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Abstract
Predicting changes in community composition and ecosystem function in a rapidly
changing world is a major research challenge in ecology. Traits-based approaches have

elicited much recent interest, yet individual studies are not advancing a more general,
predictive ecology. Significant progress will be facilitated by adopting a coherent

theoretical framework comprised of three elements: an underlying trait distribution, a
performance filter defining the fitness of traits in different environments, and a dynamic

projection of the performance filter along some environmental gradient. This framework
allows changes in the trait distribution and associated modifications to community
composition or ecosystem function to be predicted across time or space. The structure

and dynamics of the performance filter specify two key criteria by which we judge
appropriate quantitative methods for testing traits-based hypotheses. Bayesian multilevel

models, dynamical systems models and hybrid approaches meet both these criteria and
have the potential to meaningfully advance traits-based ecology.
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I N T R O D U C T I O N

Ecologists have long struggled with the challenge of
predicting changes in species composition and associated
changes in ecosystem function across space and through
time. A promising avenue for addressing this challenge is to
use traits-based approaches, i.e. characterizing organisms in
terms of their multiple biological attributes such as
physiological, morphological, or life history traits. These
approaches are applicable to a range of systems because they
are taxon independent and because traits can be linked
directly to the environment, thus facilitating mechanistic
prediction across environmental gradients (McGill et al.
2006; Westoby & Wright 2006; Green et al. 2008).

Traits-based approaches have a long history in commu-
nity ecology (e.g. Grime 1977; Southwood 1977; Connell
1978). Many of these early papers focused on developing
conceptual models of how qualitatively described life
history traits vary along environmental selection gradients.
These efforts were followed by traits-based approaches
that sought to develop more quantitative frameworks to

model trait–environment relations to predict species
presence ⁄ absence (e.g. Keddy 1992; Weiher & Keddy
1995) or abundance (e.g. Chesson et al. 2002). More
recently, there has been a revival of interest in the
development of traits-based approaches spurred by the
desire to bridge the historical gap between community and
ecosystem ecology (McGill et al. 2006; Enquist et al. 2007;
Green et al. 2008). Currently, ecologists are increasingly
emphasizing the need to predict how communities and
ecosystem function will respond to rapid environmental
change, including climate change (e.g. Thuiller et al. 2007;
Morin & Lechowicz 2008). Traits-based approaches are
well suited to this challenge. The recent advances in
quantitative traits-based approaches have been touted as
both bringing a predictive basis to community ecology and
providing stronger theoretical linkages between community
and ecosystem ecology. Such hopeful claims for the
potential of traits include moving toward a ‘new synthesis
of evolutionary, community and ecosystem perspectives!
(Tilman 2001) and even uncovering potential laws in
ecology (McGill et al. 2006).
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Not surprisingly, the potential of traits-based approaches
has stimulated interest in reanalysing existing trait datasets
and in collecting new data to test many scientifically and
socially relevant ecological questions (for examples, see
Kolar & Lodge 2001; Norberg et al. 2001; Chesson et al.
2002; Loreau et al. 2003; Naeem & Wright 2003; McGill
et al. 2006; Olden et al. 2006; Shipley et al. 2006; Savage et al.
2007; Cornwell & Ackerly 2009; Kearney & Porter 2009).
The rapid increase in the application of traits-based
approaches in the last decade is impressive, as are the many
associated conceptual advances in analysing complex trait
data. However, despite this progress, we argue that this
cumulative body of work cannot be viewed as comprising a
coherent foundation for advancing a predictive, traits-based
ecology. We suggest that traits-based ecology is at a critical
juncture where further advances require an intentionally
coherent and integrative framework that can transparently
support hypothesis formulation and data collection. We also
propose that such a framework should guide development
of quantitative approaches that can appropriately analyse the
implicit structure of trait data, as this will allow for
maximum justifiable inference and prediction. Such a
framework should integrate across the many fields that
bear on traits-based approaches, including community
ecology, ecosystem ecology, evolutionary biology, quantita-
tive genetics, statistics and dynamical systems. Further, it
should reveal the underlying commonality of traits-based
approaches in community and ecosystem ecology, two
active areas of traits-based research. A wide variety of
methods and approaches have been developed in these
arenas to answer different types of questions, and the
numerous traits-based studies arguably give the cumulative
impression of an ad hoc collection of system-specific
examples, rather than a body of literature organized around
unifying principles.

Our goal here is to articulate the shared conceptual
foundation among traits-based approaches in ecology, in
order to develop a more integrative, theoretical and multi-
dimensional framework for advancing this field. Central to
this framework is the general proposition that a more
transparent traits-based theory is needed, one that can
support hypothesis testing and prediction. To achieve this,
we argue that trait–environment linkages are best concep-
tualized in an explicitly structured fashion where trait
distributions within communities or ecosystems respond
dynamically to environmental gradients across space or time.
The hierarchically structured and dynamic nature of the
trait–environment relationship necessarily constrains the
mathematical or statistical structure of quantitative
approaches that are appropriately suited to support rigorous
hypothesis testing and prediction, a fact not widely
appreciated or reflected in the current traits literature. We
argue that new model development is needed to fully exploit

the power of traits-based approaches. Ultimately, we aim to
develop a framework that will broadly engage ecologists by
linking the underlying concepts of trait–environment
relationships to quantitative approaches that can illuminate
the fundamental principles of a predictive traits-based
ecology.

T H E C O N C E P T U A L F O U N D A T I O N :
E N V I R O N M E N T A L F I L T E R I N G O F T R A I T
D I S T R I B U T I O N S

Here, we frame a conceptual foundation for traits-based
approaches, one that explicitly unites questions about
community and ecosystem ecology and that can be mapped
directly to available and developing quantitative methods for
trait data. We follow McGill et al. (2006) in using "trait! to
mean a well-defined, measurable property of organisms,
usually measured at the individual level and used compar-
atively across species. A "functional trait! (our focus here) is
one that strongly influences an organism!s performance or
fitness. As discussed below, trait-based approaches based on
the functional trait concept have a strong grounding in
evolutionary biology and quantitative genetics (Lande 1976,
1979; Turelli & Barton 1994).

Our conceptual foundation consists of three primary
elements: trait distributions, performance filters and envi-
ronmental gradients (see Table 1). First, the trait distribution
is initially derived from the pool of possible traits of
individual organisms. The contributing pool can be
described by its functional trait distribution, which is a
statistical distribution describing the frequency or probabil-
ity of occurrence within the pool for each value or category
of trait (Fig. 1). Because traits are defined at the individual
level, the trait distribution incorporates both intraspecific
variation and community composition. Trait distributions
may be univariate, describing only one relevant trait, or
multivariate, describing multiple and potentially interacting
traits.

Second, the performance of a trait is an expression of its
fitness in a given environment, i.e. the local environment
acts as a "performance filter! to eliminate traits with
inadequate local fitness. A well-established tenet of evolu-
tionary biology is that organismal performance is a function
of the environment in which it is measured. For example, a
plant with high water use efficiency will have high
performance in a xeric setting but a neutral or low
performance in a mesic setting. Thus, the performance
filter reflects a mechanistic relationship or linkage between
the trait(s) and the environment. Most simply, this
relationship can be quantified empirically in a regression
framework. Alternatively, a description of the performance
filter could be based more mechanistically on first-principles
understanding of trait response to the environment. By
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eliminating traits that do not match environmental condi-
tions from the available trait pool, the performance filter
determines the distribution of traits in a particular location

in space or time (Fig. 1). For example, in a xeric
environment the filtered trait distribution will consist of
mainly water efficient individuals. At the level of individuals,
environmental filtering occurs through the process of
natural selection, because traits are associated with individ-
uals within species. Thus the filtering process acting on a
trait distribution is closely analogous to quantitative genetics
theory in evolutionary biology where natural selection filters
the trait distribution within a population (e.g. Lande 1976).
In our conceptual foundation, we apply this analogy not
only to individuals within populations but we extend it to
include the distribution of traits and the filtering process
both at the population and at the species level within a
whole community. In other words, at the community level
environmental filtering also occurs in the form of ecological
or species sorting processes.

A key point to recognize is that the performance filter has
an explicitly hierarchical or ordered structure: the environ-
ment acts to filter the trait(s) and thus creates a filtered trait
distribution that can be applied broadly to ecological
questions (Fig. 1). In other words, a catalogue of species
traits theoretically allows for a back calculation from the
filtered trait distribution to potential species composition
and abundance. Likewise, a mechanistic understanding of
the trait–ecosystem function relationship allows the same
type of back calculation from the filtered trait distribution to
estimates of ecosystem function.

Despite the fundamental importance of performance
filters, scant empirical evidence exists to judge the functional
form they may take. A mature traits-based approach should
address this question. Are performance filters relatively
simple with a single optimal value or are they complex with
multiple optima and minima (Marks & Lechowicz 2006;
Violle et al. 2007)? Can ecological performance generally be
predicted by a single or just a few traits, or are many traits
required? Are particular types of traits (e.g. physiological, life
history) the best predictors? These questions about the
nature of the trait–environment relationship mirror the

Table 1 Glossary of terms

Term Definition

Trait distribution Statistical distribution describing the frequency or probability of occurrence within the pool of possible
traits for each value or category of trait

Performance filter Function relating performance to trait values and the environment (as performance is a function of the
environment in which it is measured). May consist of multiple, correlated traits and drivers

Environmental gradient Values that the environmental driver(s) take on in space and ⁄ or time
Structured In this context, an approach that recognizes the role of the environment in filtering the trait distribution
Dynamic In this context, an approach that takes into account changes in the trait distribution (or biodiversity)

over time and ⁄ or space
PBM Phenomenological Bayesian multilevel models
FDM First principles dynamical systems models
FBM First principles Bayesian multilevel models
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Figure 1 Relationship between trait distributions and performance
filters. The functional trait distribution (for a continuous trait) is
drawn from the contributing pool of individuals, and in this
example, individuals with low trait values occur with high
frequency. The functional trait distribution is filtered by the
environment based on performance (the match between the trait
and the environment) via natural selection and ⁄ or ecological
sorting at a particular space ⁄ time location. In this example, the
performance filter favours individuals with higher values of the
trait and the resulting filtered trait distribution is shifted towards
higher trait values. The filtered trait distribution can then be used
to predict changes in either ecosystem function or species
composition and abundance. This figure shows a single application
of the performance filter, but in reality the performance filter is
applied continually or iteratively in space or time.
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adaptive topography debate in evolutionary biology (Fisher
1930; Wright 1931), like other recent ecological debates
(Tilman 2004; Hubbell 2006).

A third element of our conceptual foundation is the
"projection! of the performance filter across some environ-
mental gradient(s) in space or time to make predictions. In
other words, because trait performance varies with envi-
ronmental context (Fig. 2a), the trait–environment relation-
ship can be used to predict the filtered trait distribution at
different points in space and time. The more mechanistically
based the trait–environment relationship, the more confi-
dently it can be projected along environmental gradients that
extend beyond the range of empirical data used to define the
performance filter.

For example, if the trait in Fig. 2 is water use efficiency
(illustrated in Fig. 2 as transpiration cost, with lower values
indicating greater efficiency), performance would be high in
a water-limited environment (Fig. 2b) and there would be a
strong filter for this trait (Fig. 2c). By contrast, in a more
intermediate environment where neither low nor high water
use efficiency is favoured (Fig. 2d), the filtered trait
distribution would deviate little from the available trait pool
(Fig. 2e). Importantly, a nonlinear performance filter can
result in differential filtering along this gradient, producing a
surprising disconnect between our intuition about traits and
the way that performance filters play out across environ-
mental gradients. This disconnect may be magnified when
aggregation of traits from the individual to species to
community level occurs, as illustrated in Fig. 2f and g,
because community level derived performance filters may be
inaccurate. We discuss the interpretation of Fig. 2f and g
and the implications of this nonlinearity for data collection
in the Data constraints section.

Our conceptual foundation of trait distributions, perfor-
mance filters and projection across environmental gradients
offers a general and coherent basis for developing traits-
based theory and unifying varying approaches to empirical
traits-based studies.

Translating the conceptual foundation into a quantitative
framework: structure and dynamics

Simple hierarchical structure and dynamics are the two
properties of the conceptual foundation that are central to
translating the foundation into a framework that can
support quantitative analysis and prediction in traits-based
studies, as depicted in Fig. 3. A hierarchically structured
environment–trait relationship (i.e. the performance filter) is
straightforward for "response traits! (sensu Dı́az & Cabido
2001), which capture organisms! reactions to environmental
conditions and thus do not directly translate into an
ecosystem process (e.g. tolerance to toxins or response to
habitat change). The structure is more subtle for "effects

traits! (sensu Dı́az & Cabido 2001; see Suding et al. 2008),
which actually induce a change in environmental conditions.
For example, photosynthetic rate varies in response to light
energy and translates into plant production that creates
biomass that can create shade and reduce available light
energy. Effects traits incorporate the feedback of organisms
on their environment, and this is a vital component of many
ecosystem studies. A hierarchical structure still exists for
effects traits, but this feedback can modify the environ-
mental gradient over which the performance filter acts and
thus alter expected trait distributions.

Predicting filtered trait distributions based on projection
of the performance filter across an environmental gradient
implies a dynamic process, i.e. the trait distribution changes
in space or time. Understanding these trait dynamics is of
particular interest because, in contrast to the environmental
changes that most species and ecosystems have historically
experienced, current global change is occurring over
relatively short evolutionary time scales and large spatial
scales, resulting in strong selection for rapid changes in
species composition. Indeed, several studies report surpris-
ingly rapid changes in community composition and func-
tional diversity in response to changes in the local
environment (Tilman & Downing 1994; Pfisterer & Schmid
2002; Pounds et al. 2006). Therefore, it is critical that any
framework intended to better explain the response of species
composition ⁄ abundance and ecosystem function to envi-
ronmental change should be able to address the effects of
accompanying changes in the underlying trait distribution
over time and ⁄ or space.

Specifying a quantitative framework to support
traits-based prediction

The structured and dynamic properties of the conceptual
foundation (Figs 1–3) provide specific criteria by which
quantitative methods can be identified for robust hypothesis
testing. Basically, quantitative methods should explicitly
incorporate both a description of the performance filter (e.g.
structured trait–environment relationship) and a technique
for projecting the filter across environmental gradients to
predict changes in the trait distribution (dynamics). Addi-
tionally, the methods should be able to incorporate the
feedback of organisms to the environment when needed (i.e.
via effects traits).

Incorporating these criteria necessitates the formulation of
a quantitative framework that incorporates the conceptual
scientific foundation illustrated in Fig. 3. The value of this
framework is that it generates an explicit relationship
between the results of a given empirical study and the more
general predictions of the underlying conceptual foundation
of a dynamic, environmental filtering process across space
and time. This structured quantitative framework therefore
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 2 The performance filter can interact with the environmental gradient. (a) The performance filter that describes the relationship
between traits and individual performance can change as a function of the environmental gradient resulting in a surface relating traits and
environment to individual performance. Here, an illustrative surface is described by the function p ¼ " 20"e

20 v þ 2e þ 20. (b) The trait
distribution (solid line, associated with the relative frequency y-axis) and performance filter (dashed line, p ¼ " 19

20 v þ 22, associated with the
individual performance y-axis) at location 1 on the environmental gradient (e = 1). (c) The original trait distribution (solid line) and the filtered
trait distribution (dashed line) resulting from application of the performance filter in (b) over one generation. (d) The trait distribution (solid
line, associated with the relative frequency y-axis) and performance filter (dashed line, p = 40, associated with the individual performance y-
axis) at a second location on the environmental gradient (e = 20). (e) The original trait distribution (solid line) and the filtered trait distribution
(dashed line) resulting from application of the performance filter in (d). The two distributions are indistinguishable from one another because
the performance filter is flat. (f) Demonstration of specification bias. The performance filter measured at the individual and community levels
for the surface in (a). Individual level: small symbols and associated regression lines indicate the performance filters measured at the individual
level within a community at different points along the environmental gradient (e = 1, 5, 10, 15, 20 from left to right). Community level: large,
filled circles represent the mean performance and mean trait value. The community level regression line is in the opposite direction to the
performance at the individual level (specification bias). (g) Demonstration of aggregation bias: the performance filter measured at the
individual and community level (similar to the function in (a), but with positive slope in the Trait direction). Symbols as in (f). The community
level regression line suggests a stronger correlation than the observed data (aggregation bias).
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acts as a kind of Rosetta stone, i.e. it provides a critical
intermediate step that allows empirical data to be translated
into coherent examples that are consistent with the under-
lying conceptual foundation and theory (Fig. 4). This
quantitative framework thus enables creation of comparable
measures of performance filters and dynamics that allows for
a comparative approach across study systems. For example, a
better understanding of how the bounds on ecosystem
functioning are set by different trait distributions, perfor-
mance filters and environmental gradients would enhance
our ability to confidently predict ecosystem processes and
states under altered or novel conditions. The ability to
translate and integrate diverse studies into a comparative
framework is needed to advance traits-based ecology.

Q U A N T I T A T I V E A P P R O A C H E S F O R T R A I T S - B A S E D
A N A L Y S E S

A variety of quantitative approaches have been used to
relate traits and environmental variables via performance
to the response of interest (e.g. species composition and
abundances, ecosystem function). These include permuta-
tion tests (Legendre et al. 1997; Dray & Legendre 2008),
basic regression or general linear models (Reich et al.
2003), statistical mechanics models (Shipley et al. 2006),
Bayesian multilevel models (Gelman et al. 2004; Latimer
et al. 2004, 2006; Gelfand et al. 2005, 2006) and dynamical
systems models (Norberg et al. 2001; Chesson et al. 2002;
Loreau et al. 2003; Savage et al. 2007). The methods that
best reflect our conceptual foundation by naturally
incorporating both a structured performance filter and
projecting it dynamically are statistical mechanics models,
Bayesian multilevel models and dynamical systems models.
These methods, while mathematically sophisticated, are still
maturing. They have great appeal because they both
incorporate the complex and extensive information con-
tained within a trait distribution and accurately describe or
predict how such distributions change along environmental
gradients.

Although lacking appropriate structure or dynamics,
traditional statistical approaches remain useful in reducing
the complexity of trait data sets (Bernhardt-Römermann
et al. 2008). For example, principle components analysis
reduces the number of traits ⁄ environmental drivers used in
dynamical systems by removing highly correlated traits or
drivers that do not contribute unique information to the
analysis. General linear models provide insight into which
environmental drivers and traits are important players in
the performance filter, and such models can be used for
prediction as long as the limits on inference are correctly
acknowledged. In fact, there has been a substantial effort
to identify correlations between plant traits along environ-
mental gradients that could inform the traits and environ-

Traits Environment

Prediction 
(in space or time)

Performance
filter

Projection
of filter 
across

gradient

Feedback of organism 
on environment

Figure 3 The multilevel quantitative framework reflects the
hierarchical, structured action of the performance filter on traits
(solid curved arrow) and can incorporate feedback of effects
traits back to the environment (dotted curved arrow). This
trait–environment relationship or performance filter is projected
across an environmental gradient by statistical or mathematical
models to predict the changes or dynamics of trait distributions
through space or across time.

Empirical studies

Conceptual foundation

PBM FDM

Structure
dynamics

Distillation

Analysis

Comparative

Context

Generalization
and

prediction

Guidance

Figure 4 The quantitative framework maps empirical studies to a
traits-based conceptual foundation. The conceptual foundation can
be distilled to two key components: structure and dynamics.
Appropriate quantitative methods, such as phenomenological
Bayesian multilevel models (PBM) and first principles dynamical
systems models (FDM) incorporate both structure and dynamics in
a quantitative framework. When empirical studies are analysed
using such methods, they can be linked to the conceptual
foundation and in a comparative context can thus result in greater
generalization and development of predictive traits-based ecologi-
cal theory.

272 C. T. Webb et al. Idea and Perspective

! 2010 Blackwell Publishing Ltd/CNRS



mental drivers needed within a traits-based framework
(Wright et al. 2004; Westoby & Wright 2006; Reich et al.
2007). However, we view these traditional statistical
methods as being mostly appropriate for exploratory data
analysis in a traits-based approach (see Box 1). We note in
particular that basic linear regression methods do not
include dynamics allowing predictions over space and time
because they ignore the interaction between the filter and
environmental gradient (unlike Fig. 2) by assuming a
constant performance filter.

Here, we focus on Bayesian multilevel models and
dynamical systems models. We do not consider statistical
mechanics models such as that of Shipley et al. (2006)
because they lack a clear mechanistic linkage of traits and
environment (performance filter) (Marks & Muller-Landau
2007; Roxburgh & Mokany 2007; Shipley et al. 2007).
Frequentist methods are available to analyse some of the
models proposed below, but for many of the models

considered here, Bayesian methods afford a general frame-
work incorporating both parameter estimation and improved
estimates of uncertainty. Bayesian multilevel models have
traditionally been applied to answer species composition and
abundance questions (often across spatial gradients), whereas
dynamical systems models have traditionally been applied to
answer ecosystem function questions (often in the context of
temporal change). Below, we describe each method in more
detail and propose an integrated approach with many of the
benefits and few of the detriments of the original methods.
One size will not fit all, and the choice of quantitative
approach will vary to some degree with study system,
information content of the trait data available and, of course,
the biological question. Nonetheless, the methods we
propose here meet an important requirement of consistency
with the conceptual foundation. In Box 1, we explore a
conceptual example to demonstrate how decisions regarding
quantitative approaches might be made.

Box 1 Where to begin with a structured and dynamic traits-based approach? A conceptual example

Motivation

In order to illustrate how a dataset might be analysed using the structured and dynamic traits-based approach, we present a
conceptual example. Here, we consider a hypothetical study conducted in a grassland community, where specific traits and
environmental drivers can be measured and subjected to the analytical procedures shown in Table 2 and Fig. 5. (The A, B
and C below correspond to columns A, B and C in Table 2). The main goal of the study is to predict changes in species
abundance and distribution, as well as ecosystem function, under climate change. The hypothetical example offered here can
be applied to any number of other ecosystem types.

Data

Consider greenhouse data where a number of traits are measured at the species level for multiple species of annual and perennial
grasses that are important contributors to community structure and ecosystem function. Biomass of these species, a measure of
performance, is also available from field measurements taken across multiple years. Temporal environmental data are available
from climate stations close to where the biomass estimates were made. Ideally, data on traits, performance and environmental
drivers would be collected at the same time and at the same location, and trait data should be measured at the individual level and
include individual level variability. However, in this example, species level trait data are all that are available, both from the
greenhouse experiments and from the literature. Reich et al. (2003) provide an example of such data with 14 traits measured for
34 species. Examples of similar data sets for other systems can be found in the literature (e.g. Wright et al. 2004; Poff et al. 2006;
Craine et al. 2007).

Data choices and pre-analysis

In this example, traits that are thought to mechanistically contribute to performance were measured. Within the group of 14
traits, many traits are correlated with one another and mostly fall into categories related to relative growth rate (RGR),
photosynthetic rate and respiration rate (Reich et al. 2003). Principle components analysis (PCA) can be used to eliminate
traits that are highly intercorrelated and reduce the number of traits used in the analysis. Similarly, a large number of
potential environmental variables are also available from the climate stations and from various GIS layers. Again, correlation
analysis or PCA can be used to reduce this large set of environmental variables to a smaller set of mechanistic drivers
including for example, average (or extreme) temperature during the growing season and early season precipitation totals.
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For an initial pass, we start by choosing traits that are known to correlate well with performance from other studies. So
here, we start with relative growth rate (RGR), an aggregate trait that provides proof-of-concept. Once the ability to predict
performance using RGR and the environmental variables has been established, more highly mechanistic, component traits
(e.g. photosynthetic rate and respiration rate), can be incorporated.

Part A. Phenomenological Bayesian multilevel models (PBM) analysis

Following pre-analysis, we expect PBM may be the next step in two situations: (1) for prediction within the current data
range or (2) where mechanisms or trait response to environmental variables are poorly understood. A multinomial model is
appropriate for this example because parameters regulating RGR (or the component traits) for all species in the community
are estimated simultaneously, and some competitive interactions are implicitly incorporated due to the constraints applied by
multinomial assumptions. If we have adequate, a priori knowledge of trait–environment linkages, we can implement a
multivariate version of the type of multinomial PBM described in Table 2, column A with output similar to Fig. 5a and d to
predict the filtered trait distribution (i.e. the biomass distribution associated with RGR values). PBM predictions are
phenomenological and inference is usually restricted to the data range used. However, assuming we lack sufficient
confidence in the trait–environment linkages that relate to performance, we can generate sets of traits and drivers
hypothesized to be important and use model selection techniques (e.g. Aikaike Information Criterion) to determine the
most appropriate choice from our model set. In our own laboratory, we have used data similar to this conceptual example
and a model selection approach to predict the temporal trajectory in biomass for each trait value in a grassland community
over a twenty-five year period using RGR and three environmental drivers (unpublished data). Following this proof of
concept, the next step is to add an additional layer to the PBM in which component-specific traits (e.g. photosynthetic rate
and respiration rate) are used to predict the aggregate RGR.

Part B. First principles dynamical systems model (FDM) analysis

FDM can be used directly following pre-analysis if the traits and drivers important in the system are well known. Otherwise
PBM and model selection can be valuable steps in establishing which traits and drivers are related and predictive of
performance. In our conceptual example, FDM is a logical step to follow the PBM analysis since we are interested in
exploring our mechanistic understanding of the system and because we want to project how the system would behave
outside the measured range of parameter values. In this example, we want to predict changes in biomass or species richness
under different climate change scenarios. Here, the traits and drivers identified using PBM are combined in a mechanistic
performance filter, where photosynthetic rate and respiration rate are related to performance along an environmental
gradient driven by predicted changes in average temperature and early season precipitation under climate change scenarios.
The form of the performance filter (e.g. linear, saturating, nonlinear) is based on the ecophysiological literature describing
the relationship between photosynthesis, respiration and temperature and water availability. Using a multivariate version of
the approach described in Table 2, column B, we could generate predictions for the temporal trajectory in biomass for each
combination of trait values (photosynthetic rate and respiration rate) under climate change scenarios (such as the output
described in Fig. 5b and e). Like PBM, model selection can be used to test different hypotheses about the shape of the
mechanistic relationship.

Part C. First principles Bayesian multilevel models (FBM) analysis

FBM can be used directly following pre-analysis if traits, drivers and their mechanistic relationship are all well known.
A likely outcome is that FBM is used as a final step following either PBM or FDM (or their sequential application), because
traits-based problems can be complex and require several layers of investigation. We expect that FBM can be used for either
prediction or mechanistic exploration of systems, but the possibility of inferring prediction beyond the range of the data
needs further support (see discussion in text). In our conceptual example, we would use photosynthetic rate, respiration rate,
average temperature and early season precipitation in a multivariate version of the model described in Table 2, column C. As
noted in Table 2 column C and in contrast with the FDM model described above in Box 1 part B, we would need to use
discretized versions of the first principles models in order to be able to fit the resulting model. We would use the same type

Box 1 continued
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Bayesian multilevel models for species composition and
abundance

Bayesian multilevel models (sometimes called Bayesian
hierarchical models, Gelman et al. 2004; Gelman & Hill
2007) offer an attractive framework for making probability-
based inferences about the relationship between traits and
environment. Bayesian models have been used to estimate
mechanistically important trait values from traits that are less
directly informative but easier to measure (McCarthy et al.
2008); to estimate extinction risk based on traits, but without
an environmental component (Williams et al. 2005); to
estimate the performance filter (Billheimer et al. 1997,
2001; Johnson et al. 2006; Kühn et al. 2006); and to
investigate the impact of environmental factors on abun-
dance (Ver Hoef & Frost 2003; Thogmartin et al. 2004; Diez
& Pulliam 2007; Murray et al. 2008). More sophisticated
models encompass all three components of Fig. 3 by relating
traits to the environment and predicting how the spatial
distribution of traits would translate into the pres-
ence ⁄ absence of plant species (Latimer et al. 2004, 2006;
Gelfand et al. 2005, 2006; Dorrough & Scroggie 2008). In
studies that estimate the performance filter, it is described
phenomenologically using traditional statistical methods (e.g.
linear regression) to estimate the relationship between trait
data and environmental variables within a Bayesian multi-
level framework (see Table 2, column A, for model structure,
the associated schematic example shown in Fig. 5a for
hypothetical results, and Box 1 part A).

An attractive feature of such phenomenological Bayesian
multilevel models (PBM) is that they can simultaneously

estimate both the parameters associated with the perfor-
mance filter (e.g. estimate the relationship between traits and
environment) and project the filter (e.g. predict the estimate
of the trait distribution over time or space) (Table 2 and
Fig. 5d). Because PBM estimate parameters and provide
prediction simultaneously, they provide automatic estimates
of uncertainty for all parameters. In contrast, most non-
Bayesian approaches use a two-step procedure that ignores
uncertainty in the initial regression relationship when it is
projected. Estimates of uncertainty are particularly impor-
tant when observed data on traits and environmental
variables are acquired from different sources with different
levels of observation error.

A second significant advantage specific to PBM is that they
can be broadly applied, because they do not require a priori
knowledge of the mechanisms that relate traits and environ-
mental variables and define the performance filter. The
multilevel nature of Bayesian modelling means that the model
can still naturally reflect known causal hierarchies in the data
(e.g. metabolic rate is affected by ambient temperature, not
vice versa). Further, PBM can easily incorporate synergies
among multiple traits and multiple environmental drivers, and
they have already been shown to provide accurate predictions
for real systems (Gelfand et al. 2005, 2006).

A disadvantage of the PBM approach is that the models can
be so closely tied to the observed data that they perform
poorly when making predictions outside this range. This is not
necessarily due to overfitting which can be overcome through
improved statistical modelling, but is due to the fact that the
phenomenological Bayesian models are not based on sound
ecological theory. In comparison, mathematical models based

of performance function (e.g. based on ecophysiological relationships) described above for FDM. This approach would
provide similar results to the PBM and FDM in terms of biomass predictions, but it could do so under climate change
scenarios while still providing credible intervals (similarly to Fig. 5c and f).

Interpretations for community and ecosystem ecology

As with any analytical approach, standard methods for validation should be applied before making valid inference. Once a
validated trait distribution is available, the final step in many cases will be to relate it back to species distribution and
abundance or to ecosystem function. In our conceptual example, this is straightforward. Because each species has a unique
combination of photosynthetic rate and respiration rate, species richness (i.e. Shannon!s index) can be directly calculated
from the filtered trait distribution. Using the PBM approach, we can predict temporal changes in this trait-inferred species
richness over some period (as we have done in our own, unpublished research using RGR alone) and thus potentially rank
the relative contribution of each trait and driver to these changes. From an ecosystem perspective, the changes in the size of
the trait distribution can naturally be interpreted as changes in total biomass. For many of these species, rates of carbon or
nitrogen fixation are known (or the correlation of C and N fixation with photosynthetic rate), so total, or at least relative,
changes in carbon and nitrogen fixation could also be predicted based on the changes in the trait distribution. The potential
for aggregation bias to affect these results should be acknowledged since the data were collected at the species level.

Box 1 continued
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on first principles (e.g. underlying mechanistic relationships)
can in principle be used to predict under future environmental
conditions outside the range of observed data.

Dynamical systems approaches and ecosystem function

Dynamical systems models offer an attractive framework for
incorporating a mechanistic performance filter derived from
first principles (e.g. Norberg et al. 2001; Chesson et al. 2002;
Falster & Westoby 2003; Loreau et al. 2003; Tilman 2004;
McGill & Brown 2007; Savage et al. 2007; Vincent &
Vincent 2009). This is particularly true in ecosystem
function applications where the relationship between trait
data and environmental variables is frequently gained from
experimental manipulations that allow for strong inference
about mechanism. In contrast to PBM, a sequential, two-
step approach is used in applying dynamical systems models
to traits. In step 1, either phenomenological relationships
(e.g. Craine et al. 2002; Reich et al. 2003) or, more
appropriately for mechanistic inferences, first principles
can be used to characterize the performance filter (Enquist
et al. 2007). See Table 2 column B and Box 1 part B.
A schematic of a mechanistic performance filter is shown in
Fig. 5b. In step 2, dynamical systems approaches (i.e.
comprised of ordinary differential equations) project the
performance filter temporally (Norberg et al. 2001; Chesson
et al. 2002; Loreau et al. 2003; Savage et al. 2007) as
illustrated in Table 2 column B and Fig. 5e. Dynamical
systems models so far have used mechanisms derived solely
from first principles (first principles dynamical systems
models; FDM) and are highly theoretical.

The greatest strength of FDM is the ability to explicitly
incorporate mechanistic performance filters describing
relationships among traits and their response to the
environment. This approach allows the performance filter
mechanism to be projected outside the original data range to
generate predictions. This characteristic also allows for
hypothesis generation even in the absence of observed data
required for model validation. Further, analytical results
produced by FDM can provide important insights into long
standing ecological questions and theory. For example,
analytical results show that negative correlation among traits
helps maintain system biomass and biodiversity because
optimal values for all traits cannot be obtained, inducing
larger trait variances that allow for a relatively rapid response
to environmental changes (Savage et al. 2007).

The promise of FDM approaches to employ performance
mechanisms developed from first principles to predict
current data from natural systems is high (Enquist et al.
2007); however, their ability to be projected into the future
to generate accurate predictions remains to be validated.
Finally, FDM approaches do not generate measures of
uncertainty like Bayesian multilevel models, althoughTa
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sensitivity analysis can be used to quantify how model
predictions are impacted by changes in parameter values
(Webb et al. 2006).

An integrative approach: Bayesian multilevel models with
a first principles mechanism

The problem of developing a rigorous theoretical frame-
work for traits-based approaches is non-trivial. PBM and
FDM both show promise in addressing this problem, but
their strengths and weakness differ. While PBM and FDM
have traditionally been applied to different biological
research themes, there is no fundamental justification for
this division. Both approaches reflect the conceptual
framework common to predictive community and ecosys-
tem ecology based on traits; they encompass a similar
perspective on environmental filtering of traits and projec-
tion of this performance filter; and they require similar types

of data. A melded or hybrid approach that balances the
strengths and weaknesses of these two techniques would
maintain both uncertainty estimates and explicit mecha-
nisms while capturing spatial and temporal dynamics in a
process-based framework.

In principle, Bayesian multilevel models can allow for
the incorporation of first principles mechanisms and can
be used to predict spatial and ⁄ or temporal dynamics as
described in Table 2 column C, Fig. 5c and f, and Box 1
part C. In traditional PBM, the performance filter is
described phenomenologically using traditional statistical
methods (e.g. linear regression). In contrast, a first
principles Bayesian multilevel models (FBM) estimates
the performance filter using a mechanistic model. In other
applications, this has been referred to as using a
deterministic process model within a multilevel (hierarchi-
cal) statistical model (Cressie et al. 2009). A FBM combines
the strengths of the theoretical mathematical models with
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Figure 5 Examples of hypothetical performance filters (a–c) determined at the individual level for each of three modelling approaches. In
(d)–(f), the performance filter is applied to the trait distribution across an implicit temporal environmental gradient. This results in a filtered
trait distribution, the mean of which is depicted as it varies over time for each of three modelling approaches. In the figures, the solid line
represents the main model prediction and dotted lines represent hypothetical credible intervals. Points represent data for individuals (a, c) and
mean trait values for the whole community (d, f). These models produce a prediction of the entire filtered trait distribution, but only the mean
is shown here for convenience. Other aspects of the trait distribution, such as the variance, can also be predicted (not shown). Shaded grey
areas indicate the range of the data. These hypothetical graphs are similar to what we would expect from example models like those described
in Table 2. (a) A linear regression model describes the performance filter in a PBM. The regression model has credible intervals, but they are
larger than in (c) because the underlying regression model is inaccurate. (b) A saturating function based on first principles describes the
performance filter in a FDM, but it lacks credible intervals. (c) A saturating function based on first principles (as in (b)) describes the
performance filter in a FBM. The saturating function has tighter credible intervals than (a) because the first principles performance filter is
more appropriate to the data. (d) A PBM with an underlying linear regression model for the performance filter produces predictions only
within the range of the original environmental data. In this example, relatively large credible intervals occur because the performance filter is
inaccurate, and the linear model predicts increasing average trait values within a community over time. (e) A FDM with an underlying
saturating function produces predictions through the entire time period, but without credible intervals. The first principles model predicts
decreasing average trait values beyond the data range. (f) FBM with an underlying saturating function (as in (e)) produces predictions and
credible intervals through the entire time period, with an improved fit within the original data range compared to (d). The predicted
downward trend in response outside the data range is captured with credible intervals, but these are increased because prediction is less
strongly data-driven in this area.
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observed data. This melded approach offers an exciting
opportunity for modelling trait-related data. FBM have not
been implemented, to our knowledge to address traits-
based questions, although they have been used to address
other community ecology problems (Johns & Mehl 2006;
Hooten & Wikle 2008). For example, Hooten & Wikle
(2008) modelled the spread of the invasive Eurasian
Collared-Dove (Streptopelia decaocto) by using a Bayesian
approach to estimate parameters from data for an
underlying reaction-diffusion partial differential equation
model. The model produced estimates of the spread of the
dove over time and space as well as parameter estimates to
relate this spread to human population density. A variety
of underlying mechanistic models could be considered,
ranging from a simple univariate independent distribution
over species and time (e.g. Norberg et al. 2001) to a more
complex model motivated by the work of Savage et al.
(2007). A FBM does not have to include only a
mechanistic model of the performance filter. In many
applications, it makes sense to use some combination of
mechanistic and phenomenological models (Newman et al.
2006; Ogle & Barber 2008).

Application of deterministic process models to traits-
based problems requires sophisticated statistical algorithms
for parameter estimation (e.g. variants of Markov chain
Monte Carlo algorithms, Givens & Hoeting 2005; Chapters
7 and 8) as well as some model simplifications (e.g.
discretization of the dynamical systems component). Dis-
cretization is a necessary step in order to fit the data to the
underlying first principles model. A challenge of this
approach is that discretization or estimation of solutions
of the underlying mechanistic, mathematical model neces-
sarily involves some error. How to incorporate this error
into uncertainty estimates in a Bayesian modelling frame-
work is an open area of research in statistics and
mathematics (Bortz & Nelson 2006).

The melding of PBM and FDM into a hybrid FBM has
strong appeal because it allows incorporation of uncertainty
estimates for the parameters used to describe the mecha-
nistic process and because the mechanistic performance
filter could more confidently be projected beyond the range
of data (Fig. 5f). Application of these types of models
present some technical challenges, but their promise merits
further development.

Data constraints

PBM, FDM and FBM all naturally reflect the conceptual
foundation of the trait approach. However, their utility and
appropriate application is practically constrained by the
balance between the types of data required by each method
and the types of data that are available. It is these types of
data constraints that have aligned PBM with species

composition and abundance questions and FDM with
ecosystem function questions.

Data constraints strongly limit our ability to build realistic
performance filters, but they affect filter projection less
because projection is usually an inherent aspect of the
statistical or mathematical approach. Both PBM and FDM
have similar data requirements for constructing perfor-
mance filters: a set of trait data, environmental data and
performance data on ecosystem functioning or species
presence ⁄ absence (or abundance). These types of trait and
environmental data sets can be collected experimentally (e.g.
Grime & Hunt 1975; Buchwalter et al. 2008), but are labour
intensive. Hence, it is not uncommon for researchers to use
trait, environment and performance data collected at
different times and places (see Box 1 for an example).
Dealing with this type of data misalignment is a technical
challenge for quantitative methods, but Bayesian models
have been developed to address these data misalignment
problems (Banerjee et al. 2003).

Linking the performance value of individual traits to
specific environmental drivers is the main element in
constructing performance filters, ideally in a mechanistic
fashion. The relationship between an organism and its
environment can depend on both abiotic factors and biotic
factors, such as natural enemies, mutualists and competitors
(e.g. Janzen 1970; Frost et al. 1995; Tylianakis et al. 2008).
Trait-based approaches make use of both abiotic and biotic
environmental drivers and can incorporate complex eco-
logical interactions such as functional complementarity and
correlations among drivers or traits (Norberg et al. 2001;
Savage et al. 2007).

While the quantitative methods described here are
appropriate for simple (single optimum) or complex (many
optima) performance filters, our ability to determine which
type of filter occurs in a system depends on the quality of
available data. Many easy-to-measure traits (e.g. Cornelissen
et al. 2003; Wright et al. 2004) may not completely capture
performance or may interact with other, unmeasured traits
(Marks & Lechowicz 2006; Violle et al. 2007). Thus, there is
strong potential for performance filters to appear simplified
when they are not or to appear complex and disjoint
because underlying connections among traits and environ-
mental drivers are missing from the analysis. Over-inter-
pretation of performance filters could be misleading.
However, Bayesian approaches are currently being devel-
oped to relate easy-to-measure traits to more complete
measures of performance (McCarthy et al. 2008). Such
approaches may be one solution to these potential
problems.

Data are often observed at the community level instead of
the individual level. This data constraint can lead to the
problems of specification and aggregation bias. Specification
bias occurs when the trend in the relationship between the
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trait and the performance is in the wrong direction because
the performance filter is measured at the community level
instead of the individual level. This is demonstrated in
Fig. 2f where there is a positive trend between trait and
performance at the community level, while a negative
relationship is observed at the individual level. Aggregation
bias occurs when associations based on aggregate data do
not reflect individual heterogeneity. Aggregation bias can
cause scientists to falsely conclude there are highly
significant correlations. This is demonstrated in Fig. 2g
where there is greater variability in individual performance
than in the observed community performance. With
specification and aggregation bias, prediction of the average
response across the gradient can be qualitatively accurate;
however, prediction of the variance in individual responses
will be inaccurate. Prediction of the variance can be quite
important because trait variance reflects biodiversity. See
Shea & Chesson (2002) and Huxman et al. (2004) for
discussions of similar issues in other areas of ecology.

Aggregation bias also occurs when trait data are collected
at the species level. Furthermore, one of the main strengths
of a traits-based approach, that it gets away from species
distinctions, is compromised when trait data are collected
solely at the species level. In addition to aggregation bias,
application of traits-based approaches at the species level
ignores the potential effects of natural selection on the
community or ecosystem response. This implication may be
particularly important in situations where evolution can
occur at ecologically relevant rates in response to climate
change (Reznick & Ghalambor 2001; Finney et al. 2002;
Parmesan & Yohe 2003).

C O N C L U S I O N S

Traits-based approaches are clearly a useful way to analyse
data, as evidenced by the burgeoning literature in this area
over the last few years. However, a more articulated
conceptual foundation and coherent theoretical framework
is needed to unify and advance this active and promising
area of ecological research. The absence of a formal
treatment of traits-based theory in major ecology textbooks
speaks to this lack of coherence. Development of a more
coherent theoretical framework is needed to support
hypothesis generation, appropriate inference and prediction
in traits-based ecology.

A necessary first step is to recognize that traits-based
approaches widely employed in divergent fields of study have
a common foundation. In particular, the artificial divide
between species composition ⁄ abundance and ecosystem
function studies disappears when these historically divergent
domains are integrated under a shared conceptual framework
that describes the spatial and temporal dynamics of trait
distributions and their environmental filtering. This unifying

framework indicates that traits-based approaches should not
continue to develop independently in these two areas.

The promise of a predictive traits-based ecology can only
be realized by confronting a coherent conceptual foundation
with the full range of relevant empirical analyses to allow for
consistent analysis and comparison. We believe our concep-
tual framework of trait distributions, performance filters and
environmental gradients can act as a kind of Rosetta stone to
allow specific (and varied) empirical examples to be translated
into a common currency that can be gauged for consistency
with expectations from traits-based theoretical constructs.
Such a common translator is crucial if we want to advance our
understanding of how trait-level processes scale up through
an ecological hierarchy from individuals to ecosystems and
thus realize the full potential of traits-based ecology.

Achieving this potential will require new analytical
approaches because implementation of current techniques
results in a tradeoff. On the one hand, PBM generate
desirable estimates of uncertainty in predictions, but their
general reliance on phenomenological performance filters
precludes confident projection outside the original data. On
the other hand, FDM do incorporate mechanistic perfor-
mance filters that support more confident projection, but
they fail to provide estimates of uncertainty. We believe a
hybrid FBM that both incorporates a mechanistic perfor-
mance filter and affords estimates of uncertainty holds great
promise for advancing a more conceptually rigorous,
predictive traits-based ecology.

Traits-based approaches and theory are still developing.
While they have great promise, they also have non-trivial
limitations that cannot be dismissed. From a practical
standpoint, the type and quality of data available will often
constrain what can be accomplished analytically. More
fundamental constraints must also be noted. First, back
calculation from the trait distribution to species abundance
and distribution, and possibly ecosystem function as well, is
unlikely to be an easy, straightforward process. The more
species contributing to the trait distribution and the greater
the trait redundancy among species, the more indeterminate
this back calculation will be. Thus, the number and type of
traits and their relation to one another (and to the
environment) should be carefully considered in conducting
traits analyses. Second, much of the conceptual foundation
of the traits-based approach rests on niche tradeoff
arguments (e.g. Tilman 1982) and hence, it does not test
alternative hypotheses such as neutral theory or a mix of
stochastic and deterministic processes as proposed by
Hubbell (2001). However, adding stochastic effects to niche
based modelling, particularly FDM approaches, can poten-
tially account for neutral processes (Lande et al. 2003;
Tilman 2004).

Despite these growing pains, we can glimpse a number of
important issues that a mature traits-based theory will
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address. For example, what functional forms do perfor-
mance filters take? Can they be captured as a linear
relationship or are they more complex? How many and what
types of traits and environmental drivers are needed to
understand these performance filters? Do performance
filters that are relevant on ecological timescales provide any
insight into adaptive topographies that are relevant on
evolutionary time scales? How similar are performance
filters constructed at the individual level to those con-
structed at the community level? What are the best ways to
relate performance filters and trait distributions to commu-
nity abundance and distribution or ecosystem function?
How far can mechanistic performance filters reasonably be
projected (e.g. using uncertainty estimates)?

Furthermore, traits-based approaches can provide insight
into active areas of debate, such as the role of biodiversity in
ecosystem function. Many data appropriate for traits-based
analyses have been collected as part of biodiversity-ecosystem
function studies. Theoretical work, using mostly FDM, has
begun to address these questions using the conceptual
framework outlined here. Ecologists have proposed that trait
diversity may be a better predictor of species distributions or
ecosystem function than biodiversity itself (Norberg et al.
2001). If so, what underlying mechanisms generally control
trait diversity? What is the relative importance of temporal
sampling effects (Norberg et al. 2001; Chesson et al. 2002),
functional complementarity and correlations with suboptimal
traits (Savage et al. 2007)? Trait-based approaches can also be
used to address these types of questions in a metapopulation
or open population context (Norberg et al. 2001; Loreau et al.
2003; Savage et al. 2007).

The interest among ecologists in advancing traits-based
theory and analysis is great, in no small part because the
questions that can be addressed are important and pressing.
Here, we have offered a perspective that can contribute to
more rapid and coherent progress in the promising arena of
traits-based ecology.
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