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Abstract

Let B be a Galois extension of BG with an inner Galois group G
where G = {gi | gi(x) = UixU−1

i for some Ui ∈ B and for all x ∈
B, i = 1, 2, · · · , n for some integer n invertible in B}. Then B is a
composition of two Galois extensions B ⊃ BK with an inner Abelian
Galois group K and BK ⊃ BG with an inner Galois group G/K where
K = {g ∈ G | g(Ui) = Ui for each i}. Descriptions of B ⊃ BK and
BK ⊃ BG are given.
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1 Introduction

The class of central Galois algebras over a commutative ring with an inner
Galois Group has been investigated ([1], [2]). It was shown that any central
Galois algebra B over R with an inner Galois group G is an Azumaya projec-
tive group algebra RGf of G over R with a factor set f : G×G −→ units of R
([1], Theorem 6). Conversely, any Azumaya projective group algebra RGf over
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R with a factor set f : G × G −→ units of R is a central Galois algebra with
an inner Galois group induced by the basis elements of RGf ([2], Theorem 3).
In case R is indecomposable, in [2], all central Galois algebras with an Abelian
inner Galois group G are found, and an application to the commutative theory
is obtained by giving a Kummer type theorem for Abelian extensions. More-
over some types of Galois extensions of a ring (not necessarily commutative)
with an inner Galois group have been studied such as crossed products, skew
polynomial rings, and Hirata separable extensions ([5], [8], [9], [10]). The pur-
pose of the present paper is to continue the study of a Galois extension B
of a ring BG with an inner Galois group G where G = {gi | gi(x) = UixU−1

i

for some Ui ∈ B and for all x ∈ B, i = 1, 2, · · · , n for some integer n invert-
ible in B}. We shall show that B is a composition of two Galois extensions:
(1) B ⊃ BK with an Abelian inner Galois group K as studied in [2], where
K = {g ∈ G | g(Ui) = Ui for each i} such that BK is a central algebra over
CKf and contains BG and CGf as commutator subalgebras of B over C, and
(2) BK ⊃ BG with an inner Galois group G/K. Moreover, characterizations
are given for BK being a projective group ring of G/K over BG.

Throughout this paper, we assume that B is a ring with 1, G a finite
automorphism group of B of order n for some integer n invertible in B, C the
center of B, BG the set of elements in B fixed under each element in G. We
call B a Galois extension of BG with Galois group G if there exist elements
{ai, bi in B, i = 1, 2, ..., m} for some integer m such that

∑m
i=1 aig(bi) = δ1,g

for each g ∈ G. A ring B is called a Galois algebra over R if B is a Galois
extension of R which is contained in C, and a central Galois algebra over C if
B is a Galois extension of C. Let A be a subring of B with the same identity
1. The commutator subring of A in B is denoted by VB(A). For the definitions
of a separable or a Hirata separable extension and an Azumaya algebra, see
[3] and [7]. As given in [1], a projective group ring RGf of a group G of order
n over a ring R with a factor set f : G × G −→ units of R is a ring with an
R-basis {Ui, i = 1, 2, · · · , n | rUi = Uir for each r ∈ R and UiUj = Ukf(gi, gj)
where gigj = gk ∈ G}.

2 A Composition of Galois Extensions

In this section, let B be a Galois extension of BG with an inner Galois group
G of order n invertible in B, C the center of B, and K = {g ∈ G | g(Ui) = Ui

for each i = 1, 2, · · · , n}. Then we shall show that B is a composition of two
Galois extensions: (i) B is a Galois extension of BK with an Abelian inner
Galois group K such that BK is a central algebra over CKf where CKf is a
projective group algebra of K over C with a factor set f : K × K −→ units
of C, and BK contains BG and CGf as commutator subalgebras of B over C,
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and (ii) BK ⊃ BG with an inner Galois group G/K. We begin with a lemma
to show that B contains a projective group algebra CGf , and that G contains
a normal Abelian inner subgroup K.

Lemma 2.1 Let B be a Galois extension of BG with an inner Galois group
G, G = {gi | gi(x) = UixU−1

i , Ui ∈ B and for all x ∈ B, i = 1, 2, · · · , n for
some integer n invertible in B}. Then (i) B contains a separable projective
group algebra CGf of G over C with factor set f : G×G −→ units of C where
f(gi, gj) = UiUjU

−1
k and gigj = gk, and (ii) K is an Abelian normal subgroup

of G.

Proof. (i) By Theorem 2.1 in [10], B contains a separable projective group
algebra CGf of G over C with factor set f : G × G −→ units of C where
f(gi, gj) = UiUjU

−1
k and gigj = gk. Moreover, since the order n of G is

invertible in B, CGf is separable over C.

(ii) Since CGf is invariant under the action of G and K = {gj ∈ G | gj(Ui) =
Ui for each i = 1, 2, · · · , n}, UjUi = UiUj for each gj ∈ K and each i =
1, 2, · · · , n, that is, gjgi = gigj and f(gj, gi) = f(gi, gj) for each gj ∈ K and for
all i = 1, 2, · · · , n. Thus K is a normal Abelian inner subgroup of G.

Theorem 2.2 Let B be a Galois extension of BG with an inner Galois
group G of order n invertible in B, and C the center of B. Then B is a
composition of two Galois extensions: (1) B is a Galois extension of BK with
an Abelian inner Galois group K such that BK is a central algebra over CKf

and contains BG and CGf as commutator subalgebras of B over C, and (2)
BK is a Galois extension of BG with an inner Galois group G/K.

Proof. (1) Since B is a Galois extension of BG with an inner Galois group
G, B is a Galois extension of BK with an Abelian inner Galois group K by
Lemma 2.1-(ii). Next, we claim that BK is a central algebra over CKf and
contains BG and CGf as commutator subalgebras of B over C. In fact, since
B is a Galois extension of BG with an inner Galois group G, B is a Hirata
separable extension of BG ([7], Corollary 3). Since B is a Galois extension of
BG again, B is left or right BG-finitely generated projective. Moreover, since
n is invertible in B by hypothesis, BG is a direct summand of B as a BG-
bimodule. Hence VB(VB(BG) = BG and VB(BG) is a separable C-algebra ([6],
Theorem 1) for BG is separable over itself. Noting that CGf is a separable
C-subalgebra of VB(BG), we have CGf = VB(VB(CGf) ([6], Theorem 1). But
VB(CGf) = BG, so VB(BG) = CGf . Thus BG and CGf are commutator
subalgebras of B over C. Similarly, the pair BK and CKf are commutator
subalgebras of B over C because B is a Galois extension of BK with an inner
Galois group K of an order invertible in B. Thus VB(BK) = CKf ⊂ BK , so



236 G. Szeto and L. Xue

VBK (BK) = CKf , that is, CKf is the center of BK ; and so BK is a central
algebra over CKf .

(2) Since n is a unit in B and K is a normal subgroup of G by Lemma 2.1,
BK is a Galois extension of BG with inner Galois group G/K.

3 The Galois Subring BK

In this section, BK as given in Theorem 2.2 is described. Equivalent conditions
are given for BK which is a projective group ring of G/K over BG. Thus more
properties of BK can be found. We shall keep all notations as given in section
2 for a Galois extension B of BG with an inner Galois group G of order n
invertible in B.

Theorem 3.1 The following statements are equivalent:
(1) The projective group algebra CGf is a central Galois algebra over CKf

with Galois group G/K;
(2) CGf is a central algebra over CKf ;
(3) BG is a central algebra over CKf ;
(4) BK = BG(G/K)f which is a projective group ring of G/K over BG

with factor set f : G/K × G/K −→ units of C where f is induced by f ;
(5) BK =

∑
g∈G BGUg.

Proof. (1)=⇒(2) It is clear.

(2)=⇒(1) Let S = {Ug | g ∈ G/K} where Ug = Ug for an element g ∈ G.
We claim that S are linearly independent over CKf . In fact, let

∑
Ug∈S agUg =

0 for some ag ∈ CKf . Then ag =
∑

h∈K cg,hUh for some cg,h ∈ C; and so∑
Ug∈S

∑
h∈K cg,hUhUg = 0, that is,

∑
Ug∈S

∑
h∈K cg,hf(h, g)Uhg = 0. Thus

cg,hf(h, g) = 0. Since f(h, g) is a unit in C, cg,h = 0 for each Ug ∈ S and
h ∈ K. Therefore ag = 0 for each Ug ∈ S. This implies that S are linearly
independent over CKf ; and so CGf = (CKf )(G/K)f , a projective group al-

gebra G/K over CKf with factor set f : G/K ×G/K −→ units of C induced
by f : G × G −→ units of C. Noting that n, the order of G, is a unit in
C, we conclude that (CKf )(G/K)f is a separable CKf -algebra. Moreover, by
hypothesis, CKf is the center of CGf , so CGf is an Azumaya CKf -algebra.
Consequently, CGf (= (CKf)(G/K)f) is a central Galois algebra over CKf

with Galois group G/K ([2], Theorem 3).

(2)⇐⇒(3) By Theorem 2.2, BG and CGf are commutator subalgebras of
B, so it can be verified that BG and CGf have the same center.

(1)=⇒(4) Since CGf is a central Galois algebra over CKf with Galois
group G/K, BG(CGf ) is a Galois extension of BG with Galois group G/K.
On the other hand, BK is also a Galois extension of BG with Galois group
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G/K such that BG(CGf ) ⊂ BK , so BG(CGf) = BK from the fact that the
Galois group of BG(CGf ) is induced by and isomorphic with G/K. Therefore
BK = BG(CGf) = BG(CKf)(G/K)f = BG(G/K)f .

(4)=⇒(5) It is clear because CKf ⊂ BG.

(5)=⇒(2) By hypothesis, BK =
∑

g∈G BGUg, so BK = BGGf = BG(CGf).
By Theorem 2.2, BG and CGf are commutator subalgebras of B, so that
BK = BG(CGf) implies that BK , BG, and CGf have the same center. But
the center of BK is CKf by Theorem 2.2 again, so CKf is the center of CGf .

Theorem 3.1 implies some consequences in two special cases: (i) K = 〈1〉,
and (ii) BG is a separable CKf -algebra. In case K = 〈1〉, Theorem 3.1 derives
a result for a projective group ring, B = BGGf which generalizes the structure
theorem for an Azumaya projective group algebra as given in [2]. In case BG

is a separable CKf -algebra, Theorem 3.1 gives a stronger structure theorem
for BK .

Corollary 3.2 By keeping the notations of Theorem 3.1, the following state-
ments are equivalent:

(1) CGf is a central Galois algebra over CKf with Galois group G/K and
BG is a separable CKf -algebra;

(2) CGf is a central algebra over CKf and BG is a separable CKf -algebra;
(3) BG is an Azumaya algebra over CKf ;
(4) BK = BG(G/K)f as Azumaya algebras over CKf ;

(5) BK =
∑

g∈G BGUg as Azumaya algebras over CKf .

We note that B is an Azumaya C-algebra if and only if BK is a separable
C-algebra. We shall show that B is a Hirata separable extension of CGf and
CKf respectively.

Theorem 3.3 Assume B is an Azumaya C-algebra. Then B is a Hirata
separable extension of both CGf and CKf respectively such that both CGf and
CKf are direct summands of B as a bimodule over themselves, respectively.

Proof. Since n is a unit in B, CGf and CKf are separable C-subalgebras of
B. By hypothesis, B is an Azumaya C-algebra, so B is projective over CGf and
CKf respectively ([3], Proposition 2.3, page 48). Hence B is a Hirata separable
extension of both CGf and CKf respectively ([4], Theorem 1). Moreover, both
CGf and CKf are separable C-subalgebras of the Azumaya algebra B, so they
are direct summands of B as a bimodule over themselves.

We conclude the present paper with two examples to demonstrate Galois
extensions with an inner Galois group and an Abelian inner Galois group,
respectively.
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Example 1. Let R be a central Galois algebra with Galois group G and
B = Δ(R,G, f) the crossed product of G over R with a trivial factor set f .

Then (1) B is a Galois extension of BG with an inner Galois group G induced
by G;

(2) the center of Δ(R,G, f) = R0 = the center of RGGf where R0 is the
center of R;

(3) B contains R0Gf , a projective group algebra of G over R0;

(4) R0Gf is not a central Galois algebra with Galois group G induced by
G where G = G/K and K is the center of G;

(5) BK = RGGf ; and

(6) B ⊃ BK is a Galois extension with an Abelian Galois group K but
BK ⊃ BG is not a Galois extension with Galois group G/K.

Example 2. Let R be a commutative Galois algebra with a cyclic Galois
group 〈ρ〉 of order n invertible in R, and B = R[x, ρ] = R[X, ρ]/〈Xn − a〉 for
some a invertible in Rρ where 〈Xn − a〉 is the ideal of R[X, ρ] generated by
Xn − a. Then

(1) B = R[x, ρ] is a separable skew polynomial ring over R with a basis

{1, x, x2, · · · , xn−1 | xn = a} where xr = ρ(r)x for any r ∈ R;

(2) B ∼= R〈ρ〉f , a crossed product of 〈ρ〉 over R with factor set f : 〈ρ〉 ×
〈ρ〉 −→ units of R by f(ρi, ρj) =

{
1 if i + j < n
a if i + j ≥ n;

(3) B ⊃ Bρ is a Galois extension with an Abelian inner Galois group 〈ρ〉
induced by ρ;

(4) the center of B is Rρ;

(5) B contains Rρ〈ρ〉f , a projective group algebra of 〈ρ〉 over Rρ with factor
set f ;

(6) Rρ〈ρ〉f is a commutative separable Rρ-algebra, so K = 〈1〉; and hence
BK = B.
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