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Abstract

In this note, we show how abstract localization and graded versions of the
Artin-Rees property may be applied to construct structure sheaves over the
projective spectrum Proj(R) of a graded fully bounded noetherian ring R.

Introduction.

The main purpose of this note is to construct structure sheaves on the projective
spectrum Proj(R) of a graded fully bounded noetherian ring R, generalizing the
analogous construction in the commutative case. The principal tool to realize this
will be abstract localization (in the sense of [5, 6, 7, 16, 19, et al]) in the category
R−gr of graded left R-modules.

Actually, if I is a graded ideal contained in R+ =
⊕
n>0 Rn, then for any graded

left R-module M , one associates to the Zariski open subset D+(I) ⊆ Proj(R) the
graded R-module of quotients Qg

I(M), obtained by localizing M with respect to
the torsion at positive powers In of I . In general, however, this construction only
yields a separated presheaf on Proj(R), which is not necessarily a sheaf. Of course,
one may derive from this a sheaf on Proj(R), by applying the usual sheafification
process. Nevertheless, this is highly unsatisfactory in the present context, since
passing over to the associated sheaf enlarges the modules of global sections, which,
in particular, makes the sheaf thus obtained rather useless for any representational
aims, for example.

If we want to obtain a sheaf directly, we may either restrict the class of graded
R-modules, we wish to represent or change the topology on Proj(R) in a reasonable

Received by the editors June 1995.
Communicated by A. Verschoren.

Bull. Belg. Math. Soc. 3 (1996), 325–343



326 S. Samir Mahmoud

way. In this note, we show how the latter approach gives satisfactory results over
graded fully bounded noetherian (FBN) rings.

The starting point of our approach is the realization that the sheaf axiom is
essentially equivalent to some compatibility property between torsion and localiza-
tion at radicals. In fact, if σ and τ are radicals in R−gr, the category of graded
left R-modules, then σ and τ are compatible, i.e., σQτ = Qτσ (where Qτ is the
localization functor associated to τ ) if and only if the following sequence of functors
in R−gr is exact:

0→ Qσ∧τ → Qσ ⊕Qτ → Qσ∨τ .

On the other hand, one may show that any pair of stable radicals in R−gr (i.e.,
whose associated torsion class is closed under taking injective hulls) are compatible.
Now, it is rather easy to prove that the radical in R−gr associated to a twosided
graded ideal I is stable exactly when I has the (graded) Artin-Rees property. An
obvious solution to our problem thus seems to be to restrict the Zariski topology
on Proj(R) to the set T+(R) consisting of all open sets D+(I), with I a graded
Artin-Rees ideal. Unfortunately, for arbitrary rings, T+(R) fails to be a topology,
in general. However, if R is a graded FBN ring, one may prove that the Artin-Rees
condition is equivalent to the so-called weak Artin-Rees condition, and, using this,
one easily shows that for any graded FBN ring R, the set T+(R) is a topology,
indeed.

This note is organized as follows. In the first two sections, we collect some
necessary background and new material on graded rings and modules, as well as
on localization in the category of graded left R-modules. In the next section, we
concentrate on graded FBN rings and, in particular, on the relationship between
stability and the (weak) Artin-Rees property. These results are used in the following
section, in order to construct the announced structure sheaves on Proj(R) and to
calculate their stalks in the module-finite case. We conclude with some remarks
about the generalization of the previous results to graded rings, which are no longer
FBN, but only FBN up to torsion at R+. It appears that our constructions may be
generalized easily to this set-up. Since this requires rather technical results stemming
from abstract localization theory and the theory of relative invariants, cf. [22, 23],
we preferred to limit ourselves to a brief sketch of this approach and leave details to
the reader.

1 Graded rings and modules.

Throughout, R will denote a positively graded ring and R−gr the category of graded
left R-modules. If no ambiguity arises, we will usually just speak of graded R-
modules. For generalities about graded rings and modules, we refer to [15]. Let us
recall here, however, some of the ideas we will need in the sequel.

If M ∈ R−gr and if n is an integer, then we denote by M(n) the n-th shifted
version of M , i.e., the graded R-module M(n) coincides with M as an ungraded
R-module and has gradation given by M(n)p = Mn+p for any integer p. We denote
by Homn

R(M, N) the additive group of R-linear maps u : M → N of degree n, i.e.,
with the property that u(m) ∈ Nn+p for any m ∈Mp. Morphisms in R−gr are given
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by putting HomR−gr(M, N) = Hom0
R(M, N), for any pair of graded R-modules M

and N . In particular,

Homn
R(M, N) = HomR−gr(M, N(n)) = HomR−gr(M(−n), N),

for any n ∈ Z. We will also write HOMR(M, N) =
⊕
n∈Z Homn

R(M, N). It has

been proved in [21] that if M ∈ R−gr is a graded essential extension of a graded
submodule N ⊆ M , then M is an essential extension of N in R−mod as well. If
M ∈ R−gr and if we let E(M) denote the injective hull of M in R−mod, then,
for any integer m, we define Eg

m(M) to consist of all x ∈ E(M) with the property
that there exists some graded essential left ideal L of R with the property that
Lnx ⊆ Mm+n for all integers n. One may then prove that Eg(M) =

⊕
m∈ZEg

m(M)
is the maximal submodule of E(M), with a gradation such that it contains M
as a graded submodule. This in turn amounts to saying that Eg(M) is (up to
isomorphism) the injective hull of M in R−gr.

Lemma 1.1 For all M ∈ R−gr and all integers n, we have Eg(M(n)) = Eg(M)(n).

Proof : Clearly Eg(M)(n) contains M(n) as a graded submodule and is a graded
essential extension of the latter, so Eg(M)(n) injects into Eg(M(n)). On the other
hand, if x ∈ Eg(M(n))q, say, then we may find some graded essential left ideal L of
R with the property that Lpx ⊆ M(n)p+q = Mn+q+p, for all integers p. This shows
that x ∈ Eg(M)n+q = Eg(M)(n)q , thus proving the assertion. �

We will also need the following result, whose proof may be found in [21]:

Lemma 1.2 If M ∈ R−gr, then Ass(M) = Assg(M(n)), for all integers n.

Let us briefly recall here some generalities about the graded rank rankg(M) of a
(finitely generated) graded left R-module. For full details, we refer to [15].

We say that M ∈ R−gr has finite graded rank, if its injective hull Eg(M) is
a finite direct sum of indecomposable graded injectives. In particular, any graded
uniform left R-module M has finite graded rank, as its injective hull Eg(M) is by
definition indecomposable. It is actually easy to see that M has finite graded rank
if and only if M is an essential extension of a finite direct sum

⊕n
i=1 Ni of graded

uniform left R-modules. The integer n, which is also the number of components of
the decomposition of Eg(M) into a direct sum of indecomposable injectives, is the
graded (uniform) rank of M .

Amongst its main properties, let us mention that

rankg(M1 ⊕M2) = rankg(M1) + rankg(M2),

for any M1, M2 ∈ R−gr.
Note also that. if M has finite graded rank and if N is a graded left R-submodule

of M , then rankg(N) ≤ rankg(M), with equality if and only if N is essential in M .

Lemma 1.3 Every non-zero graded left R-module of finite rank has a graded uni-
form submodule.
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Proof : If M ∈ R−gr has finite graded rank, then its graded injective hull Eg(M)
is a finite direct sum

⊕n
i=1 Ei of non-zero indecomposable graded submodules Ei.

Clearly the graded submodules 0 6= Mi = M ∩Ei of M are independent. Since each
Mi is essential within the corresponding Ei, obviously

⊕n
i=1 Mi is graded essential

within
⊕n

i=1 Ei = Eg(M), hence within M . This proves the assertion. �

A graded ring R is graded semisimple, if every M ∈ R−gr is semisimple, i.e., if
R−gr is a semisimple category. This is equivalent to the existence of a direct sum
decomposition R = L1 ⊕ . . . ⊕ Ln of R into minimal graded left R-ideals. We say
that R is graded simple if the decomposition is such that HOMR(Li, Lj) 6= 0 for
every 1 ≤ i, j ≤ n. It follows that for each couple i, j, there exists some integer
nij ∈ Z with Li = Lj(nij). If, moreover, nij = 0 for each choice of i and j, then R is
said to be uniformly simple. There is a graded version of Wedderburn’s Theorem:
if R is graded simple (resp. uniformly simple), then there exists a graded division
ring D and an n-tuple d ∈ Zn such that R ∼= Mn(D)(d) (resp. R ∼= Mn(D)), the
notation Mn(D)(d) being explained in [15]. We call R a graded (left) Goldie ring, if

R has finite graded rank and if R satisfies the ascending chain condition on graded
left annihilators. If R admits a graded semisimple artinian ring of fractions, then R
is a graded Goldie ring. The converse does not hold true, in general, unless we add
some extra (reasonably mild) conditions, cf. [15]:

Proposition 1.4 Let R be a semiprime graded Goldie ring satisfying one of the
following conditions:

1. R has a central homogeneous element of positive degree;

2. no minimal prime ideal of R contains R+ =
⊕
n≥1 Rn;

3. R has a regular homogeneous element of positive degree;

4. all homogeneous elements of positive degree are nilpotent.

Then R has a graded semisimple artinian ring of fractions.

Using the property that graded left ideals in a prime graded Goldie ring are essential
(in the graded sense), if and only if they contain a regular element (a fact, which
may be proved in essentially the same way as its non-graded analogue), one easily
gets:

Corollary 1.5 Any prime graded Goldie ring admits a graded simple artinian ring
of fractions.

Lemma 1.6 Let R be a semiprime graded left Goldie ring and M a graded left R-
module. If M is not torsion, then M contains a graded uniform submodule, which
is isomorphic to a graded left ideal of R.

Proof : Pick an element x ∈ M , which is homogeneous and not torsion. Then the
left ideal AnnR(x) is not essential in R, so there exists a non zero graded left ideal
I of R with the property that I ∩AnnR(x) = 0. Since R has finite rank, I contains
a graded uniform ideal J . As J ∩ AnnR(x) = 0, it follows that J is isomorphic to
Jx, so the submodule Jx of M satisfies our requirements. �
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Lemma 1.7 Let R be a prime graded left noetherian ring. Consider a finitely gen-
erated graded left R-module M , endowed with a chain of graded R-submodules

M0 ⊃ M1 ⊃ . . . ⊃ Mn,

such that all quotients are torsionfree. Then rankg(M) ≥ n.

Proof : Let us argue by induction, the case n = 0 being trivial. So, assume the
statement to be valid for chains of length strictly smaller than n. ¿From the above
chain, we may thus infer that rankg(M1) ≥ n− 1. Since M0/M1 is torsionfree, M1

is not essential in M0, so there exists a nonzero graded R-submodule N of M0 with
the property that N ∩M1 = 0. We thus obtain:

rankg(M) ≥ rankg(N ⊕M1) > rankg(M1) ≥ n− 1,

i.e., rankg(M) ≥ n. �

2 Graded Localization

The notion of torsion and localization may be introduced in any Grothendieck cat-
egory, cf. [16, 19, et al], so applies to the category R−gr, as well. In particular,
a radical (or: idempotent kernel functor, cf. [7]) is a left exact subfunctor σ of the
identity in R−gr, with the property that for any graded R-module M , we have
σ(M/σM) = 0. To any radical σ, we may associate a torsion class Tσ resp. a tor-
sionfree class Fσ, which consists of all graded R-modules M with σM = M resp.
σM = 0, each of which completely determines σ.

To any radical σ, we may also associate a localization functor Qσ in R−gr.
This functor yields for any graded R-module M a graded module of quotients (with
respect to σ), denoted by Qg

σ(M) and endowed with a canonical morphism jσ : M →
Qg
σ(M) with σ-torsion kernel and cokernel (a so-called σ-isomorphism). The graded

module of quotients Qg
σ(M) satisfies the universal property that any σ-isomorphism

of graded R-modules N1 → N2 induces a bijection

HomR−gr(N2, Qg
σ(M))→ HomR−gr(N1, Qg

σ(M)).

If the canonical morphism jσ : M → Qg
σ(M) is an isomorphism, then we say that

M is σ-closed. We denote by (R, σ)−gr the full subcategory of R−gr consisting of
all σ-closed graded R-modules.

As in [21], let us call a radical σ in R−gr rigid if (σM)(n) = σ(M(n)), for any
integer n and any M ∈ R−gr. For example, if τ is a graded radical in R−mod
(i.e., for any M ∈ R−gr the torsion τM ⊆ M is a graded left R-submodule), then
τ induces a radical σ in R−gr in the obvious way, and it is clear that σ is rigid.

To each radical σ in R−gr, we associate the set Lg(σ), consisting of all graded
left ideals L of R with R/L ∈ Tσ. The set Lg(σ) possesses the following properties:

1. if L ∈ Lg(σ) and L1 is a graded left ideal of R such that L ⊆ L1, then
L1 ∈ Lg(σ);



330 S. Samir Mahmoud

2. if L1, L2 ∈ Lg(σ), then L1 ∩ L2 ∈ Lg(σ);

3. if L ∈ L, then for all homogeneous x ∈ R, we have (L : x) ∈ Lg(σ);

4. if L1 ∈ Lg(σ) and (L : x) Lg(σ) for all homogeneous x ∈ L, then L ∈ Lg(σ).

Conversely, any set of graded left ideals L possessing the above properties is said
to be a graded Gabriel filter.

In general, σ is not uniquely determined by Lg(σ). However, one easily verifies
the following sets to correspond bijectively:

1. rigid radicals in R−gr;

2. graded Gabriel filters over R.

In general, if M ∈ R−gr, then m ∈ (σM)n if and only if there exists I ∈ Lg(R(−n),
σ), the set of all graded left submodules L of R(−n) with the property that R(−n)/L
∈ Tσ, such that Im = 0. If σ is rigid, then I belongs to Lg(R(−n), σ) if and only if
I(n) ∈ Lg(R, σ) = Lg(σ). Indeed, I ∈ Lg(R(−n), σ) is equivalent to R(−n)/I ∈ Tσ,
and this just says that R/I(n) = [R(−n)/I ](n) ∈ Tσ. Let us call a radical in R−gr

symmetric if it is rigid and if for any L ∈ Lg(σ), we may find some twosided graded
ideal I ∈ Lg(σ), with I ⊆ L. As an example, any finitely generated twosided graded
ideal I of R yields a graded radical σI in R−mod, defined on any M ∈ R−mod,
by letting σIM consist of all m ∈ M with the property that Inm = 0, for some
positive integer n. The induced radical in R−gr, denoted by σgI is a symmetric
radical. Other examples will be considered below. Symmetric radicals possess very
nice features. For example, if σ is a symmetric radical in R−gr, then a finitely
generated M ∈ R−gr is σ-torsion if and only if AnnR(M) ∈ Lg(σ). Let us denote

by Specg(R) the set of all graded prime ideals of R. Clearly, P ∈ Specg(R) if and
only if aRb ⊆ P for some a, b ∈ h(R) (the set of homogeneous elements of R) implies
that a ∈ P or b ∈ P . If P is a prime ideal of R, then <h(P ) > is a graded prime
ideal of R. In particular, the (prime) radical of a graded ideal of R is a graded ideal
of R as well.

Let σ be a radical in R−gr. Then σ defines the subset Kg(σ) ⊆ Specg(R)
consisting of all graded prime ideals P with σ(R/P ) = 0. If σ is symmetric, then
Kg(σ) is closed under generization, i.e., if P ∈ Kg(σ) and Q ⊆ P is a graded prime
ideal, then Q ∈ Kg(σ) as well. To see this, let us verify that if P ∈ Specg(R),
then either P ∈ Lg(R, σ) or P ∈ Kg(σ). Indeed, if σ(R/P ) 6= 0, pick r ∈ Rn for
some positive integer n, with r 6∈ P and r̄ = r + P ∈ σ(R/P ). We may then find
L ∈ Lg(R(−n), σ) with Lr̄ = 0̄, i.e., Lr ⊆ P . We may obviously assume L to be
a twosided ideal of R, as σ is assumed to be symmetric, so L ⊆ P (as r 6∈ P ),
hence L(n) ⊆ P as graded R-submodules. Since L ∈ Lg(R(−n), σ) implies L(n) ∈
Lg(R, σ), it follows that P ∈ Lg(R, σ). Note : If R is assumed to be left noetherian,

we do not really need σ to be symmetric! Indeed, if P ∈ Specg(R) − Kg(σ), then
0 6= σ(R/P ) ⊆ R/P is a graded twosided ideal of R/P . It follows that σ(R/P )
contains a regular homogeneous element r̄ = r + P , as σ(R/P ) is then a graded
essential ideal of R/P . Since P = AnnR(r̄), it follows that P ∈ Lg(σ), which proves
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the assertion. Let us assume from now R to be a left noetherian (positively graded)

ring. Consider a subset Y ⊆ Specg(R), which is closed under generization. We

define a radical σY in R−gr, by letting M ∈ R−gr be σY -torsion (or belonging to
TY = TσY ) if and only if it is torsion at every P ∈ Y , i.e., if for any m ∈Mn (n ∈ Z),
we may find some I ∈ Lg(R(−n), σgR−P ) with Im = 0.

Here, σgR−P is the symmetric radical in R−gr, with graded Gabriel filterLg(σgR−P )
consisting of all graded left ideals L of R containing RsR for some s ∈ R−P , which
may then be chosen in h(R− P ), the set of all homogeneous elements in R− P , as
one easily verifies.

It is thus clear that σY is rigid as well. We call radicals of this type half centered.
In particular, if σ = σY , then Kg(σ) = Y . Since R is assumed to be noetherian, we

have:

Proposition 2.1 Every symmetric radical in R−gr is half-centered.

Proof : Let σ be a symmetric radical in R−gr and put

Y = {P ∈ Specg(R); σ(R/P ) = 0}.

We claim that σ = σY . Indeed, it is easy to see that I ∈ Lg(R, σY ) if and only if
V g(I)∩Y = ∅, where V g(I) consists of all P ∈ Specg(R) with I ⊆ P . We thus have
to show that I 6∈ Lg(R, σ) if and only if V g(I) ∩ Y 6= ∅, i.e., if there exists some
P ∈ Specg(R) with I ⊆ P and P 6∈ Lg(R, σ).

Let G denote the set of all graded ideals K ⊇ I , with K 6∈ Lg(R, σ). Clearly, G
is a non-empty, partially ordered set. Moreover, any chain

K : K1 ⊆ K2 ⊆ . . . ⊆ Kn ⊆ . . .

in G stabilizes (as R is left noetherian), so we may apply Zorn’s Lemma to infer
the existence of a maximal element P in G. As P is now easily seen to be a graded
prime ideal, this proves the assertion. �

3 Graded FBN Rings

It has been proved in [21] that Eg(R/P ) is P -cotertiary for any P ∈ Specg(R),
the set of all graded prime ideals of R. Let Eg(R) denote the set of equivalence
classes (up to shift and isomorphism) of indecomposable injectives in R−gr. The
previous remark then shows the map Φg : Eg(R) → Specg(R), which associates to
[E] ∈ Eg(R) the graded prime ideal Ass(E), is surjective.

Note also that, just as in the ungraded case, if Φg is bijective for R, then Φg is
bijective for each graded epimorphic image of R. Using this, it has been proved in
[21], that the following assertions are equivalent:

1. Φg is a bijection;

2. for all P ∈ Specg(R), the ring R/P is graded left bounded, i.e., every graded
left essential ideal of R/P contains a non zero twosided graded ideal;
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3. every cotertiary graded left R-module M is isotypic in R−gr, i.e., Eg(M) is a
direct sum of equivalent indecomposable injectives in R−gr.

We call a ring satisfying these conditions graded left fully bounded noetherian (or:
graded left FBN). Graded FBN rings possess very nice features. Let us already

mention here, for future reference, the following results, whose proof may be found
in [21]:

Proposition 3.1 Let R be a graded left noetherian ring. The following assertions
are equivalent:

1. R is graded left fully bounded noetherian;

2. every rigid radical in R−gr is symmetric.

Proposition 3.2 [21] Let R be graded ring, let M ∈ R−gr and let P ∈ Ass(M),
then:

1. P is a graded ideal of R;

2. there exists some nonzero homogeneous x ∈ M , with P = AnnR(Rx);

3. if R is left fully bounded, then there exists some nonzero homogeneous x ∈M
with P = AnnR(Rx) = AnnR(M ′) for all nonzero M ′ ⊆ Rx.

Lemma 3.3 Let R be a graded left FBN ring and M a finitely generated graded left
R-module. Then there exists a chain of graded submodules

0 = M0 ⊂ M1 ⊂ . . . ⊂ Mn = M,

with the property that for any 1 ≤ i ≤ n:

1. Pi = AnnR(Mi/Mi−1) ∈ Specg(R);

2. Mi/Mi−1 is isomorphic to a graded uniform left ideal of R/Pi.

Proof : Since M is graded left noetherian, we easily reduce the proof to showing
that M contains a non zero graded submodule N of M with the property that
AnnR(N) ∈ Specg(R) and that N is isomorphic to a graded uniform submodule of
R/AnnR(N).

Consider a graded uniform submodule M ′ of M . Let P = assg(M ′) and put
M ′′ = AnnM ′(P ). Then P ∈ Specg(R) and M ′′ is a fully faithful graded left
R/P -module, with P = AnnR(M ′′). As M ′′ is finitely generated and uniform, it is
torsionfree as a left R/P -module. So, it contains a graded submodule N , which is
isomorphic to a graded uniform left ideal of R/P . Finally, since M ′′ is fully faithful,
AnnR(N) = P . �
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Proposition 3.4 The following assertions are equivalent:

1. R is a graded FBN ring;

2. for any graded left ideal L of R, there exist homogeneous elements x1, . . . , xn
of R such that

bg(L) =
n⋂
i=1

(L : xi),

where bg(L) is the graded bound of L, i.e., the largest graded twosided ideal
contained in L;

3. any finitely generated graded left R-module M is finitely annihilated, i.e., there
exist homogeneous elements m1, . . . , mn in M such that

AnnR(M) =
n⋂
i=1

AnnR(mi).

Proof : The equivalence of (2) and (3) is fairly obvious, and the fact that (2) implies
(1) has been proved in [24]. Let us conclude by showing that (1) implies (3).

Assume the statement is false and pick a graded left R-submodule N ⊆ M , which
is maximal with the property that the statement fails for M/N . Up to replacing
M by M/N , we may thus assume that AnnR(M) is not the annihilator of a finite
subset, but that the annihilator of any proper quotient of M is. Replacing R by
R/AnnR(M), we may also assume M to be faithful. ¿From 3.3, it follows that M
contains a graded R-submodule U , which is isomorphic to a graded uniform left
ideal L of R/P for some P ∈ Specg(R). Due to the minimality of M , there exist
x1, . . . , xk ∈ M , such that

AnnR(x1 + U, . . . , xk + U) = AnnR(M/U).

Let I = AnnR(x1, . . . , xk), then IM ⊆ U , so PIM = 0. This implies that PI = 0,
as M is faithful, so I is a finitely generated R/P -module. On the other hand, I
strictly contains AnnR(M), as the statement is assumed to fails for M . So, there
exists xk+1 ∈M , with Ixk+1 6= 0.

Let I1 = AnnR(x1, . . . , xk+1) = I ∩AnnR(xk+1). Clearly,

I/I1
∼= Ixk+1 ⊆ IM ⊆ U,

so I/I1 is isomorphic to a nonzero graded ideal of R/P , i.e., I/I1 is torsionfree.

We may thus pick xk+2 ∈M , such that, with I2 = I1∩AnnR(xk+2), the nonzero
quotient I1/I2 is torsionfree. Iterating this process yields an infinite chain

I ⊃ I1 ⊃ I2 ⊃ . . .

such that each graded quotient Ii−1/Ii is torsionfree. This contradicts 1.7, however.
�



334 S. Samir Mahmoud

Note : The previous result, which may be viewed as a graded version of Gabriel’s con-
dition (H), also says that R/AnnR(M) embeds into a finite direct sum

⊕t
i=1 M(di).

Indeed, if AnnR(M) = AnnR(m1, . . . , mt), then we may obviously choose the mi to
be homogeneous (up to changing their number!). Consider the linear map

φ : R→
t⊕
i=1

M(di) : r 7→ r(m1, . . . , mt),

where di = deg(mi). Since Ker(φ) = AnnR(m1, . . . , mt) = AnnR(M), this shows
that φ induces an embedding

R/AnnR(M) ↪→
t⊕
i=1

M(di).

The following result generalizes a similar statement in the non-graded case, proved

in [1]:

Proposition 3.5 Let σ be a rigid radical in R−gr and M a graded left R-module.
Assume every finitely generated graded left R-submodule of M to be finitely annihi-
lated. If for every P ∈ Kg(σ) and any Q ∈ Zg(σ) there exists some D ∈ Lg(σ) with
PD ⊆ QP , then σM is essentially closed in M .

Proof : We may clearly assume M to be cyclic. So, suppose there is a graded
essential extension N of σM in M , such that N is not σ-torsion (so σM is not
essentially closed in M). Then AnnR(N) 6∈ Lg(σ). Choose I maximal in

S = {AnnR(N1); N1 ⊆ N, AnnR(N1) 6∈ Lg(σ)},

say I = AnnR(X). We will show below that I is a (graded) prime ideal. This will
then finish the proof. Indeed, since every graded left R-submodule of M is finitely
annihilated, there exists an embedding

f : R/I ↪→
n⊕
i=1

X(di),

if I = AnnR(X) = AnnR(x1, . . . , xn), with xi homogeneous of degree di, say. As
σM ⊆ N is essential, so is σX = σM ∩ X ⊆ X and hence also

⊕
i(σX)(di) ⊆⊕

i X(di), as σ is assumed to be rigid. This shows that R/I (identified with f(R/I) ⊆⊕
i X(di)) has a nonzero σ-torsion left R-submodule, i.e., I 6∈ Kg(σ). As this implies

I ∈ Zg(σ), this contradicts the choice of I .
So, let us now show that I is prime, to finish the proof. Suppose this is not

the case. As R is graded left noetherian, there exists a maximal right annihilator
ideal P of R/I , say P = Ann(J/I)R with J ⊃ I . It is easy to see that P is prime.
Since JPX ⊆ IX = 0, with PX 6= 0 (as P ⊃ I), we may assume J = AnnR(PX).
Moreover, J ∈ Lg(σ), as J ⊃ I and I is assumed to be maximal in S. It follows
that P ∈ Kg(σ). Indeed, otherwise P ∈ Zg(σ) ⊆ Lg(σ), hence also JP ∈ Lg(σ).
This yields that I ∈ Lg(σ), as JP ⊆ I – a contradiction.

Since R is a graded left noetherian ring, J contains a product of prime ideals,
each of which contains J , i.e., there exist Q1, . . . , Qn ∈ Zg(σ) with Q1 . . .QnPX = 0.
Our assumption implies the existence of D1, . . . , Dn ∈ Lg(σ) with

P (D1D2 . . .Dn) ⊆ Q1P (D2 . . .Dn) ⊆ . . . ⊆ Q1 . . .QnP ⊆ I.
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Let D1 . . . Dn = D ∈ Lg(σ), then PD ⊆ JP . If DX = 0, then D ⊆ I , implying
I ∈ Lg(σ) – a contradiction. So, C = AnnR(DX) is a proper graded ideal of R,
with C ⊇ P ⊃ I . But this implies that C ∈ Lg(σ), hence also that CD ∈ Lg(σ) –
another contradiction. So I is a prime ideal indeed, which proves the assertion. �

Corollary 3.6 Let R be a graded left FBN ring and let σ be a rigid radical in R−gr.
The following assertions are equivalent:

1. σ is stable;

2. for every finitely generated graded left R-module M , every graded submodule
N ⊆ M and any I ∈ Lg(σ), there exists J ∈ Lg(σ) with JM ∩N ⊆ IN (“the
Artin-Rees property”);

3. for every graded R-ideal K and any I ∈ Lg(σ), there exists J ∈ Lg(σ) with
KJ ⊆ IK (“the weak Artin-Rees property”);

4. for every P ∈ Kg(σ) and Q ∈ Zg(σ), there exists some I ∈ L2(σ) with PI ⊆
QP .

Proof : It is clear that (2) implies (3) and that (3) implies (4), whereas the previous
result proves that (4) implies (1). To conclude, let us prove that (1) implies (2).
Choose X to be a graded left R-submodule of M , which is maximal with respect
to the property X ∩ N = IN . As N + X/X = N/X ∩N = N/IN and I ∈ Lg(σ),
clearly N + X/X ∈ Tσ. Since N + X/X ⊆ M/X is essential, also M/X ∈ Tσ.
But then, J = AnnR(M/X) ∈ L(σ), as M/X is finitely annihilated (by the FBN
assumption!). So, JM ∩N ⊆ X ∩N = IN . �

We say that a graded twosided ideal I of R satisfies the graded left Artin-Rees
condition resp. the graded weak left Artin-Rees condition, if for any graded left
ideal L of R, we may find a positive integer n with In ∩ L ⊆ IL resp. if for any
graded twosided ideal L of R we may find a positive integer n with LIn ⊆ IL. It is
then clear that I has the graded (weak) left Artin-Rees property if and only if the
radical σgI in R−gr has the (weak) Artin-Rees property. The previous result thus
states that the graded left Artin-Rees property and the graded weak left Artin-Rees
property are equivalent for graded twosided ideals of a graded left FBN ring.
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4 Structure Sheaves

We continue using notations as in the previous section. For simplicity’s sake, we
assume R to be a graded (left and right) FBN ring. We denote by R+ the graded
twosided R-ideal

⊕
n>0 Rn, and we assume R+ to be a graded Artin-Rees ideal (i.e.,

possessing the left and right Artin-Rees property).
The projective spectrum Proj(R) of R is defined to consist of all P ∈ Specg(R)

with the property that R+ 6⊂ P . The Zariski topology T zar+ (R) on Proj(R) consists
of all subsets D+(I) of Proj(R), where I is a graded ideal of R, and where

D+(I) = {P ∈ Proj(R); I 6⊂ P}.

That T zar+ (R) is a topology on Proj(R), indeed, follows from the fact that for graded
ideals I , J and {Iα; α ∈ A} of R, we have

D+(I) ∩D+(J) = D+(IJ),

resp. ⋃
α∈A

D+(Iα) = D+(
∑
α∈A

Iα).

Note also that, up to replacing I by IR+ or I∩R+, we may always assume the graded
ideals I used to define the open subsets in the Zariski topology on Proj(R), to be
contained in R+. Clearly, any D+(I) ⊆ Specg(R) is closed under generization, so,

as in 2, we may define the radical τI = σD+(I) in R−gr and clearly D+(I) = Kg(τI).
It is also obvious that τI = σgR+

∨ σgI .
These radicals τI are in bijective correspondence with the open subsets D+(I) in

T zar+ (R). Actually, one easily verifies that D+(I) ⊆ D+(J) if and only if τI ≥ τJ . In
particular, it follows for all graded R-ideals I , J and {Iα; α ∈ A}, that τI ∨ τJ = τIJ
resp.

∧
α∈A τIα = τ∑

α∈A Iα
. For any M ∈ R−gr, one may define a presheaf of

graded R-modules on Proj(R), by associating to any D+(I) ∈ T zar+ (R) the graded
R-module of quotients Q+

I (M) of M at τI . Note that if I ⊆ R+, then clearly
Q+
I (M) = Qg

I(M), for any M ∈ R−gr, where Qg
I is the usual localization functor at

the radical σgI induced in R−gr by the graded radical σI.
It is rather easy to see that this presheaf is separated. Indeed, if D+(I) =⋃

α∈AD+(Iα) for some family of graded R-ideals {Iα; α ∈ A}, then we have to show
that the map

ρ : Qg
I(M) →

∏
α∈A

Qg
Iα(M)

is injective. Now, for any α ∈ A, there is an exact sequence of graded left R-modules

0→ σgIαQ
g
I(M)→ Qg

I(M)
ρα→ Qg

Iα(M).

So, we obtain that q ∈ Ker(ρ) if and only if

q ∈
⋂
α∈A

Ker(ρα) =
⋂
α∈A

σgIαQ
g
I(M) = (

∧
α∈A

σgIα)Q
g
I(M) = σgIQ

g
I(M) = 0,

which proves our claim.
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Unfortunately, in general, this presheaf is not a sheaf, however (it is, for example,
if M = R and R is prime). In order to remedy this, one may either restrict the
class of graded R-modules, we wish to consider or, and this is our approach, restrict
the topology on Proj(R). Of course, the topology chosen on Proj(R) should then
still remain sufficiently fine for, otherwise, the stalks of the sheaves we construct
will bear little local information and therefore be rather useless. Denote by T+(R)

the set of all D+(I) ∈ T zar+ (R), with the property that both τI and its analogue
in the category of graded right R-modules satify the weak Artin-Rees property. Of
course, this just says that R+ ∩ I (or, equivalently, IR+ or R+I) is a graded weak
Artin-Rees ideal. Note also that this is true, if I is a graded weak Artin-Rees ideal,
due to our assumption on R+.

On the other hand, since R is graded FBN, all this is equivalent to I and its right
analogue satisfying the Artin-Rees property or of being stable. The reason why we
gave the definition of T+(R) in terms of the weak Artin-Rees property and not the
(more natural) ordinary Artin-Rees condition, is that this always yields a topology
on Proj(R), even if R is not fully bounded.

Indeed, one easily reduces to verifying that for any graded ideals I , J and
{Iα; α ∈ A} satisfying the graded weak left Artin-Rees property, so do IJ and∑
α∈A Iα (and similarly on the right).
Consider a graded twosided ideal K of R. Since I and J are assumed to satisfy

the weak left Artin-Rees condition, we may find positive integers p and q such that
KIp ⊆ IK and KJ q ⊆ JK. It is clear that rad(IpJ q) = rad(IJ), so there exists
some positive integer n, such that (IJ)n ⊆ IpJ q. We thus find that

K(IJ)n ⊆ KIpJ q ⊆ IKJ q ⊆ IJK,

proving that IJ satisfies the weak left Artin-Rees condition as well.
On the other hand, put

∑
α∈A Iα = I , then for any α ∈ A, we may find some

positive integer n(α) with KIn(α)
α ⊆ IαK ⊆ IK. Since rad(

∑
α In(α)

α ) = rad(I),
there exists some positive integer n with In ⊆ ∑α In(α)

α . Hence,

KIn ⊆ K(
∑
α∈A

In(α)
α ) ⊆ IK,

which proves that I =
∑
α∈A Iα satisfies the weak left Artin-Rees condition. Recall

from [2, 18, 25] that two radicals σ and τ in a Grothendieck category C are said to
be compatible, if σQτ = Qτσ, where Qτ is the localization functor in C, associated
to τ . Since this is equivalent to τQσ = Qστ , cf. [27], this notion is symmetric in σ
and τ .

It has been proved in [14] that σ and τ are compatible, if and only if the canonical
sequence of functors

0→ Qσ∧τ → Qσ ⊕Qτ → Qσ∨τ

is exact. Moreover, if σ and τ are stable, then they are compatible. In this case,
one may even show that the localization functors Qσ and Qτ commute, cf. [2, 25].

Applying this to C = R−gr, it thus follows for any pair of graded ideals I , J with
the weak Artin-Rees property and any M ∈ R−gr, that we have an exact sequence

0→ Q+
I+J (M)→ Q+

I (M)⊕Q+
J (M)→ Q+

IJ(M)
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where Q+
I = Qg

R+
Qg
I = Qg

IQ
g
R+

(and similarly for the other terms), by the above
remarks.

As before, associating Q+
I (M) to D+(I) ∈ T+(R) defines a separated presheaf

O+
M on (Proj(R), T+(R)). The next result shows that O+

M is actually a sheaf, for

any graded left R-module M :

Lemma 4.1 Let P be a separated presheaf on a topological space X. Assume that
every open subset of X is quasicompact and that P satisfies the sheaf axiom for
coverings consisting of two open subsets. Then P is a sheaf.

Proof : Let us first consider finite coverings and argue by induction, i.e., let us assume
that P satisfies the sheaf axiom for coverings consisting of n − 1 open subsets, for
some positive integer n > 2, and let us show that it holds for open coverings by
n open subsets. Since the sheaf axiom is assumed to hold for coverings consisting
of two open subsets, this will prove that P will satisfy the sheaf axiom for finite
coverings.

Let U = U1∪. . .∪Un be an open covering of U and assume we are given si ∈ P (Ui)
with the property that si|Uij = sj|Uij, for any 1 ≤ i, j ≤ n, where Uij = Ui∩Uj . Put
V = U2 ∪ . . . ∪ Un. By induction, we know that there exists a (unique) s′ ∈ P (V )
with s′|Ui = si for 1 ≤ i ≤ n. Let us write p = s′|U1 ∩ V resp. q = s1|U1 ∩ V , then
we claim that p = q. Indeed, for any 2 ≤ i ≤ n, we have

p|U1i = s′|U1i = si|U1i = s1|U1i = q|U1i.

Since U1 ∩ V =
⋃n
i=2 U1i and since P is assumed to be separated, this proves our

claim. So, there exists s ∈ P (U) with s|U1 = s1 and s|V = s′, and since this implies
that s′|Ui = si, for any 1 ≤ i ≤ n, this shows that P satisfies the sheaf axiom for
any finite covering.

Let us now consider an arbitrary covering {Uα; α ∈ A} of an open subset U of
X. Since U is assumed to be quasicompact, there exist indices α(1), . . . , α(n) ∈ A
with

⋃n
i=1 Uα(i) = U . Assume we are given sα ∈ P (Uα) for each α ∈ A, with

sα|Uαβ = sβ |Uαβ, for any α, β ∈ A. Since the sheaf axiom holds for finite coverings,
by the first part of the proof, we may find a unique s ∈ P (U) with s|Uα(i) = sα(i)

for 1 ≤ i ≤ n. Let us now take an arbitrary α ∈ A and write s′α = s|Uα. We claim
that s′α = sα, which then proves the assertion. Indeed, for any 1 ≤ i ≤ n, we have

s′α|Uα,α(i) = s|Uα,α(i) = sα(i)|Uα,α(i) = sα|Uα,α(i),

hence s′α = sα, since P is assumed to be separated. This finishes the proof. �

The structure sheaf on Proj(R) is now defined to be OR = (O+
R)0, i.e., for each

D+(I) ∈ T+(R), we put

Γ(D+(I),OR) = Q+
I (R)0 = Qg

R+
(Qg

I(R))0,

(or Qg
I(R)0, if I is chosen within R+). For any M ∈ R−gr, the sheaf of left OR-

modules is defined similarly.
Put

Γ∗(D+(I), E) =
⊕
n

Γ(D+(I),OR(n) ⊗ E),
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for any sheaf of left OR-modules E. Clearly, for any integer n, we have OR(n)⊗OM =
OM (n). So, since taking sections commutes with direct sums (as open subsets of
Proj(R) are quasicompact), we obtain

Γ∗(D+(I),OM) = Γ(D+(I),
⊕
n

OM (n)) = Γ(D+(I),O+
M) = Q+

I (M).

Note also that locally, on T-sets (cf. [20]), (Proj(R),OR) is affine, i.e., isomorphic
to an affine scheme (Spec(S),OS), as defined in [2]. This shows that the above
construction allows to further develop projective algebraic geometry for graded FBN
rings, along the lines of the affine approach in [2, 20, et al]. Let us assume from

now on R to be module finite over its noetherian center C = Z(R). Note that this
implies R to be FBN, in the usual, ungraded sense. Note also that C is graded itself,
and that for every P ∈ Specg(R), the intersection p = P ∩ C belongs to Specg(C).

Denote by Cl(P ) the clique of P , cf. [8, 11, 12], and define

σCl(P ) =
∧

Q∈Cl(P )

σR−Q.

In particular, it follows that a twosided ideal I of R belongs to L2(σCl(P )) if and
only if I 6⊂ Q, for all Q ∈ Cl(P ).

It has been proved in [3] that σCl(P ) = σC−p, where the latter radical is induced
in R−mod by the radical σC−p in C−mod. Since p is a graded prime ideal of C ,
clearly σC−p is a graded radical, hence so is σC−p. Let us now calculate the stalks

of the sheaves O+
M :

Proposition 4.2 Let P ∈ Proj(R) and put p = P ∩C. Then, for any M ∈ R−gr,
we have:

O+
M,P = Mg

p ,

where (−)gp denotes the usual graded localization at p.

Proof : Let us first note that for any P ∈ Specg(R), we have Cl(P ) ⊆ Specg(R).
Indeed, if Q is a prime ideal of R, then, from [8, 11.20], we know that Q ∈ Cl(P ) if
and only if Q∩C = P ∩C = p. Denote by Qg the largest graded R-ideal contained
in Q, then it is clear that Qg ∈ Specg(R). Moreover, Qg ∩ C = p = Q ∩ C , as p is a
graded prime ideal of C . Since Qg ⊆ Q, “incomparability” shows that Qg = Q, i.e.,
Q ∈ Specg(R), indeed.

On the other hand, from the above remarks, it follows that

QCl(P )(M) = Mg
p = lim

−→
Mg

f ,

where QCl(P ) is the localization at σCl(P ) and where f runs through the homogeneous
elements of C , not contained in p, and where (−)gf is the graded localization at f .

Let us now pick D+(I) ∈ T+(R), and assume that P ∈ Proj(R) belongs to
D+(I). We claim that Q ∈ D+(I), for any Q ∈ Cl(P ). Indeed, since all Q ∈
Specg(R), we just have to show that if P ′  P ′′, for graded prime ideals P ′ and P ′′

then I ⊆ P ′ if and only if I ⊆ P ′′, if I satisfies the graded weak Artin-Rees condition.
This may be proven exactly as in the ungraded case. Actually, suppose that the link
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P ′  P ′′ is given by a twosided ideal K of R, i.e., assume P ′P ′′ ⊆ K ⊂ P ′ ∩ P ′′,
with P ′ = Ann`R((P ′∩P ′′)/K) and P ′′ = AnnrR((P ′∩P ′′)/K). If I ⊆ P ′, then there
exists a positive integer n with

(P ′ ∩ P ′′)In ⊆ I(P ′ ∩ P ′′) ⊆ P ′(P ′ ∩ P ′′) ⊆ P ′P ′′ ⊆ K.

It follows that In ⊆ AnnrR((P ′∩P ′′)/K) = P ′′, hence I ⊆ P ′′. The other implication
may be proved similarly.

It thus follows that there is a map

Qg
I(M)→ Qg

Cl(P )(M),

for any D+(I) ∈ T+(R) containing P . Passing over the limit of all of these, we
obtain a map

O+
M,P → Qg

Cl(P )(M) = Mg
p .

Since for every f ∈ h(C−p), we have D+(Rf) ∈ T+(R), clearly this map is surjective.
On the other hand, to prove injectivity (and thus finishing the proof), let D+(I) ∈
T+(R) and P ∈ D+(I), then we have an exact sequence

0→ σC−pQ
+
I (M)→ Q+

I (M)→ Mg
p

Pick q ∈ σC−pQ
+
I (M), then fq = 0 for some f ∈ h(C − p). Let J = Rf and

denote by q′ the image of q in Q+
IJ(M), then IJq′ = 0, hence q′ = 0, as Q+

IJ(M)+ is
τIJ-torsionfree. Since both I and IJ satisfy the graded Artin-Rees property, it thus
follows that

lim
−→

σC−pQ
+
I (M) = σC−p lim

−→
Q+
I (M) = 0,

which proves our claim. �

Note : Applying the techniques developed in [26, 27], the above constructions may be
generalized to a much wider class of rings. Indeed, let us denote by R−proj the quo-
tient category of R−gr with respect to torsion at R+, i.e., R−proj = (R, σ+

R+
)−gr.

If R is commutative, then it is well-known, that R−proj is equivalent to the category
of quasicoherent sheaves on Proj(R).

We assume R to be a noetherian object in R−proj (this is sufficient to imply
every Zariski open subset of Proj(R) to be quasicompact) and R+ to satisfy the
weak Artin-Rees condition. We then define the graded ring R to be left FBN
over Proj(R), if for every P ∈ Proj(R), any essential graded left R-submodule
L ⊆ QR+(R/P ) is R−proj contains a nonzero twosided I ∈ R−proj. One may show
that our assumptions imply this to be equivalent to the following relative version
of Gabriel’s condition (H): if M is torsionfree and finitely generated at R+ (i.e., if
Qg
R+

(M) is a finitely generated object in R−proj), then M is finitely annihilated.
If the analogous property on the right is also valid, then we say that R is FBN over
Proj(R).

Let us say that a graded twosided ideal I of R satisfies the graded (left) Artin-
Rees condition resp. the graded weak (left) Artin-Rees condition over Proj(R),
if for every twosided ideal K of R, we may find a positive integer n such that
In ∩K ⊆ QR+(IK) resp. KIn ⊆ QR+(IK). Adapting the techniques in [26, 27] to
the present, graded situation, one may show that these two notions are equivalent for
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any graded twosided R-ideal I containing R+, whenever R is left FBN over Proj(R).
Using this, it is rather easy to see that essentially the same method as before allows
us to construct for any M ∈ R−gr a structure sheaf O+

M on (Proj(R), T+(R)), with
similar properties as before, for any graded ring R, which is left FBN over Proj(R).
We leave details to the reader.
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