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ABSTRACT

A central task in the study of evolution is the reconstruction
of a phylogenetic tree from sequences of current-day taxa.
A well supported approach to tree reconstruction performs
maximum likelihood (ML) analysis. Unfortunately, search-
ing for the maximum likelihood phylogenetic tree is com-
putationally expensive. In this paper, we describe a new
algorithm that uses Structural-EM for learning maximum
likelihood trees. This algorithm is similar to the standard
EM method for estimating branch lengths, except that dur-
ing iterations of this algorithms the topology is improved as
well as the branch length. The algorithm performs iterations
of two steps. In the E-Step, we use the current tree topology
and branch lengths to compute expected sufficient statistics,
which summarize the data. In the M-Step, we search for a
topology that maximizes the likelihood with respect to these
expected sufficient statistics. As we show, searching for bet-
ter topologies inside the M-step can be done efficiently, as
opposed to standard search over topologies. We prove that
each iteration of this procedure increases the likelihood of
the topology, and thus the procedure must converge. We
evaluate our new algorithm on both synthetic and real se-
quence data, and show that it is both dramatically faster
and finds more plausible trees than standard search for max-
imum likelihood phylogenies.

1. INTRODUCTION

The understanding that many biological sequences share a
single common origin is fundamental to biology. Such a
set of contemporary sequences diverged from their ancestral
sequence in a tree-like fashion. Inferring this phylogenetic
tree has been a major research problem since the dawn of
computational molecular biology, more than 30 years ago [3,
28]. The input data available is usually a set of sequences,
one per species. The goal is to find the tree that describes
the true evolutionary history of these sequences.
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Many attempts have been made to formalize the distinction
of the true tree into a mathematically tractable criterion,
giving rise to a variety of reconstruction algorithms. We
mention a few of these (see [11] for more details).  One
such criterion is accordance of the tree with observed dis-
tances between pairs of sequences. The prominent method
which uses this criterion is Neighbor Joining (NJ) [27], in
which partial trees are iteratively combined to form a larger
tree, in a bottom-up manner. A second important crite-
rion is Mazimum Parsimony. It states that substitutions
are rare, and thus calls for finding the tree topology which
implies as few substitutions as possible. Although it is NP-
hard to find the most parsimonious tree [6, 14], effective
heuristics [15, 16, 17, 29] exhibit reasonable performance in
affordable time.

The criterion which we study is probabilistic. It builds on
the view of evolution as a stochastic process, in which char-
acters change over time according to some predetermined
probabilities. Along each tree branch, such probabilities de-
pend on the duration of the period that this branch rep-
resents, i.e., the branch length. These probabilities were
estimated in many studies [1, 7, 18, 19, 20, 32]. This de-
scription of evolution in stochastic terms allows computing
the likelihood of a specific phylogeny, and gives rise to Max-
imum Likelihood (ML) methods [9]. Indeed, finding the ML
phylogenetic tree proves superior to other methods in terms
of accuracy [10]. However, speed is the major obstacle, as
we now explain.

ML reconstruction consists of two tasks. The first task
involves branch length estimation: Given a topology, find
branch lengths to maximize the likelihood. This task is ac-
complished by iterative methods such as Ezpectation Maz-
imization (EM) [8, 9], or using Newton-Raphson optimiza-
tion [24]. Each iteration of these methods requires compu-
tations that take on the order of the number of taxa times
the number of training positions. In addition, these meth-
ods are only guaranteed to find local maxima, although in
practice they often recover the global maximum [4].

The second, more challenging, ML reconstruction task is to
find a tree topology that maximizes the likelihood. Naive,
exhaustive search of the tree space is infeasible, and also the
effectivity of exploring this space by heuristic paradigms,
like simulated annealing [22] or genetic algorithms [23], is
hampered by the costly procedure of re-estimating branch
lengths afresh for different trees. Indeed, this task is usu-
ally tackled by iterative procedures that greedily construct



the desired tree. The leading ML application for protein
sequences is the MOLPHY software package [2]. One of
its versions has been incorporated into the PHYLIP library
as the ProtML application. MOLPHY wuses the Star De-
composition top-down heuristic, in which an initial, star-like
tree with a single internal node is iteratively refined [2]. In
this method, the scoring of each intermediate topology con-
sidered requires finding its best branch lengths. The main
cost of the algorithm is due to these repeated invocations of
branch length optimization.

Our approach builds on Structural EM, the extension of the
EM algorithm for learning combinatorial constructs [12]. As
all EM-type algorithms, we use an expected value of the
likelihood, computed using sufficient statistics, which are
collected from the data. The basic EM-theorem states that
improving this expected likelihood implies an increase in the
likelihood itself [8]. In contrast to standard EM or Struc-
tural EM algorithms, we do not just iterate this improve-
ment procedure over and over. After each iteration, which
improves the expected likelihood, we employ a modification
step. This novel step, which is necessary due to the nature
of our problem, is guaranteed not to change the likelihood.

The paper is organized as follows: In Section 2 we review
the framework of maximum likelihood phylogenetic recon-
struction. In Section 3 we present theoretic basis to our
algorithm, which we present in Section 4. Section 5 reports
application to simulated and real data. We conclude, in
Section 6, with a discussion of related and future work.

2. MAXIMUM LIKELIHOOD PHYLOGE-
NETIC INFERENCE

We view evolution as a process involving the change (substi-
tution) of characters into other characters. These characters
are assumed to be elements of a fixed, finite, alphabet X,
which is usually the set of 4 DNA nucleotides, 20 amino-
acids, or 64 codon triplets.

A model of evolution is the distribution of substitutions
along time. Such a model defines the probability p,—s(t)
of the character a transforming into the character b in the
duration ¢. Such models have been devised, for instance,
by [19, 20, 32] for nucleotides, [1, 7, 18] for amino acids,
and [13] for codons. Different models imply different biolog-
ical assumptions. However, there are some properties shared
by all standard models [7]:

1. Lack of Memory -

Pasv(t +1') = Zpa—)r:(t)pcﬁb(t,) 1)
ceEX

This assumption implies that the model can be fully
described by a single, |3| x |3| matrix. The (a, b) entry
in this matrix is p,—5(1). To obtain pe—s(t) for t # 1,
we need to exponentiate this matrix to the power of ¢,
and take the (a,b) entry of the resulting matrix.

2. Reversibility - we assume that there is a prior distri-
bution over characters, {p,} such that

PaPa—b(t) = PoPo—a(t)

for all a,b € ¥ and t > 0. This assumption essen-
tially states that the events “a evolved into b” and
“b evolved into a” are equiprobable. Note, however,
that the transition matrix entries are conditional prob-
abilities, hence, this matrix needs not be symmetric.

So far, we have described the evolution of a single charac-
ter over time. However, phylogeny deals with a plurality of
species. Consider a set of NV current day species. They are
assumed to be the descendants of a single ancestral species,
their lineages having diverged during history. The pattern,
or topology of this divergence process is usually unknown,
and its inference is the main goal of this study. A hypothet-
ical topology is represented by an undirected tree 7" with N
leaves, corresponding to the contemporary species. Internal
nodes correspond to events of divergence. Branches repre-
sent periods in the history of some past-time species between
those events. We label leaves by the indices 1,..., N, and
internal nodes by N + 1,..., Ny. Formally, the topology T
is described by the set of its branches. We use the notation
(i,7) € T to indicate T" having a branch between nodes %
and j. We reserve the term branch for pairs of nodes in 7',
while using the term edge for arbitrary pairs of nodes, not
necessarily in T'.

In this paper, we pay special attention to bifurcating topolo-
gies, in which each internal node is adjacent to exactly three
other nodes. These are the undirected analogues of binary
trees. Thus, in a bifurcating topology there are N — 2 inter-
nal nodes, indexed N +1,...,2N — 2.

We would like to introduce the model of evolution to our
phylogenetic hypothesis, T. To this end, we also consider
the duration of time that separates adjacent nodes. A pa-
rameterization of a topology T is a vector t, comprising of a
non-negative duration or branch length t; ; for each branch
(¢,5) € T. The pair (T,t) constitutes a phylogenetic tree.

Based on the model of evolution, we can assign probabilistic
semantics to the phylogenetic tree. Formally, we associate
with each node ¢ a random variable X; that describes the
character at this node. The distribution of such a variable
X, i.e., the set {P(X; = a)}aex of probabilities, is denoted
by P(X;), for short. The joint distribution P(Xp;. n,) is
defined as follows. Pick some node r as a root. For each
node ¢ # r define its parent, 7(i) to be i’s neighbor which
is closer to the root. (Since T is a tree, this neighbor is
uniquely defined.) Then the distribution P(X;) depends
only on P(X,(;)) and ¢; »¢;). Hence, the joint distribution
P(X[INT]) is:

P(Xp..np | Tht) = P(X;) HP(Xi | Xrgiy timy)  (2)
i#ET
where P(X, =a) = pa, and P(X; =b | X, = a,t; x¢)) =
Pa—sb(tiney)- It is fairly straightforward to show, using re-
versibility of substitution probabilities, that the joint distri-
bution P(X|;.. n,]) is invariant to the choice of 7:

11 P(Xi | Xj,ti5)

(1,5)€T

Usually, we observe only the characters in the leaf nodes
1,...,N. The likelihood of a single observation x[;.. n7,



given the phylogenetic hypothesis, is therefore the marginal
distribution over these variables:

Plap. v |T6)= D .. > P@n.ngg | Tot). (4

TN41 TNp

From a computational standpoint, we do not want to com-
pute the marginal probability by summing over the |S|¥7
possible assignments to X[y1...n,]- Instead, we can exploit
the structure of the distribution, as specified by Eq. (2), for
efficient computation. This is done by dynamic program-
ming over the set of nodes [33]. In addition, this dynamic
program can also answer marginal queries about variables
and branches. These compute the induced, aposteriori prob-
abilities P(X; = a | 1..n), T, t) and P(X; = a,X; = b |
$[1...N]aT: t).

For the sake of completion, we now describe the computation
of these probabilities. See [33] for more details. Consider a
single observed assignment {X: = zi1,...,Xny = zn} to
the leaves of a bifurcating tree (7,t). Each branch e =
(i,7) € T, partitions the tree into two subtrees. Define the
set S(, j) to include the leaves of the subtree which includes
1. We inquire for the probability of the observed characters
in S(4, j) conditioned on possible assignments to X; or Xj.
More formally, for each character a € ¥, we define upward-
messages as follows:

Uinj(a) = P{Xk =rtresq,y | Xi = a,T,t)
uisji(a) = P{Xk = Zr}lresa,y) | X5 =a,T,t)

We can recursively compute upward-messages, according to
the following formulae:

1{z; = a} i is a leaf
Ui»j(a) = 1 is an internal
- Hk;éj:(k,i)eT uk—i(a) node
uing(a) = Y Pasv(tii)Uimi(b)
b

The computation of these messages across the whole tree
can be completed in linear time.

The upward messages allow us to compute the marginal
probability from the messages that reached an arbitrary
branch (i, j):

P(ap.ny | Tit) = ) palUisj(a)uj-i(a).

Another task of interest is computing conditional proba-
bilities of the form P(X; | zj..n1,7T,t) and P(X;, X; |
z[1...n], T, t), for a branch (¢,§) € T. Fortunately, the up-
ward messages allow computing these as well:

P(a)Ui—j(a)uj—i(a)
P(.’L‘[IN] | T, t)

P(X;=a|zp.N,Tht) =

and
P(Xi:a,Xj :b|.7;1,...,ar:N,T,t):

P(a)Uisj(a)pa—s(tij)Uj—i(b)
P(-’E[l...N] | T, t)

Our main task is recovering phylogeny from observed data.
An input data set D consists of M observations, drawn

from the marginal distribution. That is, we have a sequence
z;i[1],...,z;[M] of characters for each leaf X;, and these se-
quences are assumed to be aligned in the following sense:
For each m, the characters in the m-th position across all
species evolved from a single ancestral character, and thus
comprise a single observation drawn from the marginal dis-
tribution. We further assume the model of evolution to be
known.

We assume that different positions evolve independently.
This allows computing the likelihood of the whole data set
D given the phylogeny (T, t), as follows:

L(T,t) = P(D|T,t) = [[ Plep. mlm] | T,t)  (5)

The Maximum Likelihood reconstruction task is to find a
topology T and associated parameters t that maximize this
likelihood. The phylogenetic tree (T),t) is, in some sense,
the most plausible candidate to having generated the data.

3. EXPECTED LIKELIHOOD

The likelihood of a tree is a complicated function to com-
pute, let alone to maximize. However, as we detail below, it
can be conveniently presented in terms of frequency counts
registering the co-occurrences of characters along branches,
across both the observed and ancestral sequences. These
counts are therefore sufficient statistics. Unfortunately, we
can not know the ancestral sequences, nor their counts.
However, given some phylogenetic assumption (TO, to), we
can induce probabilities on these sequences. Assuming the
phylogeny (T°,t°) we can thus compute the ezpected counts,
which allow computing the expected log likelihood.

A key observation we make is that this expected likelihood
can be decomposed into a sum of local terms, one per branch,
each of which being a function of only some of the expected
counts. Moreover, each term can be optimized indepen-
dently of the other ones. We can thus perform an iteration
of improving the current tree (7°,t°). In this section, we
detail the different steps of these ideas.

3.1 CompleteData

We first deal with a somewhat unreasonable situation, where
we get to observe the ancestral sequences. The study of this
case constitutes the basis of later analysis.

In the complete-data scenario, our input is not only the set
D = {z;jm] : 1 < ¢ < N,1 <m < M} of contemporary
sequences, but also the set H = {z;[m] : N +1 < i <
2N — 2,1 < m < M} of ancestral sequences. When we
observe the values of all 2V — 2 nodes for each position, the
likelihood function is

Lcomplete(Tat) = P(D,H | T,t)
= Hp(x[l...wv—z][m] | T,t)
m

Note that since in this case we do not marginalize over unob-
served nodes, each P(x[;.. .on—2)[m] | T,t) term is a product
of conditional probabilities. Thus, by rearranging the or-
der of multiplications as in Eq. (3), we can reformulate the
likelihood in a more manageable form.



To do so, we need to count how many times each con-
ditional probability appears in the product of terms that
constitutes the likelihood function. A frequency count of
an event is the number of times it was observed. In this
paper, we focus on frequency counts, which register oc-
currences and co-occurrences of letters, and are collected
from the complete data D, H. Formally, for an event Y,
denote by 1{Y'} its corresponding indicator variable. Let
Sij(a,b) = 3, H{Xi[m] = b, X;[m] = a}, and Si(a) =
> H{Xi[m] = a}.

PROPOSITION 3.1. The likelihood can be rewritten as:

IOg Lcomplete (T: t) =

D" Liocal(Sijitiz) + > Y Si(a)logpa  (6)

(4,J)ET i
where

Liocal(Sijrt) = Z‘Si,j (a,b)(log pa—b(t) — log ps)

a,b

This formulation is motivated by the approach of Chow and
Liu [5] for learning tree models. It is important for sev-
eral reasons. First, only the term which involves the weight
function Ly, depends on the topology and branch lengths.
Thus, when maximizing the likelihood we can ignore the
righthand term of Eq. 6. Second, the log-likelihood is a lin-
ear function of the counts. Finally, the term Ljyc41(Ss,5, t4,5)
can be optimized independently of other such terms. We
define a matrix W, with entries w; ; = max; Ligcal(Si j,t)-
Then the (log-likelihood) score of a tree is simply

max log Leomplete (T, t) = W(T') + constant

where W(T') = 32, ;yer wi,j- This reduces the problem of
finding the highest scoring tree, in the case of complete data,
to a combinatorial optimization problem in terms of the edge
weights. (We address this problem in Section 4.)

3.2 ExpectedLik elihood Score

We now return to the case where we only observe the val-
ues of the N leaves. In this case our objective function is
the likelihood according to Eq. (5). We use the notion of
complete data to help us devise an approximate likelihood
function that will guide us in finding high likelihood trees.

Assume that we are given a data set D = {z;[m] : 1 <
1t < N,1 <m < M}. Suppose we have some candidate
phylogeny (T°,t°). We aim at computing a function on
arbitrary trees (7,t), which is the expected value of the
log-probability of the complete data. We can use expected
counts based on (T°,t°) to compute this expected
log-likelihood of (T, t):

Q(T,t: T°,t°)
= Ellog Lcomplete(T: t) | D, TO’tO]

=2 X

m zyi1.2nN—21[m]

q(m[1___21v_2] [m], T, ¢, TO, to)

where
0 L0y _
q(x[l...2N—2]aT7t7T )t )_
IOgP(-’/U[l...zN—z] |T, t)P(x[N+1...2N—2] | -’E[l...N];TO:tO)

This term is a sum over an exponential number of assign-
ments of values to the ancestors in each position. Before we
analyze Q(T,t : T°,t°) further, we examine its theoretical
properties.

THEOREM 3.2. (based on [12]) For any T,t
Q(Tat : T07 to) - Q(TO, tO : T07t0) S
log L(T, t) — log L(T°, t°)

Proof: By definition:

Q(T,t:T°t°) => P(H|D,T°t°)log P(H,D | T,t)
H

Therefore:

Q(T)t : TO! to) - Q(T07 to : TO! to)
P(H,D|T,t)
P(H,D | T°,t°)
P(H,D |T,t)
P(H,D | T°,t%

> P(H | D,T° %) log
H

INA

log Y P(H | D,T°t°)
H

Sy PUH.D| T,0)
& P(D |19, t0)

= log L(T, t) — log L(T°, t°)
where we apply Jensen'’s inequality in the second step. |l

Theorem 3.2 implies that improving the @} score forces an
improvement of the objective likelihood. Fortunately, max-
imizing Q(T,t : T°,t°) is feasible. Recall that Ligcqy is a
linear function of the counts S; ;. Thus, by linearity of ex-
pectation, we have that

Q(T, t: TO’ to) = Z Llocal(E[SiJ | D: TO: to]: ti,j)—I-COIlSt
(4,4)

Thus, if we compute the expected counts E[S; ; | D, T°,t°],
we can optimize each Ljgea(E[Si; | D,T°t%,t;;) term
separately, by choosing an appropriate ¢; ;. Asin Section 3.2,
we can define the edge weights w;,; to be these optimized lo-
cal terms, thus allowing efficient evaluation of the expected
score for different topologies. These weights define a combi-
natorial optimization problem, equivalent to finding the tree
with highest (expected log-likelihood) score.

3.3 Computing ExpectedCounts

Before we consider how to use the expected score in our al-
gorithm, we address the issue of computing expected counts.
At each iteration we compute these counts for all edges, not
just for branches of the current topology T°. Recall that

E[S; j(a,b) | D,T°,t°]
= E])_1{Xi[m] =b X;[m] =a} | D, T°’]

= Y P(Xi[m] =b,X;[m] =a | 2. n[m], T°,t°)

m

Thus, the problem of computing expected counts reduces
to the problem of computing conditional probabilities over
edges. We solve that using the following observation.



PROPOSITION 3.3. Let (T°,t°) be a phylogenetic tree. As-
sume that internal nodes i,j and k are such that j is on the
path from i to k in T°. Then

P(ei,on | 2p..ny, T0,8°) = (7)

Z P(zi,x; | o5, T, t0) Pz, ok | o1, vy, TO, £°)
P(zj | z[l...N]yTOatO)

Zj

Based on this corollary we design a simple procedure of dy-
namic programming. We start by computing induced proba-
bilities P(z;, z; | m[l___N],TO,tO), for each branch (i, j) € T°,
using the upward-message method described in Section 2.
Then for I = 2,..., N we compute P(z;,zx | x[l___N],TO,tO)
for pairs 7,k of nodes that are | branches apart, by choos-
ing x; on the path between them, and applying Eq. (7).
We proceed in this manner, and compute all the conditional
probabilities of interest in a quadratic number of steps.

4. STRUCTURAL EM

We now have all the components to describe the heart of
the Structural EM algorithm. This algorithm proceeds in
iterations. We start by choosing a tree (T, t!) using, say,
Neighbor-Joining. Then we improve the tree in successive
iterations. In the I-th iteration, we start with the bifur-
cating tree (T',t') and construct a new bifurcating tree
(', t"+1). The high level idea is to use (T',t') to define
the expected likelihood measure Q (7, t : T, tl) on trees, and
then to find a bifurcating tree that maximizes this expected
likelihood.

4.1 Structural EM iterations

A Structural-EM iteration consists of two steps, the E-step
and the M-step. We now describe these in detail.

To define the expected likelihood we need to compute ex-
pected counts:

E-Step: Compute E[S; ;(a,b) | D, T t'] for all
edges (7, j), as discussed in Section 3.3.

Next, we turn to the maximizing the expected likelihood.
This is done in two phases.

M-Step I: Optimize edge lengths by comput-
ing, for each edge (7,j) its best length tﬁ:']fl =
arg max; Ligeal (E[Si,j(a,b) | D, T, t'],t), as dis-
cussed in Sections 3.1 and 3.2.

Now we have the edge lengths that maximize the expected
likelihood for each tree. This is similar to standard EM
for computing branch lengths, except that we compute edge
lengths also for pairs (4, 7) that are not adjacent in T".

Once we have t'1!, we can define W't! to be the 2N — 2
by 2N — 2 matrix {wﬁ";l , where wﬁj-l = Liocal (E[Si,(a,b) |
D, T',t"],#{%"). At this stage, by Theorem 3.2 we have that
for any tree T

it WH(T) > WTH(TY) then L(T, t'™) > L(T', t)  (8)

Since we are learning bifurcating topologies, the appropri-
ate maximization step is to construct a bifurcating topology
T'*! with leaves 1,..., N such that W'T(T'*!) is max-
imized. Unfortunately, finding such a topology is an in-
tractable problem.

THEOREM 4.1. Let W = (w;,j) be a 2N —2 by 2N —2 ma-
triz of edge weights. Finding a bifurcating topology T, whose
leaves are the nodes 1,..., N, such that W(T) is mazimized
is an NP-hard problem.

Proof: Reduction from s-t-Hamiltonian path. il

Fortunately enough, though, we have an alternative solu-
tion to this problem. Indeed, finding the maximum weight
bifurcating topology is intractable. But as we show, we can
efficiently find the maximum weighted topology. This topol-
ogy is not necessarily bifurcating, however (8) still applies to
it and thus it improves the likelihood. In fact, this topology
provides the best lower bound on the improvement in the
likelihood, according to (8). Once we have such a topology
we can transform it into a bifurcating topology T'*'. As we
show, this transformation does not change the likelihood of
the tree.

Thus, we are using the following maximization step.

M-Step II:

a) Construct a topology T'1! in that maxi-
8y
mizes W'T(T).
(b) Construct a bifurcating topology 7' such
that L(T, 1Y) = LT ¢1F1).

Note that we do not restrict the topology T+ we construct
in step (a). Thus, nodesin 1,..., N may be of degree greater
than 1 and nodes in N + 1,...,2N — 2 may be of degree
different than 3. Thus, we are searching for a maximum
spanning tree, and we accomplish this stage using a standard
algorithm, e.g., [21].

Step (b) is less trivial, and we discuss it in the next section.

4.2 Transforming a Treeto an Equivalent Bi-
furcating Tree

Suppose we have a phylogenetic tree (T,t) with 2N — 2
nodes, in which every node 7 has degree d(i¢). Our goal
is to construct a bifurcating tree (T',t’) that has the same
likelihood. In such a tree, every node 7 would have degree
D(7) where:

1 1<i<N
D(l)_{ 3 N+1<i<2N-2

We take advantage of the lack of memory in our models of
evolution, and apply a series of likelihood-preserving modi-
fications to the tree. We introduce these transformations in
the following propositions.

PROPOSITION 4.2. Let (T,t) be a phylogeny, and let N <
j < 2N — 2. Consider two cases:



Figure 1: An illustration of the tree modification steps defined in Propositions 4.2 and 4.3. Observed taxa
are numbered 1 to 6, and internal nodes are numbered 7 to 10. The transformation from (a) to (b) involves
removing two nodes: 9 according to the first case in Proposition 4.2, and 10 according to the second case.
The transformation from (b) to (c) involves reinserting these nodes according to Proposition 4.3. Node 9 is
inserted since D(2) =1 and d(2) = 2, and node 10 is inserted since D(7) = 3 and d(7) = 4.

o Ifd(j) = 1, then let (T',t") be equal to (T,t), except
that j is removed.

o Ifd(j) = 2, and (i,5), (4, k) € T, then let (T',t') be
equal to (T,t), where (i,k) replaces (,5), (4, k), t; r =
ti,j +tik, and j is removed.

In either case, L(T,t) = L(T",t').

Proof: For the first case, let i be the only neighbor of j.
Consider the marginal distribution as a sum of products, as
in Eq. (4). Re-order the summation indices in that equation
so that z; is innermost. By Eq. (2), each product in this
sum has only one term p,—s(t; ;) involving z;. Then:

P(.’I:[l___N] | T,t) =
Z P({mklk 7é j}|Tla t’) Z pa—»b(ti,j)

{zp|k#£j,N<k<2N—2} x;=b

But Emj:bpa_,b(ti,j) =1, and the result follows.

The second case follows from Eq. (1), using similar argu-
ments. Il

Whenever T is not a bifurcating tree, we can use Proposi-
tion 4.2 to simplify T by removing a single node. Let T’ be
the resulting topology. It follows that there must be a node
i > N of T' whose degree is larger than 3, or a node ¢ < N
which is not a leaf. This exactly means that there exists %
such that d(i) > D(3).

PROPOSITION 4.3. Let (T,t) be a phylogenetic tree, let i
be a node with d(i) > D(i), and let 41,...,iq¢) be i’s neigh-
bors in T. Let (T',t') be a tree with a new node ¢ such that
(T',t') is equal to (T,t) except that:

e The branches (3,ip(s)),- - -, (i,%4(:)) are replaced by the

branches (¢',ip()), .. ., (i, i4:)), whose lengths are set
as t'i’,j =ti; forj= ID(i)s - -+ 5 bd(d) -

o The branch (i,7') is added and its length is fized to be
t. . =0.

44!

Then L(T,t) = L(T", t').

Proof: For a # b, pa—ss(tiir) =0, and paa(t;#) = 1. All
remaining terms in Eq. (2) remain unchanged when switch-
ing from (T,t) to (T”,t'). The result follows. I

We note that in practice we slightly modify the insertion
procedure in two respects. First, we use a small positive
duration instead of a zero branch length. This allows later
rounds to differentiate the two nodes 4,i’. Second, when
D(i) = 3, we choose the neighbors 1,4, carefully, rather
than arbitrarily. In the spirit of the Neighbor-Joining heuris-
tic, we choose, among the neighbors of ¢, to group the nodes
11,42 which are closest to each other.

Aslong as our tree is not bifurcating, we can apply the dele-
tion step (Proposition 4.2) and the insertion step (Propo-
sition 4.3), reusing the index of the deleted nodes for re-
insertion. Note that the order of deletion/insertion steps
is not crucial, thus we can perform all deletions, and then
all insertions, or interleave them. Each such operation in-
creases the fraction of nodes in T for which D(i) = d(7),
and thus we eventually end up with a bifurcating tree. Fig-
ure 1 illustrates the modifications steps of Propositions 4.2
and 4.3.

5. EMPIRICAL EVALUATION

We have implemented our algorithm in a program called
SEMPHY. The program is written in C++, and runs on
several Unix platforms, as well as Microsoft Windows.

To evaluate the performance of SEMPHY we performed
comprehensive evaluation on synthetic data sets. These data
sets were generated by constructing an original phylogeny,
and then sampling its marginal distribution. Each synthetic
data set comprised of two sets of sequences: a training set
and a test set. Both sets were simulated assuming the same
phylogeny. That is, both consisted of observations drawn
from the same marginal distribution, which we wish to char-
acterize. Only the training set has been used for inferring a
phylogeny. We graded the inferred phylogenetic tree by two
figures of merit, which are the log-likelihood values of each
such set (training/test). While the likelihood of the train-
ing set is exactly the target of ML optimization, the second
figure of merit aims at detecting undesired effects of over-
fitting the inferred phylogeny to the data. Log-likelihoods
were normalized as follows: A baseline, which is the log-
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Figure 2: Summary of results from synthetic data. Top row shows the likelihood of reconstructed tree as a
function of training sequence length. Bottom row shows the likelihood of reconstructed tree as a function of
number of taxa. The left column shows likelihood of trees on the sequences from which they were learned
(training data), and the right column shows likelihood on independent sequences sampled from the original
tree. Each graph presents three curves: a solid curve for SEMPHY, a dotted curve for MOLPHY, and a
dashed curve for the likelihood obtained by optimizing branch lengths for the original topology, according to
the training data. The y-axis unit is average log-likelihood per position. The y-axis baseline is the score of
the original tree from which the data was sampled. The curves represent 10 independent runs from different
trees. The graphs plot the average performance of each method, and the vertical error-bars represent the

interval containing 60% of the runs.

likelihood of the original phylogeny, was subtracted from the
log-likelihood of the inferred tree. The result was divided by
the number of positions.

In our tests, we examined the effect of the number of train-
ing positions and the number of taxa on the quality of the
learned phylogenies. For this purpose we examined two sets
of phylogenies:

e The first consisted of 48 taxa, and different lengths of
the training sequence (from 25 to 1000 positions).

o The second consisted of different numbers of taxa (10—
100), with training sequences of length 100 positions.

The size of the test-set was 1000 positions for all bench-
marks. A series of 10 data sets was generated for each such
case. These phylogenies had uniform topology (whose di-

rected analogue is a fully binary tree), and branch lengths
that are sampled from the Gamma distribution to simulate
a mix of short and potentially very long branches. The dis-
tribution parameters, a = 0.01,3 = 0.067, were chosen to
fit the data of [25]. Sequences for these trees were simulated
using the model of amino-acid evolution of [18].

In these tests we used MOLPHY [2] as the main reference
point against which we compared SEMPHY. (Other applica-
tion, like PAUP or FastDNAML, offer maximum-likelihood
solutions only for DNA data.) For comparison, we also
considered the likelihood of a tree obtained by optimizing
branch lengths for the original topology. The branch lengths
for this tree are overfit, by definition, and hence, this com-
parison provides a clue regarding the effects of overfitting
the topology by SEMPHY or MOLPHY.

Figure 2 summarizes the results for these tests. = These
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Figure 3: Average running times (on a 600 MHZ
Pentium machine) for SEMPHY runs in the bottom
chart of Figure 2.

results show several trends.

First, as one can expect, the quality of the learned methods
deteriorates when the number of taxa increases and when
the number of training positions decreases. In these situa-
tions all methods performed worse on the test data. This
deterioration includes the original topology with reestimated
branch lengths, which indicates that in some sense in these
situations we do not have enough information in the training
sequence to recover the original phylogeny.

Second, we see that in terms of training data likelihood, the
performance of SEMPHY closely tracks the performance of
the original topology with reestimated branch lengths. This
indicates that SEMPHY finds topologies that, based on the
training data, are almost as good as the original ones. (In
some situations, they score better than the original topol-
ogy.) The difference between performances of SEMPHY and
the original topology on the test data indicates that the ad-
ditional knowledge of the original topology helps in finding
better approximations of the true phylogeny, which should
be expected. As we see, however, for large number of train-
ing positions, this difference vanish.

Finally, we see that SEMPHY clearly outperforms MOL-
PHY in terms of quality of solutions (on both the training
set and test set likelihoods). While SEMPHY is close to
the performance of the original topology on the training set,
we see that MOLPHY is worse, even when the number of
training positions grow. We also see that for large number
of taxa, MOLPHY performance deteriorates, even according
to the training set likelihood. In addition, Figure 3 shows
the running time as a function of the number of taxa. We
see that MOLPHY’s running time grows much faster than
SEMPHY’s running time. (Note that the running time of
both programs grows roughly linearly in the number of train-
ing positions.) These results show that SEMPHY’s speed
allows, for the first time, ML phylogenetic inference on a
large scale.

We also applied both SEMPHY and MOLPHY to real data
sets, one of nuclear lysozyme proteins [25], and another of
concatenated mitochondrial proteins [26]. Both data sets
focused on mammalian genes, with the exception of several
outgroup species. The proteins in each data set were aligned

using CLUSTALW [30], and columns with deleted amino-
acids were excluded from the analysis. Naturally, we did
not have any test set in these cases.

The lysozyme data set consists of 43 protein sequences, of
length 122. SEMPHY has found a tree for this data set,
whose overall likelihood is -2892.11. MOLPHY found a tree
whose likelihood is -2916.67.

The mitochondrial data set consists of 34 sequences, each be-
ing a concatenation of the 13 proteins coded by mammalian
mitochondria. The total length of each sequence is 3578.
The log-likelihood of the tree we obtain using SEMPHY is
-70533.5, compared to -74227.9 attained by MOLPHY. The
improvement is of 1.03 on average, per position. The tree
we found is identical to the tree available in the biological
literature [26].

6. DISCUSSION

This paper presents a new approach for maximum likeli-
hood phylogenetic reconstruction. On the theoretic aspect,
we build on existing theory of learning and inference, while
on the applicative aspect we show promising results, both
on real and synthetic data. This raises many research ques-
tions, both theoretic and practical.

Our algorithm assumes a constant rate of evolution. Re-
cently, it was shown that the assumption of rate hetero-
geneity across sites is statistically superior to the constant-
rate assumption [31]. An important extension to this work
would be to incorporate this model of variable rates into our
development.

This can be posed as a missing data problem where the rate
of each position is an additional unobserved variable. Our
decomposition of expected log likelihood extends in a nat-
ural manner to this case, and thus the general procedure
we described can be applied to the more expressive model.
Another direction for future research, is to combine the ad-
vantages of gradual tree construction (either bottom-up, or
top-down), with those of our method. A hybrid approach
may prove even faster, and more accurate than existing ones.

This paper still does not explore the power of our method in
depth. More thorough examination of its performance, and
comparison to several existing methods, are in place. Fur-
thermore, inferring phylogeny for dozens of species should
not be the final goal. Rather, the challenge of analyzing
hundreds of sequences, in a maximum likelihood framework,
seems almost practical.

Finally, it still remains to exploit the new method for exten-
sive biological research. Recent data sets in molecular evolu-
tion are becoming bigger and bigger, holding the promise to
resolve classical questions about the divergence of life. Al-
though these sets contain lots of potential information, the
lack of a fast and accurate inference tool stands in the way
of their utilization. We hope our maximum-likelihood based
solution will support this analytic endeavor, and promote
new insights.
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