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Abstract. Direct stability analysis of AC/DC power systems using a 
structure-preserving energy function (SPEF) is proposed in this paper. The 
system model considered retains the load buses thereby enabling the 
representation of nonlinear voltage dependent loads. The HVDC system is 
represented with the same degree of detail as is normally done in transient 
stability simulation. The converter controllers can be represented by 
simplified or detailed models. Two or multi-terminal DC systems can be 
considered. The stability analysis is illustrated with a 3-machine system 
example and encouraging results have been obtained. 
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I. Introduction 

The application of energy functions for direct stability analysis of AC power systems 
has now reached a certain level of maturity (see Pai 1989, Ribbens-Pavella & Evans 
1985) where it can be used as a screening tool for both on-line and off-line studies, 
However, there are several issues that are yet to be fully resolved- detailed system 
modelling, fast computation of critical energy, accuracy of prediction and correlation 
of energy margins to stability limits. The present state-of-the-art application of energy 
functions involves prediction of either critical clearing times or energy margin for a 
three-phase fault at a bus followed by clearing of the fault with or without line tripping. 
Whereas the formulation of the energy function is relatively straightforward, the 
computation of critical energy is either based on (a) evaluation of unstable equilibrium 
point (UEP) or (b) potential energy boundary surface (PEBS) method. Both methods 
are strictly approximations as the trajectory of the system does not necessarily pass 
through the UEP. However, practical experience shows the accuracy of the results. 

While most of the work on energy functions is based on the reduced model of the 
system assuming constant impedance loads, recent developments in defining energy 
functions on a structure preserving model are promising as (a) realistic load models 
can be considered, (b) the problem of transfer conductances is eliminated. The reader 
is referred to Bergen & Hill (1981), Narasimhamurthi & Musavi (1984), Tsolas et a! 
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(1985), Varaiya et al (1985), Padiyar & Sastry (1983, 1987), Padiyar & Ghosh (1987), 
Hiskens & Hill (1989) for details. The structure preserving energy function (SPEF) has 
been developed for a two-axis generator model with excitation system (see Padiyar & 
Ghosh 1989). 

The application of energy functions for AC/DC system was first attempted by Pai 
et al (1981) by using a simplified DC link model. The dynamic loads due to the Dr 
link along with other loads were represented as current injections at generator internal 
buses of the reduced system using distribution factors. The application of SPEF with 
realistic DC link models was reported by Padiyar & Sastry (1984). Ni & Fouad (1987) 
have applied energy functions neglecting the DC link dynamics and assuming strong 
voltage support at the converter bus. DeMarco & Canizares (1992) have recently 
proposed a vector energy function for AC/DC systems with two components, one for 
AC and the other for DC. 

This paper presents an SPEF for AC/DC systems with two or multiterminal DC links. 
The energy function incorporates the Dr system as dynamic loads at converter buses. 
Detailed or simplified converter control models can be used. Voltage dependent non- 
linear loads are considered. The analysis is illustrated by an example of a 3-generator 
system. 

2. HVDC system model 

The HVDC system consists of two or more converters (if multiterminal operation is 
to be considered). A converter terminal is shown in figure 1. In general, there is more 
than one bridge connected in series. All the bridges at a terminal are identical and 
operate at the same value of the control angle 0 (delay or extinction angle). 

2.1 Converter model 

In transient stability studies, it is adequate to represent the converter by a simplified 
model in which the valve switchings are ignored. This is equivalent to ignoring the 
AC and DC harmonics. 

From converter theory (see Padiyar 1991) the average DC voltage (pole to ground) 
per unit at a converter terminal is given by 

where 
V~ = ka V cos 0 - R , l  a, 

k = V..) .  

(1) 

- ! I I I | T i  O v~ ~ + 

Figure 1. Single line diagram of 
converter station. 
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g Figure 2. Norton's equivalent of a converter. 

V~cb, Vdb, Idb and Zab are base AC voltage, DC voltage, DC current and DC impedance, 
respectively, nb is the number of bridges per terminal, Xc is the converter transformer 
leakage reactance (on valve side). 

For a rectifier, 0 = ct, while for an inverter, 0 = ;~. I~ and R, are assumed to be 
positive for the rectifier and negative for the inverter. The per unit system used here 
is more general than that used earlier (for example in Fudeh & Ong 1981). This is 
because V~c b can be chosen independently of Vdb and can assume different values 
for different terminals. Similarly n~, Ns and Np can vary depending on the terminal. 
The effect of these parameters is included in a single parameter k which can vary. 
From (1), the converter terminal can be represented by Norton's equivalent of a 
current source I in parallel with Rc (see figure 2). The power (Pd) and reactive power 
(ad) are given by 

ed = P V, sld, (2) 

Qd = Patan ~, (3) 

cos~ = Va/kaV, (4) 

where p is the number of poles (one or two). 

2.2 Dc network equations 

Unlike in AC networks, transients in a DC network are sometimes taken into account. 
However, it is simple to ignore fast transients and model only the resistive IX: network. 
The use of Norton's equivalent circuits for converters, enables the IX; network 
equations to be expressed with ground as reference node. The resistive Dr network 
is modelled as 

= i ,  (5) 

where [G'I is a conductance matrix of size n d where na is the number of converter 
terminals. It is assumed that non-converter buses are absent or are eliminated. 

2.3 Converter control model 

There are three types of controller models. 

(1) Detailed models which represent the dynamics of controllers and the parameters 
are tuned for particular system requirements. The use of such a model requires a 
knowledge of the actual system conditions for authenticity. The detailed controller 
model has to be interfaced with the network model considering the transients. 
(2) A performance model assumes that the controllers are adequately designed to 
carry out the objectives of the control. For example, it is assumed that the actual 
DC current in the link faithfully follows the current reference instantaneously or with 
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prespecified time delay. In the former case; it is equivalent to ignoring the controller 
dynamics and modelling the performance of the controller using steady-state control 
characteristics. Typical control characteristics in Vd--Id plane for a two-terminal 
system are shown in figure 3. The intersection of the rectifier and inverter charac- 
teristics defines the operating point. The operations at 'A' corresponds to current 
control at the rectifier and constant extinction angle (CEA) control at the inverter. 
This is the normal operating mode. However, voltage dip at the rectifier converter 
bus results in the mode shift where current control is transferred to the inverter and 
the rectifier operates at minimum ~ (delay angle). Figure 3 also shows the influence 
of voltage-dependent current order limiter (VDCOL) which is mainly provided for 
preventing voltage instability and as a back-up protection against commutation 
failures. 

The use of a performance model requires the use of mode shift logic to identify 
the transition from one mode to another. In multiterminal DC systems, the prediction 
of mode-shifts can be cumbersome. Hence, a variation of the performance model has 
been developed and is termed (Lefebvre et al 1991) a firing angle based simplified 
model. 
(3) In the firing angle based simplified model the identity of the DC network is explicity 
retained. The network model can be only resistive or include inductances also. 

3. AC system model 

The following assumptions are made in modelling the AC system: 

(i) the synchronous machine is represented by classical model; 
(ii) the AC network is assumed to be lossless; 
(iii) machine damping is neglected. 

The assumption (i) is made here only for convenience and can be relaxed for detailed 
analysis including the effects of AVR (see Padiyar & Ghosh 1989). 

3.1 Generator model 

The swing equation for the ith generator, using centre of inertia (COt) variables, can 
be written as 

M~dgi = Pm~- Pei - ( M i / M r ) P c o P  

0=- (,Ol, 

(6) 

(7) 
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where 
Pe~ = Ei E sin(0i - r 

m 

Pcol = ~ (Pint- Pei), 
I = 1  

i =  1,2 . . . .  m, (8) 

(9) 

m is the number of machines. 

3.2 Load model 

The loads are modelled as arbitrary functions of thc respective bus voltages. Thus, 

PU = fpj(Vj), (10) 

QU = fqj(Vj) .  (11) 

3.3 AC network equations 

The AC network is described by the power flow equations at each bus. At converter 
buses, Pd and Qd are treated as ,dynamic loads. 

The power flow equations at bus i are given by 

Pi + P, + eiPdi = 0, (12) 

Qi + Q, + eiQdi = 0, (13) 

where e i = 1, if i~D (where D is the set of converter buses), and e i = 0, otherwise. Pi 
and Qi are the injected power and reactive power given by the following expressions. 

N 

Pi = miEi E s i n ( r  Oi)/X'ai + ~_. Bi2 V i Vjsin e/j, (14) 
j= l  

N 
Oz=mi(V~2-E, Vicos(Oi--r ~ B,j Vi Vjcosr (15) 

j = l  

where m, = 1, if i~G (where G is the set of generator terminal buses), and mi = 0, 
otherwise. 

4. Structure preserving energy function 

Consider the following SPEF defined on the post-fault system. 

w(,~, 0, v, ~, t) = wl (co) + w2 (0, v,,~, t), 
where 

(16) 

m 

Wl(m)= ~ 1M .2 (17) 
i ~ q  , 

i : , l  

W2= W21(0)+ Wz2(t)+ W23(V)+W2,(O,d~,v)+ Wa(V,t), (18) 
m 

W 2 1 ( 0 ) = -  ~ Pm,(O,-O,o), (19) 
i = 1  

N 

w22(0= E $',oP~,(dr (20) 
i = 1  
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N 

w23(g)-- E I~:oCf~,(x,)/x,)dx,, 
i z l  

m 

w2,(0,#,v)= Z [((v,~/2) - E, V, eos(O,-r 
t = 1  

(21) 

X j - (( ~ / 2 -  E, ~oCOS(0~o - r a,] 
/v /r 

- 2 E �89 5cos%- Y,o VjoCOS%o], (22) 
i = l j = l  

Wd(V, t) = ~ [SttoPd1(ddpl/dt)dt + ~.(Qal/Vj)dVi]. 
J~l} 

(23) 

It can be shown that the derivative of W is zero along the system trajectory. For, 

m 

(c~WJc~w,)(dw,/dt) + ((3Wz/~Oi)'(dO,/dt) ) 
i = l  

m 

= ~ (Mi~trh ~ - P,,iogi + Pe~oA) = 0, (24) 
i = 1  

N N 

(c3W2/~9~,)(dr + (8W:/gt)= ~ (P~ + Pt, + e, Pd,)(dr 
i = 1  i---1 

(25) 

N 

(SW/SV~)= ~,(1/V~)(Q,~ + Q~ + e,Qa,)=O. (26) 
i = l  

Comments 

(1) It is assumed that the system models are well-defined in the sense that the voltages 
at the load buses can be solved in a continuous manner at any given time during 
the transient. This means that the system trajectories are smooth and there are no  
jumps in the energy function. 
(2) Consider the terms 

~toPu(d~Jdt)dt or ~,oea,(dr 

These can be expressed as 

$t, oP,(dr = eu(q~,- d?,o)- S',o(dPu/dt)dpidt, (27) 

~',oPjf(dCJdt)dt - P,~i(~b~- ~b~o ) - ]"to (dP dJdt)~idt. (28) 

If(dPffdt) and (dP~Jdt) are small, the second terms on the RHS of the above equations 
can be neglected. This approximation has the advantage of making the SPEF path-  
independent. 
(3) It can be shown that 

n~ 

w2,(o, ~,, v) = E �89 Qko), (29) 
k-- - I  
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where n, is the number of elements of the AC network including machine reactances 
and Qk is the reactive power loss in element k. From conservation of energy 

~Q~= Qo~- Z Q,j- Q.. ,  
k= l  i = l  j = l  ;:=I 

(30) 

where Q~ is the reactive power generation at the internal bus of generator i. Equation 
{30) can be used to simplify the computation of SPEF. 
(4) The component W~(V, t} of the energy function, which is attributed to the 
DC system, follows from treating Pd and Qa at each converter bus as dynamic loads. 
The effect of the DC link controller is handled indirectly influencing Pa and Q~. 
Thus any controller model can be considered. 

For a two-terminal DC system, neglecting DC system losses, W,~ can be expressed 
approximately as 

w~ 
where 

%, 

= w.~ + w.~ + %~, 

= e~[(~, - ~) - (6,o - ~to)], 

= k,a, ldiV:oSin r 
a v~ �9 = K t fl~v,oSm ~dVi, 

(3~) 

(32) 

(33) 

(34) 

q~ and q~r refer to the bus angles at rectifier and converter buses, respectively. 
Assuming that the inverter controls the power factor angle ~j (by keeping it constant) 

V, 2 2 Wda = k,a, ldlv,o[(k a 'V, 2 - V~2)'/2/(k,a, V,)]dV, ,  (35) 

Wd3 = ktadasin ~t( V~ - V,o ). (36} 

By noting that 

j [(x2 __ a2)lt2/x] dx  = (x 2 - a 2)112 _ a sec - t (x /a ) ,  

the integral in (35) can be expressed as 

W~2 =k,a, ld[V, sin(,-- V, osin;,o-(V,~,cos~,- V,o~,oCOS(,o)]. (37) 

It is to be noted that during a transient, the DC current /# is regulated by the 
rectifier and is assumed to be independent of V, and V~. ~ is dependent on V i. 

If there is a mode shift resulting in current control at the inverter and power factor 
control at the rectifier, the subscripts 'r' and 'i' are to be interchanged in (36) and (37). 

If 7 (extinction angle) is to be maintained constant at the inverter, then Wda can 
be expressed as 

v~ A %_, = td~,oE( + ~ E  + CV,2)~J2/V,]dV,, (38) 
A - -  - R 2 t2 

c i ~ d  

B = 2k~aiRclldcos Yt, 

c ={a-cos~)k~a~. 

An explicit expression for the integral of (38) can be obtained. 
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Figure 4. Block diagram of auxiliary controller. 

5. A numerical example  

For illustration, a 3-machine system example is adapted from Anderson & Fouad 
(1977). The single line diagram of the system is shown in figure 6. DC link is connected 
between buses 6 and 9. The  controller model is assumed to be performance model 
based on DC current and current modulation using an auxiliary controller (see figure 4) 
or emergency controller (see figure 5) is considered. The control signal for the auxiliary 
controller is taken from the difference in the phase angles of the two converter buses. 
A washout circuit is included to eliminate steady-state offset and filter out very low 
frequency components that  occur normally. The equations of the auxiliary controller 
and the emergency controller are given next. 

5.1 Auxil iary controller 

The block diagram of this controller is shown in figure 4. 
The dynamic and algebraic equations for this controller are given below. 

Id = (Z4 -- la)/Td, (39) 

p, = [(~b, - ~b,) - Yl "]/T1, (40) 

~)2 = [ ( 1  - T2/T3)Z1 -Y2]/T3, ( 4 1 )  

Z t = (0, - Or) - Yl, (42) 

Z2 = Z~ + Y2, (43) 

AI = K ~ Z z ,  (44) 

Z3 = Ircr + AI, (45) 

Z 4 Z 3 ,  i f  t r a i n  ~ Z 3 max ---~ -r �9 ~ lr�9 ' 

= I m'~ if Za > I ~a~ rcf ' ref  

_ imi. if Z3 < t~i" (46) rcf -~ " r e f  " 

d i s torbance 
. . . . . . . . . .  - 7  

0 | l  t 2  l rel  

tlX 

m m  
I r*f 

I m 
; 1 

Figure 5. Block diagram of emergency controller. 
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2 3 

- ~ 1  Figure 6. Single-line diagram of 3-machine system. 

5.2 Emergency controller 

This is shown in figure 5. Here the change in the current reference AI increases from 
zero to Alax  linearly with time~ when a disturbance in the AC system is sensed. 

The dynamic and algebraic equations are given below. 

ia = (Z4 - ln)/Tn, (47) 

A I =  O, for O~<t~<t~, 

AI (t--t~)/(t2--t~),  for t~ ~<t~<t2, 

A/max, for t > t2. 

for Z3 and Z4 are the same as given earlier. 

(48) 

The expressions 
It is assumed that the disturbance originates at t = 0 + and the time required to 

sense this is t I . In this type of controller, additional capacitors are switched on at 
time t2 to meet the increased reactive power requirements at the converter buses due 
to increased current order. 

5.3 Case study and results 

The disturbance considered is a 3-phase-fault at t = 0 at bus 5 followed by clearing 
of the fault by switching lines 5-7 off. For simplicity, the load characteristics are 
assumed to be of constant impedance type. The following cases are considered: 

case 1 - w i t h  constant current reference (no modulation), 
case 2 - with auxiliary controller K w = 3, 
case 3 - with emergency controller. 

In ease 3, it is assumed that an additional capacitor bank (of 0-2.5p.u.) is added 
at both converter buses after time t2 to account for the increased reactive power 
requirements. 

The critical clearing time ( T )  obtained by digital simulation is 0.164-0.165 s for 
case 1,0.161-0.162s for ease 2 and 0.173-0.174s for ease 3. The corresponding value 
of 7', obtained by prediction (using the PEBS method) is 0.159-0.160, 0.158-0.159 
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Figure 7. Variation of  DC quantities. (a) Case 1 (stable); (b) case 2 (stable); 
(e) case 3 (stable). 
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and 0.175-0-176 s, respectively. Tile corresponding value of critical energy is 0"594, 
0.569 and 0-813 p.u., respectively. It is observed that To, obtained by prediction agrees 
well with that obtained by digital simulation. To, is slightly reduced for case 2 compared 
to that for case 1. It is to be noted that the auxiliary controller is provided primarily 
for damping oscillations in the system. The effectiveness of this controller also depends 
on the choice of control parameters and the reactive power constraints. The latter 
can be explained as follows: As DC current is increased, the reactive power 
requirements are also increased. If adequate reactive power is not available, the Ac 
voltage will drop, thus (partially) nullifying the effect of the controller. 

As expected, the emergency controller helps in improving the transient stability. 
The results obtained by TEF are accurate enough to predict the effect of controllers. 
Figures 7a-c show, for the post-fault system, the DE voltage Va(= V~, = Vd~ since R 
is assumed to be zero), the DE link current la, the reactive power Qdr, Qa~ and the 
active DC power Pa( = Pa, = Pdt), for cases 1--3, respectively, when the fault is assumed 
to be cleared critically. It is observed in the cases considered that V a decreases initially 
and then increases. The variation is greater in case 3 as compared to that in the other 
two cases. This is due to the variation in the AC bus voltages. The DC link current 
Id varies as expected in cases 2 and 3; however, its magnitude in case 2 is controlled 
by the AC bus frequency signal. In this case, it is observed that the current increases 
initially and, sometime after the fault clearance, falls till it is limited to a minimum 
value by the limiter. 

IX: power increase is not so significant because of reduction of DC voltage even 
when the DC current is increased in case 3. Yet, when compared to cases 1 and 2, 
the transient stability is improved. In case 2, even though the current is initially 
increased, it decreases due to the control signal becoming negative, and the current 
is prevented from going below the minimum value by the limiter. This shows that 
the auxiliary controller considered here has not helped in improving the transient 
stability. 

Figures 8a and b show the variation of the total, potential and kinetic energies for 
case 3 for (a) stable, and (b) unstable conditions. In general, the total energy increases 
from its initial value (=  0) till the fault is cleared and remains constant afterwards, 
as expected. However, a slight increase in the total energy can be observed some 
time after the fault clearance. This may be due to the numerical errors (truncation 
and round-off) introduced in the evaluation of the energy function. In the cases 
depicted, it can be observed that the potential energy is initially negative and then 
increases. This is because the post-fault configuration considered is different from the 
prefault one because of line switching,. As regards the kinetic energy, it can be observed 
that when the system is stable, this energy increases until the fault is cleared and 
then reduces to zero after some time. This is expected for the first swing stability. 

6. Conclusions 

A structure-preserving energy function is proposed for AC/DC systems, which is general 
enough to cover two or multiterminal DC links, simplified or detailed converter con- 
troller models. As a first approximation, the energy function can be formulated as 
path-independent. 
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Figure 8. Variation of total, kinetic and potential energies. Case 3 - stable (a) and 
unstable (b). 

Stability analysis carried out on a 3-machine system indicates the following. 

(1) A DC link can improve the transient stability of the overall system. However, 
proper controllers have to be used to exploit this advantage of DC links; 

(2) T predicted by the direct method using SI'EF gives accurate results. 
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