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Abstract— The inherent nature of the physical setup and trans-
mission mechanism in wireless ad hoc networks with random
channel access, results in correlation between the link metrics of
adjacent links, when considering path optimization problems. We
identify a special structure inherent to the solution of Dynamic
Programming (DP) problem arising in such an optimization over
paths. According to this structure, the optimal policy tries to
equalize the link metrics of adjacent links in a multi-hop route.
We validate this structural property with simulations.

I. INTRODUCTION
1 The performance characteristics of either wired or wireless

networks are measured and analysed using various kinds of
metrics. These metrics usually signify certain performance
attributes pertaining to the transmission links in the network.
We can therefore think of a link metric that defines the
performance measure of transmission links in the network.
This link metric could either be some kind of a cost like link
delay or it could as well be some kind of a reward utility
like link lifetime, link rate, etc. Also see [1], [2] for some
examples of such metric. In wire-line networks, a link metric
usually depends on certain performance attributes of only one
of the end nodes (transmitting node). For example the expected
delay over a link depends on the queueing delay of only
the transmitting node. Whereas, in random access wireless
networks, a link metric may depend on attributes associated
with both the end nodes. For example, the link rate and link
lifetime in a wireless ad hoc network depends on the power
levels or battery energy of both the end nodes. For sure, in
both wired and wireless networks, a link metric could as well
be some independent entity by itself, e.g., propagation delay
and channel gain due to multi-path fading.

Due to dependence on both the end nodes, link metrics of
two adjacent links in a multi-hop wireless network may depend
on attributes of the common node between them and hence
they may be correlated. With another point of view, in wireless
networks, attributes of multiple nodes may collectively deter-
mine properties of a given link, as opposed to wired networks
where properties of a link are determined by attributes of
only one terminal node. This fundamental difference between
wired and wireless networks requires considering significantly
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different approaches when finding an optimal path between a
source node and its destination. It is to be noted that the above
discussion is valid only for the choice of those link metric that
satisfy the properties discussed in the previous paragraph.

All routing algorithms aim to achieve path optimization,
and most of these algorithms use the Dynamic Programming
(DP) technique to compute optimal paths. In wired networks,
whether the decision is based on a link metric or attributes
of nodes, the complexity of finding an optimal path is the
same. However, in wireless networks the situation may be
very different, especially when the link metric depends on the
attributes of both end nodes as discussed before. In wireless
networks that have rapidly changing network topologies and
require frequent discovery of new routes, getting some insight
into the structural properties of the optimal path can help
in significantly reducing the time complexity of route re-
discovery. This is especially beneficial when nodes are energy-
limited devices. Our main contributions in this paper are

1) Identify basic difference between path optimization in
wired and wireless networks.

2) When the link metric depends on attributes of both
the end nodes (i.e., the wireless case), we identify in
Section II-B a special structural property that is satisfied
by the solution of the DP problem of Section II. This
structural property, which says that the optimal policy
tends to equalize the link metrics of two successive links,
results in significant reduction in the computational com-
plexity of the DP algorithm. In Section III, we validate
this structural property by considering a specific example
of routing in a vehicular ad hoc network (VANET).

3) Yet another interesting result obtained in this paper
is that an optimization problem of a Max-Min form
can be transformed to a linear optimization problem
(Theorem 2.4).

II. THE BASIC PROBLEM FORMULATION

In multi-hop wireless networks, one can divide the problem
of finding an optimal path between a source and its destination,
into two sub problems:

1) For a given number of intermediate relay nodes, find
the best path i.e., the optimal choice of relay nodes that
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optimizes a certain objective function comprising of link
metrics, and

2) Having solved the above problem, find the optimal
number of relay nodes.

In the present work we are interested in the first optimization
problem mentioned above. Since the source and destination
nodes are known in advance and thus fixed, we first present the
basic problem formulation in a general and natural framework
of dynamic programming with fixed initial and terminal states.
Let li denote an attribute associated with node i. An example
of such an attribute is the (inverse of) average transmit queue
occupancy of a node. Let the link metric of a link between
nodes i and j be denoted by H(li, lj) for some function
H(·, ·). In the rest of the paper, attributes of a node will also
be referred to as node metric. Now, for a given number of
intermediate relay nodes M , the problem is to find a vector
of indices of the relay nodes (i1, . . . , iM ) that minimizes

M+1∑
j=1

H(lij−1 , lij ), (1)

where the source node has index i0 and its destination has
index iM+1. This kind of an objective function arises for
example when we want to minimize the path-sum delay in
a route. Before proceeding further, we mention here that the
above optimization problem is general enough for also study-
ing the Max-Min form class of problems (this equivalence is
shown later), where the objective is to maximize

min
j=1,...,M+1

T (lij−1 , lij ).

This kind of an objective function may arise, say when we
want to maximize (a critical reward) the least of the lifetimes
of links constituting a route. Here we use the notation T (·, ·)
for link metric instead of the one used in Equation 1, for nota-
tional convenience. By applying an appropriate transformation
to the link metric H(·, ·), this will also allow us to solve the
problem of Equation 1 in an indirect manner, by using the
solution of yet another set of problems that are equivalent to
the above Max-Min problem.

In the rest of this section, we first establish the equivalence
of the optimization problem of Equation 1 to the Max-Min
optimization problem, via yet another set of optimization
problems equivalent to the Max-Min problem. Then later in
Section II-B we derive a special structural property that is
satisfied by the solutions of all these equivalent problems.

A. Equivalence of Equation 1 problem to the Max-Min prob-
lem

The Max-Min optimization problem can be detailed as
follows. Let the node metric be allowed to vary over a finite
set of values of cardinality L. We are given the number of
intermediate nodes M in the route path, for a particular choice
of a source node and its destination. We want to find the node
metrics lij , 1 ≤ j ≤ M of the M intermediate relay nodes
such that we obtain a maximum value of (a critical reward) the

least of the link metrics, i.e., we seek a vector lij , 1 ≤ j ≤ M
that solves the following optimization problem

Maximize
1≤lij

≤L,j=0,...,M
Minimum
j=0,...,M

T (lij , lij+1) . (2)

This problem can be rewritten as finding a vector lij , 1 ≤ j ≤
M that solves the following optimization problem (the only
change is that of notation, since here by node i we mean ith

node in the optimal path)

Maximize
1≤li≤L,i=0,...,M

Minimum
i=0,...,M

T (li, li+1) . (3)

Instead of solving the above problem directly, we further
look at a different, parameterized set of objective functions
to be optimized. These new objective functions will coincide
with the original one of Equation 3 when the parameter takes
a special value. Solution to any one of these parameterized
form of optimization problems will then finally provide us
with the solution to the problem of Equation 1 via the solution
to the Max-Min problem of Equation 3. We first report the
following simple lemma which we prove here for the sake of
completeness.

Lemma 2.1: For any finite dimensional vector x with pos-
itive elements xi, 1 ≤ i ≤ n, if ||x||α is the lα−norm, i.e.,

||x||α =
[∑

1≤i≤n xα
i

] 1
α

, and ||x||∞ denote its l∞−norm,
i.e., ||x||∞ = max1≤i≤n{xi}, then

lim
α→∞ ||x||α = ||x||∞.

Proof: Let, for the given vector x,

i∗ ∆= arg max
1≤i≤n

xi.

Then, for any α,

||x||∞ = xi∗ ≤ ||x||α,

and also,
||x||α ≤ n

1
α ||x||∞.

This completes the proof. •
Theorem 2.2: The optimization problem of Equation 3 has

the same optimizer as that of any of the following optimization
problems

Minimize
1≤li≤L,i=1,...,M

⎡
⎣ M∑

j=0

(T (lj, lj+1))−α

⎤
⎦

1
α

, (4)

Maximize
1≤li≤L,i=1,...,M

⎡
⎣ M∑

j=0

(T (lj , lj+1))−α

⎤
⎦

−1
α

, (5)

as α → ∞.
Proof: The optimization problem of Equation 3 clearly has

the same solution as that of the problem

Minimize
1≤li≤L,i=0,...,M

Maximum
i=0,...,M

1
T (li, li+1)

.



Now, for any integer α > 0, we can compute the lα−norm of
an M -dimensional vector whose ith element is 1/T (li, li+1).
The lα−norm of this vector, for any given values of li’s is[

M∑
i=0

(T (li, li+1))−α

] 1
α

.

Since 1/T (li, li+1)’s are strictly positive and bounded quan-
tities, we can invoke Lemma 2.1 to conclude the equivalence
of Equations 3 and 4. Then equivalence of Equations 4 and 5
is straightforward. •
In fact, we can say something more about the relation between
the two optimization problems of Equations 3 and 4. This
additional property actually leads us to our main result of this
section (Theorem 2.4).

Theorem 2.3: There exists a finite α∗(T ), such that the
maximizer of optimization problem of Equation 3 is same as
that of either of Equation 4 or 5, for all values of α ≥ α∗(T ).

Proof: Fix a vector x with elements xi, 1 ≤ i ≤ n.
Then, from Lemma 2.1 we know that limα→∞ ||x||α =
max1≤i≤n xi. Now, form a vector y whose ith element yi

is the ith maximum among the elements of x (so that y1 =
max1≤i≤n xi = ||x||∞). Since the number of elements in x
is n, which is finite, the difference y1 − y2 > 0 (assuming
that no two elements of x are equal; the case where some of
the elements of x are equal can also be easily considered.).
Since limα→∞ ||x||α = limα→∞ ||y||α → y1, for any ε > 0
there exists a finite α∗

ε (x, T ) such that , y1−||x||α < ε for all
α > α∗

ε (x, T ).
Now, since the set of possible values of the node metric

over which optimization is carried out is finite (of cardinality
L), we can define,

δ
∆= min

li,lj
POS(|T (li, li+1) − T (lj, lj+1)|),

where

POS(|x − y|) =
{ |x − y| if |x − y| > 0,

|x| otherwise

Then, α∗(T ) ∆= maxx α∗
δ(x, T ) < ∞ is the finite quantity

that we were seeking. •
Theorem 2.3 ensures that there is no discontinuity in the

solution to the optimization problem of Equation 4 or 5 as α →
∞. Working with the objective function of Equation 4 or 5 thus
has an advantage that we can work with any finite value of α
and, if this solution is independent of α, we will have obtained
the solution to the optimization problem of Equation 3. Also,
the different forms of objective functions in Theorem 2.2 can
be used as per convenience depending on whether the link
metric is a reward or cost.

Further, the result of Theorem 2.3 can be used to transform
the problem of Equation 1 to that of a Max-Min problem:

Theorem 2.4: The minimizer of Equation 1 is same as the
optimizer of Equation 3 with T (·, ·) = H(·, ·)−K for any K
satisfying

Kα∗(H−K) ≤ 1, (6)

where α∗(H) is the same as in Theorem 2.3.
Proof: We know from Theorem 2.3 that the optimizer of
problem

Maximize
1≤li≤L,i=0,...,M

Minimum
i=0,...,M

(H(li, li+1))−K

is the same as the minimizer of Equation 4 (with α replaced
by β for notational convenience),

M+1∑
j=1

(H(lij−1 , lij ))
Kβ

for all β ≥ α∗(H−K). If for some K , it turns out that Kβ = 1
for some β ≥ α∗(H−K) then the second problem above is that
of minimizing Equation 1. A value of K gives rise to existence
of such a β iff Kα∗(H−K) ≤ 1. •

Theorem 2.4 and 2.2 say that for any problem of the kind in
Equation 1 we can solve a transformed problem of Equation 3
and vice versa. However, existence of such a value of K is
not entirely obvious and needs a proof that follows. We first
state the following lemma.

Lemma 2.5: α∗(H−K) →K→0 1.
Proof: With α = 1, as K → 0, the solution set (the set
of optimizers) of Equation 4 converges to that of Equation 3
because the objective function converges to a constant. •

Theorem 2.6: There exists a K that satisfies Equation 6.
Proof: The proof follows from Lemma 2.5. •

Now, we can use a circular at first sight argument: In order
to study the structural property of the minimizer of Equation 1
(with a link metric function H(·, ·)), we solve the equivalent
Max-Min problem as in Theorem 2.4 (with a link metric
function H(·, ·)−K ). This Max-Min problem is in turn solved
using the approach of Theorem 2.2, i.e., by solving problem
of Equation 4, again with a link metric function H(·, ·)−K

and with α → ∞.

B. Structural property at optimal point

Consider two nodes, the source node has metric l0 and its
destination node has metric lM+1. Thus, we need to find a set
of node metrics li, 1 ≤ i ≤ M such that objective function
of Equation 4 is maximized. The constraint is that the set of
possible values of li is finite and of cardinality L. We see
that the objective function for any given value of α, for some
appropriate function T (·, ·), is given by⎡

⎣ M∑
j=0

[
1

T (lj, lj+1)

]α
⎤
⎦

1
α

.

Let fi(x, y) := 1
T (x,y) be the link metric of ith link, if li = x

and li+1 = y. Clearly, if one is allowed to choose any value
for the intermediate node’s attributes (thus not restricting to
the finite set of cardinality L), we would require the metric of
node i to be a value x such that

d

dx
[(fi−1(li−1, x))α + (fi(x, li+1))α] = 0.



This implies, in particular, that

fi−1(li−1, x)
fi(x, li+1)

=
[
− dfi(x, li+1)

dfi−1(li−1, x)

] 1
α−1

.

Taking α → ∞, we see that we need

fi−1(li−1, x)
fi(x, li+1)

= 1,

implying that the link metrics of successive links should
be equalized in order to optimize the objective function of
Equation 4. Note that this is only a necessary condition and
not a sufficient one, i.e., not all configurations that result in
identical link metrics of successive links will be a solution
to the optimization problem under consideration. However,
any solution to the optimization problem will satisfy the
above mentioned property. The above structure also carries
over to the case where the allowed values of metrics of
the intermediate nodes are restricted to a finite discrete set.
However in that case, as it is obvious, exact equalization of
the link metric of successive links will not be achieved owing
to the lack of choice of metrics for the intermediate nodes. In
Section III we consider an example network, where owing to a
finite set of possibilities, the optimal policy has to settle down
for a convex combination, instead of an exact equalization.
It is important to note here that, owing to Theorem 2.4, the
above structural result holds good for both the optimization
problems of Equation 1 and Equation 3, as well.

III. VALIDATION OF EQUALIZATION PROPERTY USING A
VANET SIMULATOR

In order to validate the equalization of link metrics property
derived in the previous section, we have developed a vehicular
mobile ad hoc network (VANET) simulator. The simulator
simulates nodes (vehicles) moving on a highway in their
respective lanes and the objective is to find the best path that
maximizes the least of the link lifetimes of a route between
any given source-destination pair of vehicular nodes.

Each lane is characterized by an associated speed and every
node moving in a given lane travels with this same speed that
is associated with its lane. Thus all vehicles moving in the
same lane have identical speeds. The vehicles can change lanes
and hence speeds, randomly over time. Each node is assumed
to have a motion that is independent of the other nodes.
To be more precise, we assume that the stochastic process
corresponding to the changing speed of a node, is a Markov
chain over the set of different speeds associated with different
lanes on the highway. The time is slotted and at the end of each
time slot each node makes a decision on whether to change
its lane or not. This decision is made independently of any
past decisions. If a node decides to change its lane, it moves
to either of its adjacent lanes according to some probability
distribution. Thus a node continues to move in a particular lane
for a random amount of time that is geometrically distributed.
We assume that a node in lane i, 1 ≤ i ≤ L, transits to
any of the adjacent lanes at the beginning of a time slot with
probability 1 − pi.

We assume that such a mobile ad hoc network formed by
vehicles moving on a highway consists of a dense layout of
nodes, so that there is at least one node inside any sufficiently
small area on any given lane. The problem that we address
is to find the best path that maximizes the lifetime of a
route between any given source-destination pair of nodes
that can not communicate directly, thus requiring relaying by
intermediate nodes. We assume that the speed (or, the lane)
of the source and its destination and the initial distance D
between them (at the time of route setup) are given. Also
given is M , the number of intermediate relay nodes and the
hop distances di, 1 ≤ i ≤ M between these relay nodes at the
time of route setup; thus the initial distance (dM+1) between
the last relay node and the destination node is fixed since D is
given. The distances between these M relay nodes can change
with time if they are moving on lanes with different speeds.
Hence the problem is to find the speeds of the intermediate
nodes so as to maximize the time until when any one of
the links constituting the whole route, first breaks down, i.e.,
maximize the route lifetime or in other words maximize the
minimum of expected link lifetimes which is the link metric
here. Therefore, if vi, 0 ≤ i ≤ M + 1 is the initial speed of
ith node in the path (0 and M + 1 indices are for source and
destination nodes respectively), and if T (di, vi−1, vi) denotes
the expected time until when the nodes i − 1 and i can
communicate, then the problem becomes

Maximizev1,...,vM Minimum1≤i≤M+1T (di, vi−1, vi).

With respect to our basic problem of Section II, the link metric
here is T (·, ·, ·) and the node attribute or node metric here is
the speed vi of a node. Thus, for a given value of the hop
distances, the above problem is identical to that of Equation 3
in Section II.

In the simulation results presented here, the time slot length
has been taken as 0.1 seconds. For our simulations we consider
that the probabilities p1 = · · · = pL = p are identical for
all lanes. The set of possible lane speeds is si, 1 ≤ i ≤ L
and hence vj ∈ {si, 1 ≤ i ≤ L}. We assume that s1 <
s2 < · · · < sL. The simulator computes the expected link
lifetimes of all possible links by exhaustively simulating over
all possible speed assignments v = {v1, · · · , vM} to the relay
nodes for a given scenario of M relay nodes, L lanes, the
hop distance vector d = {d1, · · · , dM}, speeds of source
and destination v0 and vM+1, wireless transmission range R,
source and destination separation D and the probability p.
Once an exhaustive set of link lifetimes for all possible values
of v is obtained by employing this brut force method, either
of the objective functions of Equation 3 or 4 is applied over
this set to obtain an optimal speed assignment policy resulting
in the choice of a best or optimal path.

A. Simulation scenarios

A car battery operated mobile device has a typical transmis-
sion range of around 200 meters. We therefore consider hop
distances in a VANET to vary from 140 to 200 meters and
a wireless transmission range of 200 meters is considered for
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Fig. 1. Link lifetime equalization over continuum of speeds

all the simulation scenarios. It has been shown in a previous
work [3] that large number of hops in an ad hoc network can
significantly degrade the TCP throughput performance. Based
on this result, we consider the number of hops (M + 1) to
vary from 2 to 7 only and the distance between the source
and destination nodes is varied from 800 to 1200 meters. We
perform simulations for the number of lanes L varying from
2 to 6 and unless explicitly stated in the discussion on the
simulation results, the associated speeds are chosen as shown
in the table that follows,

l 1 2 3 4 5 6
sl (m/s) 14 17 22 30 42 55

≈ sl (km/hr) 50 60 80 110 150 200

Simulations were carried out for a large set of real life
scenarios. In the following part of this section we discuss the
various scenarios that were simulated and compare their results
with the link metric equalization property that we obtained in
this paper earlier.

1) Lifetime Equalization over continuum set of speeds for
small transition probabilities: In Figure 1 we plot the results
of the scenario L = 3, M = 1, v0 = s3 = 22m/s, v2 = s1 =
14m/s, p = 0.99999, D = 300m and d = (143, 157). In
order to be able to validate the equalizing structure obtained
earlier over a continuum set of intermediate node speeds, we
vary the speed associated with lane 2 from 14m/s to 30m/s
in small steps of 2m/s and plot the link lifetimes for each such
speed of lane 2 separately. This allows the only intermediate
node 1 to be assigned with one of the quasi-continuum set
of speeds for the optimization problem of Equation 3 or 4
equivalently. It can be seen in the figure that under optimality,
for varying values of v1, the optimal lifetimes of the links
between node 0 and 1 and node 1 and 2 are different. However
for v1 = 23m/s the optimal lifetimes of the two adjacent
links are almost equal (the line joining them is almost flat)
thus confirming our result obtained in Section II-B that the
lifetimes of adjacent links should be equalized in order to
optimize the objective function of Equation 4. In fact, it can
be observed that we obtain the maximum of the least of the
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Fig. 2. Link lifetime equalization under optimal policy
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Fig. 3. Link lifetime equalization under optimal policy

two link lifetimes for speed v1 = 23m/s and the optimal
lifetimes obtained for other values of v1 are not truly optimal
because of the unavailability of the choice of speed 23m/s in
those cases.

2) Lifetime Equalization under the optimal policy for small
transition probabilities: To strengthen our validation of the
link metric equalization structure discussed in the previous
note, in Figure 2, we plot the link lifetimes for a particular
subset of the all possible speed combinations (including the
optimal combination) for a given scenario. Figures 3 and 4
illustrate the same result for two more set of given scenarios.
It is clearly seen in these figures that at the optimal policy
the link lifetimes are equalized and the maximum of the
least link lifetimes is obtained at the optimal policy, by
definition. Figure 2 uses the scenario L = 6, M = 3,
v0 = 14m/s, v4 = 30m/s, p = 0.99999, D = 700m and
d = (160, 175, 180, 185). Figure 3 uses the same scenario as
in Figure 2 except for d = (182, 162, 176, 180). Figure 4 uses
the scenario L = 55, M = 3, v0 = 14m/s, v4 = 30m/s,
p = 0.99999, D = 700m and d = (169, 166, 167, 198).

IV. CONCLUSION

We have considered path optimization problems in wireless
networks where a link metric depends on attributes associated
with the end nodes. We relate these path optimization problems
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to a Max-Min form class of problems and show that the
optimal or best path satisfies the property that the link metrics
of consecutive links in a multi-hop route are equalized. This
property has been validated with a vehicular mobile ad hoc
network (VANET) simulator for the route lifetime maximiza-
tion problem.
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