to the events A and Ā.

Definition 6. A non-deterministic trial T is called random if any restriction of this trial
to arbitrary events A and Ā is a random trial.

Definition 7. An experiment is called pseudo-random if at least one of the sets M
and M∗ generated by rows and columns of the corresponding characterization matrix
contains a finite number of different elements.

Theorem 1. The probability that, in the Bernoulli scheme, the sets M and M∗ formed
by rows and columns of the characterization matrix Θ(T ) are everywhere dense is equal
to one.

Proof. Let us prove the theorem for the set M .
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Assume that α is an arbitrary real number of the interval [0, 1] represented in the
binary form α = 0.i1i2 . . . in . . . . Consider an arbitrarily small number ε > 0 and choose
a positive integer n0 to satisfy 1/2n0 < ε/2. Put

α̃ = 0.0 . . . 0in0+1in0+2 . . . and α̂ = α − α̃ = 0.i1i2 . . . in00 . . . 0 . . . .

Denote by A the random event consisting of the fact that the random trial T re-
peated n0 times will produce the sequence i1, i2, . . . , in0 . Assume that the sequence
i1, i2, . . . , in0 contains k ones located in some fixed positions and (n0 − k) zeros. In this
case, it can readily be seen that the probability of the event A is calculated as follows:

p(T1, T2, . . . , Tn0 , A) = pkqn0−k > 0,

where q = 1 − p. Then the probability that A does not occur is

δ = p(T1, T2, . . . , Tn0 , Ā) = 1 − p(T1, T2, . . . , Tn0 , A) < 1.

In the sequence of independent series of Bernoulli trials

i
(1)
1 , i

(1)
2 , . . . , i(1)n0

,

i
(2)
1 , i

(2)
2 , . . . , i(2)n0

,

. . .

i
(n)
1 , i

(n)
2 , . . . , i(n)

n0
,

. . .

the probability that A occurs at least once is equal to one. Indeed, the probability of the
complement of A is at most δn for any positive integer n. Therefore this probability equals
zero. Hence there exists with probability one a row of the characterization matrix Θ(T )
whose first n0 elements are i1, i2, . . . , in0 . This row defines the number ᾱ belonging to M
and satisfying

(1) |α − ᾱ| <
1

2n0+1
+

1
2n0+2

+ · · · =
1

2n0
<

ε

2
.

Let (γ, η) ⊂ [0, 1] be an arbitrary interval. Put α = (γ + η)/2 to obtain that there
exists with probability one a number ᾱ ∈ M satisfying (1); therefore ᾱ ∈ [γ, η]. Hence, in
the Bernoulli scheme E, the set M of numbers generated by rows of the characterization
matrix Θ(E) is everywhere dense in the interval [0, 1] with probability one.

The proof for the set M∗ follows similar lines. �

Remark 4. By the strong law of large numbers (the Borel theorem), the probability that
all rows Xn and all columns X∗

n, n = 1, 2, . . . , of the characterization matrix Θ(T ) in
the Bernoulli scheme are Bernoulli sequences of the same order p ∈ [0, 1] is equal to one
[5, Appendix 1, p. 125].

According to our classification, the classical Bernoulli scheme is a random experiment.
A random experiment E should be distinguished from a pseudo-random experiment

Ep.r. for which the conditions EA and EB are not satisfied. Let us consider an example
of a pseudo-random experiment. Assume that an experiment Ep.r. consists in choosing
positive integers n ≥ 2 following their intrinsic order and determining whether the num-
ber is prime or not. Denote by A the event that the number is prime. If A occurs, we
write one; otherwise we write zero. By infinite repeating of Ep.r., the following sequence
of zeros and ones is generated:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 . . .
1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 . . .
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This is a Bernoulli sequence of order 1 (by the Legendre theorem, [6]); this sequence
is irregular and non-deterministic. On the other hand, by explicitly writing the charac-
terization matrix Θ(Ep.r.), one can easily see that all rows of this matrix are identical
and therefore the set M contains the one and only number.

1. The field of events

Assume that T is a random trial and S(T ) is the set of all random events that can
occur if T is accomplished. Following the traditional definitions in classical probability
theory, one can define addition and multiplication of events in the set S(T ) as well as
complement of an event. Note that the first two operations are defined for arbitrary sets
of events. Moreover, for any event A belonging to the set S(T ), the probability p(A) is
defined. Therefore S(T ) becomes a field called the field of events S(E).

Let us emphasize that all these operations can be carried out for events belonging to the
same field of events S(E) only. It makes no sense to multiply or add events belonging to
different fields of events similar to algebra where one cannot multiply elements belonging
to different groups.

One can introduce a partial order in the field of events S(E) generated by a random
experiment E. We say that an event A implies an event B, and write

A ≤ B,

if the event A occurring as the result of E necessarily implies that B should also occur.
With this relation, the field of events S (E) becomes a partially ordered set [7]. One can
readily check that

(2) A + B = sup(A, B) = A ∨ B and AB = inf(A, B) = A ∧ B

for all events A, B ∈ S(E). Therefore addition and multiplication can be expressed in
terms of the partial order. These formulas can be extended to arbitrary sets of events:

(3)
∑
i∈J

Ai = sup
i∈J

{Ai} and
∏
i∈J

Ai = inf
i∈J

{Ai}.

Since sums and products are well defined and belong to S (E) by formula (3), the field
of events S(E) is a complete distributive lattice (structure) [7].

By the definition in [7], the complement of an element A belonging to a lattice con-
taining zero (that is, S(E) contains an element O satisfying O ≤ A for all A ∈ S(E)) is
defined as an element A′ ∈ S such that A ∧ A′ = 0 and A ∨ A′ = I. The lattice S(E) is
called a lattice containing complements if each element of the lattice has a complement.
All these properties hold for the field of events, with the impossible event taken as O,
the certain event taken as I and the negation of an event taken as the complement Ā.
Therefore S(E) is a Boolean algebra containing complements.

A complete lattice S(E) is called completely distributive [7] if it obeys two mutually
dual distributive laws: for any non-empty family of index sets Jγ , γ ∈ C, we have

(4)

∧
γ∈C

[ ∨
α∈Jγ

Xγ,α

]
=

∨
ϕ∈Φ

[ ∧
γ∈C

Xγ,ϕ(γ)

]
,

∨
γ∈C

[ ∧
α∈Jγ

Xγ,α

]
=

∧
ϕ∈Φ

[ ∨
γ∈C

Xγ,ϕ(γ)

]
,

where Xγ,α, Xγ,ϕ(γ) ∈ S(E), α ∈ Jγ , and where Φ is the set of functions defined on C
and satisfying ϕ(γ) ∈ Jγ .

Theorem 2. The field of events S(E) of an arbitrary random experiment E is a com-
pletely distributive complete Boolean algebra.
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170 YU. I. PETUNIN AND D. A. KLYUSHIN

Proof. We proved already that S(E) is a complete Boolean algebra. Let us prove that
S(E) is completely distributive. Indeed, put

X =
∧

γ∈C

[ ∨
α∈Jγ

Xγ,α

]
=

∏
γ∈C

[ ∑
α∈Jγ

Xγ,ϕ(γ)

]
,

Y =
∨

ϕ∈Φ

[ ∧
γ∈Cγ

Xγ,ϕ(γ)

]
=

∑
ϕ∈Φ

[ ∏
γ∈C

Xγ,ϕ(γ)

]
,

Xγ,ϕ(γ), Xγ,α ∈ S(E).

The random events X and Y belong to the field of events S(E) where

α ∈ Jγ , γ ∈ C, ϕ : C → Jγ , ϕ(γ) ∈ Jγ .

Assume that the random event X occurs in a random trial T whose repetitions form the
random experiment E. Then for any γ ∈ C there exists α

(γ)
0 ∈ Jγ for which the random

event X
γ,α

(γ)
0

occurs. Define a function ϕ : C → Jγ as follows: ϕ(γ) = α
(γ)
0 ∈ Jγ for all

γ ∈ C. This implies that the event∑
ϕ∈Φ

[ ∏
γ∈C

Xγ,ϕ(γ)

]
,

that is the event Y , occurs.
On the other hand, if the event Y occurs, then∑

ϕ∈Φ

[ ∏
γ∈C

Xγ,ϕ(γ)

]
occurs, too. Thus there exists a function ϕ0 ∈ Φ such that the event

∏
γ∈C Xγ,ϕ0(γ)

occurs. Let ϕ0(γ) = α
(γ)
0 ∈ Jγ . Then for all γ ∈ C the event X

γ,α
(γ)
0

occurs, and hence
for all γ ∈ C the event

∑
α∈Jγ

Xγ,α occurs. Therefore∏
γ∈C

[ ∑
α∈Jα

Xγ,α

]
= X

also occurs. This means that the event X occurs in the random trial T if and only if Y
occurs, whence we derive that X = Y .

The second extended distributive law for the Boolean algebra S(E) is proved along
similar lines. This completes the proof of Theorem 2. �

Theorem 3 (Tarski). If a complete Boolean algebra S is completely distributive, then it
is isomorphic to the algebra 2ℵ of all subsets of a set M by structures of partially ordered
spaces (or Boolean algebras) [7].

By analyzing the proof of the Tarski theorem, one can see that the set M can be taken
to be the collection of all atoms of the partially ordered space S(E) [7].

Definition 8. A set of events B = {Bi}i∈J belonging to the field of events S (E) is
called basic if the following conditions are satisfied:

1) all sets Bi belonging to B are mutually disjoint: BiBj = 0 for i �= j;
2) any event A in S(E) can be represented as a sum of events Bi belonging to B:

A =
∑
k∈K

Bik
.
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Remark 5. The set P of all atoms of S(E) is a basic set in S(E). Therefore the algebra of
events S(E) is an atomically generated Boolean algebra. In classical probability theory,
elements of the basic set S(E) are called sample points.

2. Probability distributions in the field of events

A probability distribution P(E, A) in a field of events S (E) is a function of two
arguments: the random experiment E and the random event A. However, we will assume
in the sequel that the random experiment E is fixed and therefore consider P(E, A) to
depend on A ∈ S(E) only.

By definition,

(5) P(A) = lim
n→∞

hn(A),

where hn(A) is the frequency of the event A. The probability P(A) is a finitely additive
function on S(E). Therefore it is natural to ask whether or not the function P(A) is
countably additive.

Assume that A1, A2, . . . , Ak, . . . is a sequence of mutually disjoint events belonging to
S(E). Put A =

∑∞
k=1 Ak. Since the function hn(A) is finitely additive, we have

p(A) = p

( ∞∑
k=1

Ak

)
= lim

n→∞
hn

( ∞∑
k=1

Ak

)
= lim

n→∞
lim

k→∞

( k∑
i=1

hn(Ai)
)

.

By changing the order of the limits, we would be able to prove that the probability
P(A) is countably additive:

p(A) = lim
k→∞

lim
n→∞

( k∑
i=1

hn(Ai)
)

= lim
k→∞

k∑
i=1

lim
n→∞

hn(Ai) = lim
k→∞

k∑
i=1

p(Ai) =
∞∑

i=1

p(Ai).

However, there is no reason for this change of the order of the limits (see [8]).
Therefore it is impossible to assure that a probability distribution is countably ad-

ditive. We will show in what follows that probability distributions, in general, are not
measures.

3. Random variables and their probability characteristics

The notion of a random variable is one of the most important concepts in modern
probability theory which, however, is not basic (for an axiomatic approach).

Indeed, a random variable x can be defined as a random experiment E having a
numerical basic set B(E) ⊂ R1, or B(E) ⊂ C. In this case, particular values of the
random variable x play the role of atoms of the partially ordered set S(E).

In applications of probability theory, a random variable x is conveniently interpreted
as a function defined on the basic set of the field of events S(E), since any sample point
Bi ∈ B(E) is often mapped into the numerical quantity x = x (Bi). It is easy to see that
these two definitions are equivalent.

Let us switch to studying probability distributions on the field of events generated
by values of a random variable. First, we consider random variables taking values in
the set of rational numbers Q; this is the case coming from measurements in practical
applications.

Definition 9. A random variable x is called rational-valued if it can take rational values
only.

Denote by BE(x) the set of all possible values of a rational-valued random variable x
whose values are observed in a random experiment E. We can assume that BE(x) = Q
without loss of generality. Then S(E) is formed by all possible subsets of the set Q.
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Definition 10. A rational-valued random variable x is called continuous if the distribu-
tion function Fx(u) of this variable is continuous on R1. The corresponding probability
distribution is called continuous.

Definition 11. A rational-valued random variable x is called singular if there exists a
subset Ψ = {a1, a2, . . . , an, . . . } ⊂ Q such that p (E, {an}) = pn > 0 for all n ∈ N and∑∞

n=1 pn = 1. The corresponding probability distribution is called singular.

It is easy to observe that a continuous probability distribution p (E, A) where A ∈ S(E)
corresponding to a rational-valued random variable in a fixed experiment E cannot be a
countably additive set function, but only finitely additive. Indeed, we have in this case

p (E, (α − ε, α + ε)) = F (α + ε) − F (α − ε)

for an arbitrary rational number α ∈ BE = Q and ε > 0.
Therefore

p (E, {α}) ≤ p (E, (α − ε, α + ε)) = F (α − ε, α + ε) → 0 as ε → 0.

Hence
p (E, {α}) = 0.

If we assume that p(E, A) is countably additive, then

p(E, Q) =
∑
α∈Q

p(E, {α}) = 0,

since Q is a countable set.
On the other hand, p(E, Q) = 1. This contradiction shows that the assumption that

p(E, A) is countably additive is false. Therefore the probability distribution p(E, A) on
the field of events S (E) is not a measure.

Theorem 4. Assume that F (u) is an arbitrary continuous distribution function on R1.
Then there exists a random experiment E whose basic set (sample space) is BE = Q and
whose probability distribution p(E, A), A ⊂ Q, is such that

(6) p
(
E, Q(−∞,u]

)
= F (u),

for all u ∈ R1, where Q(−∞,u] = Q ∩ (−∞, u].

Proof. The random experiment E mentioned in the theorem is obtained by repeating the
random trial consisting in choosing at random an element from the set Q according to the
probability distribution p(E, A) satisfying condition (6). Therefore the main difficulty of
the proof is to show that this probability distribution exists. The proof of this assertion
is based on results in the theory of partially ordered vector spaces [9].

Recall that a vector space V is called a K-lineal if a class of positive elements x > θ
is defined in V where θ denotes the zero element of the space V . We use this class to
introduce an order relation x > y ⇔ x − y > 0 satisfying the following axioms:

1. If x > θ, then x �= θ.
2. If x > θ and y > θ, then x + y > θ.
3. For two arbitrary elements x, y ∈ V there exists sup {x, y} = x ∨ y.
4. If x > θ and λ > 0 is a number, then λx > θ.

Consider the vector space V (Q) of all bounded functions defined on the set Q:

V (Q) = {f(r), r ∈ Q, |f(r)| ≤ c}.
It is easy to see that V (Q) is a K-lineal if the set of all non-negative functions f(r) ≥ 0

for all r ∈ Q, with some r0 ∈ Q such that f(r0) > 0, is interpreted as the class of positive
elements.
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A subset W of a K-lineal V is called majorizing with respect to V [9] if for all f ∈ V
there exists f∗ ∈ W satisfying |f | ≤ f∗. Choose a majorizing set W ∗ in V in the following
way: consider the class K∗ of all finite (a, b] and infinite (−∞, b] half-closed intervals,
and the infinite interval (−∞,∞) = R1. Let W ∗ be the set of all characteristic functions
of intervals (a, b] ∈ K∗:

χ(a,b](r) =

{
1 if r ∈ (a, b], r ∈ Q,

0 if r /∈ (a, b], r ∈ Q,

and of their linear combinations. Then W ∗ is a linear subset of the K-lineal V (Q);
moreover, it is a majorizing set. Indeed, one can take as f∗(r) the function

f∗(r) ≡ sup
r∈Q

|f(r)| ≤ c.

Denote by Θ the subset of W ∗ formed by the functions χ(−∞,u](r) and χ(−∞,∞)(r)
where r ∈ Q, u ∈ R1. It is easy to see that the system of functions Θ is linearly
independent and the vector subspace generated by this set coincides with the linear
subset W ∗, so that Θ is an algebraic basis in W ∗. On each basic element χ(−∞,u](r), we
define a functional Φ(t) as follows:

Φ
(
χ(−∞,u](r)

)
= F (u)

and extend this functional to the vector space W ∗ by linearity:

Φ
( n∑

k=1

ckχ(−∞,uk]

)
=

n∑
k=1

ckF (uk), uk �= ui, i �= k.

It is clear that

Φ
(
χ(a,b](r)

)
= Φ

(
χ(−∞,b](r)

)
− Φ

(
χ(−∞,a](r)

)
= F (b) − F (a).

By definition, the functional Φ is linear on the linear subset W ∗. Let us show that
this functional is also non-negative. Indeed, each function f(r) ∈ W ∗ can be represented
as follows:

f(r) =
n∑

k=1

ckχ(ak,bk](r),

where one of the numbers ak can be equal to −∞. Without loss of generality, we assume
that (ai, bi] ∩ (ak, bk] = ∅ for i �= k. It is easy to see that f(r) ≥ 0 if and only if ck ≥ 0.
Then

Φ(t) =
n∑

k=1

ckΦ
(
χ(ak,bk](r)

)
=

n∑
k=1

ck(F (bk) − F (ak)) ≥ 0.

By the Kantorovich theorem [9], the non-negative additive functional Φ(f), f ∈ W ∗,
defined on the linear subset W ∗ majorizing V (Q), can be extended to the whole of the
K-lineal V (Q); the extended functional will still be additive and non-negative. Denote
this extension by Φ̃(f), f ∈ V (Q). This functional defines a finitely additive function on
the set of all subsets A ⊂ Q:

p(E, A) = Φ̃(χA(r)).

Indeed, assume that A =
⋃n

k=1 Ak, Ak ⊂ Q, Ak ∩ Ai = ∅, i �= k. Then

χA(r) = χ⋃n
k=1 Ak

(r) =
n∑

k=1

χ
Ak

(r).
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Therefore

p(E, A) = Φ̃
(
χA(r)

)
= Φ̃

( n∑
k=1

χAk
(r)

)
=

n∑
k=1

Φ̃
(
χAk

(r)
)

=
n∑

k=1

p(E, Ak).

Furthermore, since the functional Φ̃(f) is non-negative, we have for all A ⊂ Q,

p(E, A) = Φ̃
(
χA(r)

)
≥ 0,

taking into account that χA(r) ≥ 0. Moreover, the function p(E, A) is additive and
therefore monotone. Hence for all A ⊂ Q,

0 ≤ p(E, A) ≤ p(E, Q) = 1

since p(E, Q) = Φ
(
χR1 (r)

)
= 1.

Thus we have extended the set function

p(E, (a, b]) = Φ
(
χ(a,b](r)

)
= F (b) − F (a)

defined on all half-closed intervals (a, b] in Q to the class of all subsets A ⊂ Q. The
extended function takes values in the interval [0, 1] and is finitely additive. Therefore
this function is a probability distribution on the field of events S(E). Theorem 4 is
proved. �

Remark 6. A rational-valued random variable satisfying the assumptions of Theorem 4
generates a probability distribution that is not countably additive and cannot be inter-
preted as a measure on a σ-ring of sets.

We emphasize that practical applications of probability theory are concerned with
rational-valued random variables only, since an irrational number having an infinite num-
ber of decimals with an unknown regularity is an abstraction.

A continuous analog of Theorem 4 holds.

Theorem 5. Assume that F (u) is an arbitrary distribution function concentrated on the
interval [a, b]:

F (u) =

{
0 if u ≤ a,

1 if u ≥ b.

Then there exists a random experiment E whose numerical basic set is BE = [a, b] and
which generates the probability distribution p(E, A) on all subsets A ⊂ [a, b]. Moreover

(7) p(E, (a, u]) = F (u)

for u ∈ (a, b).

Proof. The random experiment E consists in choosing an element in [a, b] at random
according to the probability distribution p(E, A) satisfying (7). The proof that this
distribution exists is based on the following arguments.

Consider the vector field V [a, b] of all bounded functions defined on the interval [a, b]:

V [a, b] = {f(t) : t ∈ [a, b], |f(t) ≤ c|} .

It is easy to see that V [a, b] is a K-lineal if the set of all non-negative functions f(t) ≥ 0
for all t ∈ [a, b] and such that there exists t0 ∈ [a, b] satisfying f(t0) > 0 is taken as the
set of positive elements. As the majorizing subset W ∗ of the K-lineal V [a, b], we take
the set of linear combinations of the indicators

χ(α,β](t) =

{
1 if t ∈ (α, β],
0 if t /∈ (α, β], (α, β] ⊂ [a, b],
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of all half-closed intervals in [a, b] and the indicator of the interval [a, b]. Then the subset
Θ ⊂ W ∗ formed by the functions χ(a,u](t), u ∈ (a, b], and χ[a,b](t) is linearly independent
and the vector space generated by the set Θ coincides with the linear subset W ∗. There-
fore Θ forms an algebraic basis in W ∗. Define a functional Φ(u) on each basic element
χ(a,u](t) as follows:

Φ(χ(a,u](t)) = F (u)
and extend this functional to the whole of the vector space W ∗ by linearity. As was
already done in the proof of Theorem 4, it is easy to check that the extended functional
is also non-negative. Furthermore, the functional Φ(t), t ∈ W ∗, is extended by the
Kantorovich theorem (see [9]) to the whole of the K-lineal V [a, b]; the latter extension is
still additive and non-negative. This extension Φ̃(t), t ∈ V [a, b], of the functional Φ(t),
t ∈ W ∗, defines an additive non-negative function

p(E, A) = Φ̃ (χA(t))

on the set of all subsets A ⊂ [a, b]. Here, χA(t) is the characteristic function of the set A.
The function p(E, A) is the required probability distribution on the field of events S(E).
Theorem 5 is proved. �
Remark 7. Under the assumptions of Theorem 5, the probability distribution generated
by a continuous function F (u) is not a measure.

Indeed, assuming the contrary we obtain a measure defined on all subsets of the
interval [a, b], with the property that the measure of a one-point set equals zero. This
contradicts the classical Ulam theorem [10] stating that, under the continuum hypothesis
(or under the following weaker hypothesis: no cardinal number less than or equal to the
continuum is weakly inaccessible) the above-mentioned measure is identically zero.

The fact that a probability distribution is always countably additive (as is assumed in
the A. N. Kolmogorov model) has already been the matter of doubt of earlier researchers
(de Finetti [11], Kac [12], and others), but no strict proof has been given. Theorems 4
and 5 imply that probability distributions generated by random variables (both rational-
and real-valued) are not countably additive.

4. The notion of independence in the framework of structural approach

Two cases are of fundamental importance for studying the independence of random
events and random experiments:

1) events A and B occur in the same random trial;
2) events A and B occur in two different random trials T1 (where the event A occurs)

and T2 (where the event B occurs).
In case 2), the trials may coincide, that is, T1 = T2 = T ∗. A trial is considered to be
accomplished if an event being a result of this trial occurs.

We consider case 1) first. In this case, there is no importance to what event occurs
first. Therefore we say that the event A is independent of the event B if the information
on whether the event B occurs or not does not affect the probability of the event A.
Otherwise, the event A is supposed to depend on B. The conditional probability of the
event A in the experiment E generated by repeating the trial T is denoted by p(E, A | B).
Then the fact that the event A does not depend on B can be written as follows:

p(E, A | B) = p(E, A | B̄).

Theorem 6. Assume that E is a random experiment and let A and B be random events
that can occur when E is accomplished. The random event A is independent of B if and
only if

p(E, A | B) = p(E, A).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



176 YU. I. PETUNIN AND D. A. KLYUSHIN

Corollary. Events A and B are independent if and only if

(8) p(E | AB) = p(E | A)p(E | B).

Therefore formula (8) can be viewed as a definition of independent random events
belonging to the same field of events.

Let us now switch to analyzing the notion of independence of two events belonging
to two different fields of events S(E1) and S(E2) generated by random experiments E1

and E2, respectively. Assume that the random trial T1, generating the random experi-
ment E1, is accomplished before the trial T2 generating E2 is. Then the random trials T1

and T2 can be combined to form a compound experiment E = (E1, E2) if we agree to
write first the trial T1 that is accomplished first.

The order of appearance of the trials T1 and T2 is very important for the compound ex-
periment since the fields of events S(E) and S

(
Ẽ

)
, where E = (E1, E2) and Ẽ = (E2, E1),

are Cartesian products of the fields S(E1) and S(E2) (S(E2) and S(E1), respectively).
If we consider an isomorphism ϕ between these fields defined by the formula

ϕ(A, B) = (B, A),

where A ∈ S(E1) and B ∈ S(E2), the compound experiments E and Ẽ can generate
probability distributions on the corresponding random fields S(E) and S

(
Ẽ

)
, which are

not invariant with respect to this isomorphism, implying p(E, (A, B)) �= p
(
Ẽ, (B, A)

)
.

These experiments are called non-commutative.

Definition 12. Let E1 and E2 be random experiments and let E = (E1, E2) be the
compound experiment. A random event A2 ∈ S(E2) is called statistically independent
of a random event A1 ∈ S(E1) if

(9) p(E, A) = p
(
(E1, E2), (A1, A2)

)
= p(E1, A1)p(E2, A2).

Remark 8. If the compound experiment Ẽ consists in repeating the same random trial
T̃ = (T, T ), that is Ẽ = (E, E), the definition of independence based on (8) is not the
same as that based on (9).

Statistical independence of the event A1 from the event A2 in the random experiment
Ẽ = (E2, E1) is defined in a similar manner:

(10) p
(
Ẽ, Ã

)
= p

(
(E2, E1), (A2, A1)

)
= p(E2, A2)p(E1, A1).

Observe that the concept of independence of two events A1 and A2 appearing in different
random experiments is not reciprocal. The random event A2 can depend on A1 in
the compound experiment E = (E1, E2), while A1 can be independent of A2 in the
experiment Ẽ = (E2, E1).

These definitions can easily be extended to an arbitrary finite set of random events
A1 ∈ S(E1), . . . , Ak ∈ S(Ek).

Definition 13. If random events A1 ∈ S(E1) and A2 ∈ S(E2) are statistically indepen-
dent of each other, that is formulas (9) and (10) hold, then we say that these events are
statistically independent.

Definition 14. Two random experiments E1 and E2 are called statistically independent
if arbitrary random events A1 ∈ S(E1) and A2 ∈ S(E2) are statistically independent.

Remark 9. The notion of independence of two random experiments E1 and E2 can be
extended to an arbitrary finite set of experiments E1, . . . , En. If all experiments are
independent and Ei = E, i = 1, . . . , n, then these experiments form a Bernoulli scheme.
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5. Transformations of random variables

For random variables, one can introduce the operation of multiplying by a constant,
as well as the standard arithmetic operations: addition, subtraction, multiplication, and
division. In this case, a random variable is conveniently interpreted as an arbitrary
function x(B), B ∈ BT , defined on the set of sample consequences of a random trial T .
If random variables take their values as the result of accomplishing the same random
trial T , there is no problem since all of them are functions defined on the same set of
sample consequences of the random experiment T , that is on the set of atoms of the
Boolean algebra S(T ). The situation becomes considerably different if random variables
take values as the result of accomplishing different trials. In this case, random variables
are defined on different sets of sample consequences, and the definition of arithmetic
operations requires other tools, if ever possible.

Assume, for example, that the set of sample consequences of the random trial T1 is
the interval [0, 1] and that of the random trial T2 is the interval [2, 3]. Suppose that
random variables x and y take values under the trials T1 and T2, respectively. Therefore
the random variable x is interpreted as a function x(B) defined on the interval [0, 1] and
the random variable y is interpreted as a function y(B) defined on the interval [2, 3] since
BE1 = [0, 1] and BE2 = [2, 3]. It is quite difficult to interpret the sum x + y of these
random variables.

There is no complete solution of this complicated problem so far. We can only describe
a partial solution using the concept of compound random trials introduced in Section 4.

For simplicity, consider the solution of the problem in the case of two random vari-
ables x(B), B ∈ BT1 , and y(B), B ∈ BT2 , taking values as the result of two random
trials T1 and T2. Let Tc = {T1, T2} be the compound trial. Then BTc

= BT1 ×BT2 where
× stands for the Cartesian product of the sets BT1 and BT2 . If the random trial Tc is
accomplished, a random event Bc = (B1, B2) occurs where B1 ∈ BE1 and B2 ∈ BE2 , so
that x takes the value x(B1) and y takes the value y(B2). Put

(x + y)(Bc) = x(B1) + y(B2),

(x − y)(Bc) = x(B1) − y(B2),

(xy)(Bc) = x(B1)y(B2),(
x

y

)
(Bc) =

x(B1)
y(B2)

.

Unfortunately, these definitions are correct for arbitrary random variables x(B1) and
y(B2) in the case of the so-called commutative random experiments E1 and E2 only.

Definition 15. Random experiments E1 and E2 are called commutative if

(11) p
(
(E1, E2), (A1, A2)

)
= p

(
(E2, E1), (A2, A1)

)
.

The fact that arithmetic operations with random variables are well defined actually
means that addition and multiplication obey the commutative, associative, and distribu-
tive laws. However, a new problem emerges at this point: how to interpret the equality
of two random variables, for example, x + y and y + x if E1 and E2 are different random
experiments, since x + y is a function defined on the set BEc

= BE1 × BE2 , while y + x
is defined on the set BẼc

= BE2 × BE1 , but BEc
�= BẼc

? To answer this question, we
must appeal to the first interpretation of random variables as random experiments having
numerical basic sets. First we introduce the notion of isomorphic random experiments
and isomorphic random events.
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Recall that a function Ψ: P → Q defined on an ordered set P and taking values in an
ordered set Q is called an order-preserving, or isotonic, function if

(12) x ≤ y implies that Ψ(x) ≤ Ψ(y)

(see [7]). An isotonic function whose inverse is also isotonic is called an isomorphism. In
other words, an isomorphism of two ordered sets is a one-to-one correspondence of these
sets satisfying (12) and the condition

(13) Ψ(x) ≤ Ψ(y) implies that x ≤ y.

This property is called the inverse isotony of the mapping Ψ. The mapping Ψ itself is
called a structural isomorphism of the ordered sets P and Q, since this mapping preserves
orders in these sets.

Definition 16. Assume that E1 and E2 are two random experiments and let S(E1)
and S(E2) be the fields of random events generated by the random experiments E1

and E2, respectively. The fields of events S(E1) and S(E2) are called isomorphic if there
is a one-to-one correspondence Ψ between S(E1) and S(E2) such that Ψ is a structural
isomorphism of the Boolean algebras S(E1) and S(E2) preserving probabilities of the
corresponding events:

(14) p(E1, A) = p(E2, Ψ(A)).

In this case, the random experiments E1 and E2 are also called isomorphic.

In other words, two fields of events S(E1) and S(E2) are called isomorphic if there
exists a one-to-one correspondence

Ψ: S(E1) → S(E2)

isotonic with respect to the ordering structures introduced in the Boolean algebras of
corresponding events S(E1) and S(E2), and having the property of inverse isotony pre-
serving probabilities of events, so that

p(E1, A) = p(E2, Ψ(A))

for all A ∈ S(E1). In this case, the mapping Ψ itself is called a probability isomorphism.

Theorem 7. The fields of events S(Ec) and S(Ẽc) generated by the combined compound
experiments Ec = {E1, E2} and Ẽc = {E2, E1} are isomorphic if the random experi-
ments E1 and E2 are commutative.

Now we come back to studying the commutative property of addition and multiplica-
tion of two random variables x and y generated by two different random experiments E1

and E2, respectively. As was already mentioned, x+y and xy take values as the result of
accomplishing the combined compound experiment Ec = (E1, E2), while y+x and yx take
values as the result of accomplishing the combined compound experiment Ẽc = (E2, E1).
We treat the random variable x + y as a combined compound experiment Ec having the
numerical basic set

BEc
= BE1 ⊕ BE2 = {x + y : x ∈ BE1 , y ∈ BE2},

where BEi
, i = 1, 2, is the numerical basic set of the random experiment Ei. In other

words, BE1 is the set of possible values of the random variable x and BE2 is that of the
random variable y. The random variable y+x is identified with the random experiment Ẽc

whose basic set is
BẼc

= BE2 ⊕ BE1 = BE1 ⊕ BE2 = BEc
.

As was already shown, the fields of events S(Ec) and S(Ẽc) are isomorphic if the random
experiments E1 and E2 commute, and therefore the random variables x+y and y+x are
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isomorphic. If we identify isomorphic objects, it is natural to accept that x+y = y+x in
this case; a similar identity holds for multiplication: xy = yx. One should note that the
fields of events S(Ec) and S(Ẽc) for the random variables x + y and y + x just coincide,
since they are all possible subsets of the numerical sets BEc

= BẼc
and since the random

experiments Ec and Ẽc generate the same probability distribution on these fields in view
of (14).

The other laws of arithmetical operations with random variables (associative, distribu-
tive, etc.) can be studied in a similar way.
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