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ABSTRACT 

 

 

One of the most difficult challenges of managing product development is identifying the 

individuals who need to coordinate closely their interdependencies during the design process. “Who 

should talk to whom?” and “Which interfaces should they talk about?” are key questions that 

engineering managers must address when planning and executing product development efforts.  In this 

paper, I introduce the notion of the affiliation matrix to map the product architecture onto the 

organizational structure and predict potential technical communication patterns. By comparing 

potential interactions with actual communications, engineering managers can uncover product 

interfaces and organizational interactions that may require special managerial action during the design 

phase of development processes. This provides an integrated view of how process, product, and 

organizational structures align themselves when developing new products. I illustrate the 

implementation of this approach in a software development organization, which offers relevant 

insights about the challenges associated with managing new software development. 

Keywords: software development, product architecture, design iterations, project management. 
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INTRODUCTION 

One of the most important challenges in product development is to manage design iterations and 

change propagations not only when designing new products but also when redesigning existing ones 

(Eppinger et al. 1994, Clarkson et al. 2004, Eckert et al. 2004, MacCormack et al. 2001, 2006, 

Cataldo et al. 2006, Chen et al. 2007). Ultimately, this can be done effectively if engineering managers 

can identify the individual actors associated with design iterations and the crucial product interfaces 

involved in them. In simpler terms, managers need to be able to answer two critical questions when 

planning and executing development efforts: “Who should talk to whom?” and “Which interfaces 

should they talk about?” To address this challenge, this paper provides a structured and general 

approach to predicting and managing potential technical interactions in product development 

organizations
1
.  

The basic premise of this paper is that technical organizational interactions take place to coordinate 

the critical interfaces that connect product components (Henderson and Clark 1990)
2
. However, 

identifying and attending the interfaces between product components that require special attention to 

coordinate is a challenging task, even when the product architecture maps directly onto the 

organizational structure (Sosa et al. 2004). (A direct, or one-to-one, mapping of product and 

organizational structures is characterized by the mutually exclusive assignment of the design of each 

component of the product to one individual actor or team in the organization.) The managerial 

challenge becomes even harder when this mapping is not direct, as has been observed in product 

development projects in the electronics industry (Morelli et al. 1995). This is also common in software 

development projects in which many individual actors typically contribute to the design and 

integration of software components in a flexible development process (MacCormack et al. 2001, 

Cataldo et al. 2006, Sosa et al. 2007a). To tackle this challenge, this paper suggests a structured way to 

predict communication patterns based on the architecture of the product and the assignment of design 

tasks to people in the development organization. The approach introduced in this paper is general not 

only because it applies to the development of either hardware or software products but also, and more 

importantly, because it is applicable in cases where the mapping between the product and 

organizational structures is not one-to-one. More specifically, I introduce the notion of the affiliation 

matrix to capture the involvement of organizational actors in the design of the various components of 

the product under development (“Who does what?”). With the affiliation matrix, engineering 

managers can systematically map the product architecture onto the organizational structure and 

                                                      

1 I refer to product development in a broad sense to include the development of hardware or software 

products, or both.  However, when referring to software development exclusively, I will make the distinction 

explicit. 

2 I reserve the use of the word “interfaces” to refer to linkages between product components while 

“interactions” refer to actual or potential communications between development actors. 
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estimate potential technical communication patterns that would need to take place to coordinate 

critical interfaces between product components. 

Improving product development efforts typically starts by documenting design tasks and their 

information requirements (Eppinger et al. 1994, Browning 2001). By examining the task structure of 

the process, managers can uncover the interdependent activities that are more likely to generate design 

iterations. To that end, the design structure matrix (DSM) is a matrix-based analytical tool introduced 

by Steward (1981) and used by Eppinger and his colleagues to represent and organize design tasks in 

complex product development projects (Eppinger et al. 1994). In the product domain, a matrix 

representation has also been used to represent hardware and software products as networks of 

interconnected components (Pimmler and Eppinger 1994, Sosa et al. 2003, Sharman and Yassine 

2004, MacCormack et al. 2006, Lai and Gershenson 2006, Sosa et al. 2007a,b). Finally, in the 

organizational domain, development organizations have been considered as social networks of 

interacting actors that integrate their efforts to develop new products and services (Allen 1977, Morelli 

et al. 1995, Sosa et al. 2004, Cataldo et al. 2006, Olson et al. 2006). Therefore, product development 

systems can be considered as a network of design tasks (process architecture) carried out by a social 

network of developers (organizational architecture) to develop products comprised of interdependent 

components (product architecture). These three dimensions influence one another significantly, and 

understanding the way they interrelate is crucial to improving product development systems (Eppinger 

and Salminen 2001, Sosa et al. 2004). Moreover, to manage design iterations effectively, it is crucial 

to understand how interdependent design tasks and interdependent product components ultimately 

determine the technical communication patterns of the organization, which is what this paper aims to 

do. 

Research in engineering design has also investigated the drivers of design change propagation. This 

stream of research has analyzed the architecture of complex products to predict how the change in one 

part of the product may result in changes in other parts (Clarkson et al. 2004, Jarratt et al. 2005). This 

paper also complements this line of research by emphasizing that to manage change propagation 

effectively it is necessary not only to understand “the state of the design and the connectivity between 

the parts of the design” (Eckert et al. 2004, p. 20) but also how design changes could propagate into 

the organizational structure and impact the technical communication patterns among the development 

actors involved. 

The organizational literature recognizes the challenge faced by organizations when attempting to 

coordinate the links between the components of the system they develop (Allen 1977, Henderson and 

Clark 1990, Mihm et al. 2003) and has proposed some strategies to improve the coordination 

associated with developing interdependent components (Sanchez and Mahoney 1996, Baldwin and 

Clark 2000, Terwiesch et al. 2002). However, this stream of work provides little specific guidance to 

predicting technical communication patterns based on the architecture of the systems under 

development. A first exception to this stream of research is presented by Sosa et al. (2004), which 
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studied the misalignment of the product and organizational structures associated with the development 

of a large commercial aircraft engine. This paper extends their work by providing a general and 

structured approach to study product and organizational architectures that do not map directly to each 

other as observed in software development efforts. Another exception to this stream of work comes 

from engineering design and it is provided by Cataldo et al. (2006) which suggest an approach (similar 

to the one presented here) to computing coordination requirements and comparing them with actual 

coordination mechanisms. This paper, however, differs from Cataldo et al. (2006) in four important 

aspects: 1) This paper provides detailed mathematical justification, based on matrix algebra, for the 

expressions that allow us to determine systematically potential communication patterns based on the 

product architecture and the organizational affiliation of design engineers; 2) This paper acknowledges 

that the comparison of potential and actual organizational interactions is approximate and therefore 

corrects for any systematic redundancies built in our approach; 3) The analyses in this paper focuses 

on identifying mismatches of potential and actual communication patterns which are potentially 

indicative of coordination issues that managers might want to attend to. In contrast, Cataldo et al. 

(2006) focus their analysis on testing the impact that aligning coordination requirements with actual 

coordination mechanisms have on design task performance; 4) This paper uses data collection 

methods that differ significantly from the empirical methods used by Cataldo et al. (2006), which 

relies primarily on analyzing “modification requests” data in a distributed software development 

organization. In that sense, both papers complement each other by providing alternative data collection 

mechanisms which managers could consider when implementing their efforts to improve coordination 

in software development organizations.    

From a methodological viewpoint, this work builds on research in social networks that uses the 

notion of affiliation networks to study the relationship between individuals when they are affiliated 

with certain groups or events (Wasserman and Faust 1994). The membership of individuals to events, 

groups or other collectivities has been important in organizational research because these affiliations 

significantly influence the social identity of the individuals involved (Simmel 1955). Past research has 

also recognized that various types of networks exist within organizations due to interactions of 

systems, knowledge, tasks, and organizational units, and therefore properties can be measured in terms 

of any of these networks or combination of them (Carley 2002, p.10). The notion of affiliation 

networks formed by both social actors and social events has been represented in alternative ways, 

including affiliation matrices (also called incidence matrices), bipartite graphs, and hypergraphs 

(Seidman 1981). These representations have been used in engineering design to search for optimal 

ways to explore alternative strategies for decomposing complex design problems into more 

manageable sub-problems, which can ultimately lead to improved management of design iterations 

(Michelena et al. 1995, 1997, Chen et al. 2005, 2007), yet these methods do not evaluate the 

organizational implications of various problem decomposition alternatives. 
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This paper makes three important contributions to the engineering design literature. First, it 

operationalizes a general and structured approach to align product and organizational architectures 

with the use of the affiliation matrix. Because the affiliation matrix captures the level of involvement 

of organizational actors in the design of product components, it can be used systematically to estimate 

technical communication patterns during the planning and execution of product development efforts. 

Second, this paper illustrates and validates this structured approach by implementing it in a real 

software development setting. Doing this resulted in the identification of product interfaces and 

organizational interactions that required special managerial action in the organization studied. Third, 

this paper examines the interplay of process, product, and organizational structures in the same 

development organization. This provides us with an integrated view of how these separate but related 

perspectives align themselves when developing new products.   

The structure of this paper is as follows: in the subsequent section, I present the research 

motivation by examining the task structure of the development organization studied. Then, I introduce 

the research approach and illustrate it with a simple numerical example. An industry example from 

software development is detailed in the subsequent section. Finally, after discussing the empirical 

results, I conclude the paper with a project management framework that aligns process, product, and 

organizational structures for better management of design iterations.  

RESEARCH MOTIVATION: EXAMINING THE PROCESS STRUCTURE 

Although there are substantial benefits associated with documenting and analyzing the structure of 

the process organizations carry out when developing new products (Browning and Ramasesh 2007), it 

is important to realize that engineering managers need to go beyond the process domain into the 

product and organizational views in order to manage design iterations effectively. Next, I examine the 

information requirements of the development activities carried out in the software organization studied 

in this paper and illustrate the need to instantiate such a development process with the architecture of a 

particular product under development. This, in turn, determines the potential communication patterns 

of the organization during the completion of the most iterative set of development tasks. 

The task structure of the development process used by the software firm I studied is represented in 

the design structure matrix shown in Figure 1. This DSM representation captures their development 

process, internally documented in a multi-page process flow diagram. The matrix shown in Figure 1 is 

a square matrix, the rows and columns of which are identically labelled with the development tasks, 

and an off-diagonal mark, (i,j), indicates that to complete task i (labelling row i) information from the 

task in column j is needed. The blocks along the diagonal of such a DSM highlight the groups of tasks 

that are executed together (in parallel, sequentially, and/or iteratively) within each phase. As evident 

from Figure 1, an important contribution of a DSM representation is the simple and explicit depiction 

of complex processes where sets of iterative activities (i.e., design iterations) can be highlighted. The 

figure shows three sets of planned interdependent tasks: 1) software architecture definition; 2) 
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software release planning; and 3) design and integration of software features
3
. Yet, to effectively 

manage these planned design iterations one must examine how this process view is implemented for a 

given product with a specific organizational structure.  

 

Figure 1. Software development process at the organization studied 

Figure 2 takes a closer look at the most iterative set of development tasks in the process 

documented in Figure 1. The efficient completion of this group of planned highly iterative set of 

activities depends on both the specific product and organizational structures involved in the process. 

For example, the actual communication patterns associated with the tasks “Do unit testing”, “Integrate 

code into product”, and “Test integration of PS” (tasks 22, 23 and 24, respectively) were significantly 

different depending on the type of product under development
4
: For some legacy products the design 

and integration of proposed solutions (i.e. product components) would involve a small set of 

developers while designing and integrating components for a novel product such as the one studied in 

this paper involved more than half of the developers available in the organization. In addition, the 

organizational interactions associated with these design tasks largely depended not only on the 

inherent characteristics of the components to be designed, tested, and integrated, but also on the 

connectivity of those components with other components in the product. Hence, if managers are to be 

able to facilitate the completion of iterative set of design activities (as the ones shown in Figure 2), 

they need to understand how the product components that instantiate these design tasks link to one 

another (the product architecture) as well as who the people responsible for contributing to the design 

                                                      

3 Note that Figure 1 distinguishes unintended feedback interdependencies that could occur from the “design 

and integration” phase to either “release planning”, “software architecture definition”, or “software feature 

definition” phases. Because these interdependencies are unintended (or unplanned) they are not considered when 

identifying planned design iterations. This DSM also distinguishes the feedback interdependencies associated 

with process improvement because they are not part of planned design iterations either. 

4 The process illustrated in Figures 1 and 2 was used for developing both legacy and novel software 

applications. 
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of those product components are (the affiliation of people to the components’ design). Next, I 

introduce a structured approach to address this challenge. 

 

Figure 2. "Design and Integration" tasks of the software development process studied 

PREDICTING AND MANAGING TECHNICAL INTERACTIONS 

In order to improve the management of planned design iterations that typically occur in the design 

phase of product development processes, this paper introduces a five-step approach structured in two 

phases (see Figure 3). The first phase (steps 1, 2, and 3) focuses on predicting potential technical 

interactions based on the architecture of the product and the affiliation (or involvement) of developers 

in the design tasks of each product component. The second phase (steps 4 and 5) focuses on validating 

the potential interactions identified in the first phase by comparing them against actual interactions, 

which, in turn, provides important insights to improve the management of technical interactions. 

Fundamental to this approach is the introduction of the affiliation matrix (in step 2) to capture the 

design task involvement of the organization, which permits the alignment of product and 

organizational structures that do not map one-to-one.  

 

Figure 3. A structured approach to predict and validate technical interactions 

Predicting potential technical interactions 

The basic assumption behind this first phase of the approach is that design interfaces between 

product components generate coordination requirements among the people involved in their design. 

This phase focuses on predicting the set of interactions that could potentially take place to coordinate 
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the design interfaces of the product being developed. These potential interactions are likely to differ 

somewhat from the actual technical interactions that occur in the organization, which is why the 

results of this phase are validated by comparing them against the actual interaction patterns in the 

second phase of the approach. Predicting potential technical interactions can be done in three steps. 

(1) Capture the product architecture 

The n components that form the product and the interfaces among them are identified by 

interviewing systems architects. The product data are then documented into a product architecture 

matrix (P). Pn,n is a square matrix, the rows and columns of which are identically labeled with the n 

components of the product. A non-zero, off-diagonal cell, pij, in this matrix indicates that component i 

imposes design constraints on component j. Note that this convention to represent design interfaces 

between components is opposite to the convention used in previous related work in which the 

components that impose constraints on other components are used to label the columns of the product 

architecture matrix (Sosa et al. 2003, 2007b, MacCormack et al. 2006). In this paper, I use the 

opposite convention because it facilitates the mapping of a matrix representation to a block diagram 

representation commonly used in software development (Sangal et al. 2005, Sosa et al. 2007a)
5
. In 

addition, I assume that the directionality of the communication patterns follow the same direction as 

the directionality of design constraints (Sosa et al. 2004). Even though organizational communications 

are likely to be symmetric (i.e. in a dyad an actor seeks information while the other one provides 

information), information-seeking behavior (which is the type of organizational relationship we are 

aiming to predict) is typically determined by the directionality of design constraints (Eppinger et al. 

1994, Sosa et al. 2007c). Nonetheless, for cases in which design constraints are used to predict 

symmetric organizational relationships, then the product architecture matrix can be symmetrized. 

Regardless of the convention used, the key point at this step is to capture the dependency structure (or 

connectivity) of the product components so that the corresponding communication patterns can be 

determined from them. 

(2) Capture the affiliation network: the affiliation matrix (A) 

 In order to capture the involvement of people in the design of product components systematically, 

it is important to recognize that development actors and product components form an affiliation 

network because developers are affiliated with (i.e. involved in the design of) product components 

(Wasserman and Faust 1994). This type of affiliation network is captured by asking the m 

development actors about their level of involvement in the design of each of the n product 

components. (Alternatively, one could also ask engineering managers about the level of involvement 

of each of the m available developers in the design of the n product components.) This information is 

documented in the affiliation matrix (A). Am,n is a rectangular matrix in which m rows are labeled with 

                                                      

5 When using block diagrams to represent the structure of software products, components that serve others as 

platforms to build upon are typically placed at the bottom of the diagram. 
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the development actors and n columns are labeled with the product components. Cell aij indicates the 

degree of involvement of actor i in the design of component j. Note that for consistency the columns 

of A are sequenced following the same order as in the product architecture matrix (P). As for the order 

of the rows, one can sequence people following the formal organizational structure in which 

developers are organized into groups so that group members are sequenced together. 

Before describing how to use the affiliation and the product architecture matrices to determine 

potential organizational interactions, I will first examine the properties of the affiliation matrix, A. To 

do this, let us consider a binary affiliation matrix in which aij = 1 if developer i is involved in the 

design of component j, otherwise aij = 0. In this case, the row marginal totals of A, ai+ = aij

j

∑ , are 

equal to the number of components to which developer i contributes to the design of. (As a result, a 

row where the total marginal is equal to zero indicates that such a developer does not contribute to the 

design of any product component.) Similarly, the column marginal totals of A, a+ j= aij

i

∑ , are equal to 

the number of people that contribute to the design of component j and therefore a column whose 

marginal total is equal to zero has no developers contributing to the design of such a component. 

Affiliation networks are considered two-mode networks because they consist of a set of actors and 

a set of events (or, in our case, a set of components) instead of a set of elements (of the same kind) 

with links between them (Wassserman and Faust 1994). However, we are typically interested in the 

one-mode networks embedded in the affiliation networks, that is, the communication network of 

people in the development organization and/or the design dependency structure of the product under 

development. Fortunately, the information contained in the affiliation matrix itself sheds some light on 

these one-mode network structures. With the affiliation matrix we can determine “component-related 

ties” between people based on their involvement in the design of product components, and similarly, 

we can determine “organizational links” between components based on the people involved in their 

design. 

First, let us compare the columns of the affiliation matrix to determine the number of developers 

that any pair of product components has in common. To that end, two components that share the same 

developers will have 1’s in the same rows.  That is, aik = ail = 1 so that developer i contributes to the 

design of both components k and l. Counting the number of times that such an equality occurs for all 

the developers (i = 1, …, m) results in the number of developers involved in the design of both 

components k and l (pkl). Hence,  pkl = aik ⋅ ail

i=1

m

∑  

Clearly, if components k and l do not share any developers then pkl = 0 (which is the minimum 

possible value) and, if all the developers contribute to the design of these two components, then         

pkl = m (which is the maximum possible value). Now, we can define the common-contributor product 

matrix (Pcommon-contributor) as a function of the affiliation matrix (A) as follows 

Pcommon-contributor = A
T
 A         (1) 
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This is a square, valued, symmetric matrix of size n in which non-zero off-diagonal cells indicate 

the number of developers that any pair of components shares. The diagonal cells indicate the number 

of developers who contribute to the design of each component. Also, because the columns of the 

affiliation matrix are originally sequenced in the same order as the product architecture matrix (P), 

then the Pcommon-contributor preserves the same label sequencing of P. 

In a similar fashion, we can use the affiliation matrix (A) to determine the number of common 

components to whose design any pair of developers contributes. In such a case, we are interested in 

comparing the rows of the affiliation matrix so that aik = ajk = 1 if both developers i and j contribute to 

the design of component k. Hence, we can define the common-component potential interaction matrix 

(Tcommon-component) as follows 

Tcommon-component = A A
T 

         (2) 

This is a square, valued, symmetric matrix of size m, in which  non-zero off-diagonal cells indicate 

the number of components to which a pair of developers contributes.  The diagonal of such a matrix 

captures the number of components to which each developer makes a design contribution. Because 

people who contribute to the design of the same components are likely to exchange technical 

information related to the intrinsic design of such components, I call this matrix the common-

component potential interaction matrix (Tcommon-component). Note that this matrix does not capture the 

potential interactions that would need to take place to coordinate the actual product interfaces 

documented in the product interface matrix (P) captured in the previous step. I tackle this challenge in 

the next step. 

For illustration purposes, let us consider a simple organization with six developers developing a 

four-component product. Figure 4 shows the hypothetical affiliation matrix that captures how the six 

developers are affiliated with the design of each of the four product components. Figure 4 also shows 

how the affiliation matrix determines the potential interactions that could occur between any pair of 

developers due to the contribution they make to common components. In this example, person 2 could 

potentially interact with person 5 and person 6 because they all contribute to the design of component 

C.  

It is important to emphasize that A uniquely determines both Pcommon-contributor and  Tcommon-component, 

but the reverse is not true. Generally, the two latter matrices can be generated by a number of different 

affiliation matrices (Breiger 1991), so it is not possible to reconstruct the original affiliation matrix 

from either Pcommon-contributor or Tcommon-component. This is because when considering these single-mode 

matrices one loses information about the affiliation network. That is, in the Pcommon-contributor matrix one 

loses identity of the people that contribute to the linked components, and in the Tcommon-component matrix 

one loses information about the components co-designed by any pair of actors.  In addition, because 

the information captured in the Pcommon-contributor and Tcommon-component corresponds to pairs of components 

(which share the same developers) or pairs of developers (who contribute to the same components) 

respectively, one cannot infer any properties of subgroups larger than pairs from these one-mode 
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network matrices (Breiger 1991, Wasserman and Faust 1994). For example, by examining Tcommon-

component one can say that a pair of developers contributes to the design of certain number of 

components; however we cannot say that three or more developers contribute to the same set of 

components. To do so, we would need to examine the affiliation matrix (A).   

 

Figure 4. Predicting common-component potential interactions 

 (3) Determine potential organizational architectural interactions 

I define architectural interactions as those that need to take place to coordinate identified product 

interfaces. To determine the set of potential architectural interactions between developers i and j we 

need to examine the entries of both the affiliation matrix (A) and the product architecture matrix (P). 

More specifically, developer i would look for technical information from developer j (tij>0) if 

component k designed by developer i (aik>0) depends on component l (pkl>0) which is designed by 

developer j (ajl>0). Hence, (tij>0), if (aik>0) and (pkl>0) and (ajl>0). Moreover, if we consider A and P 

to be binary matrices, then we are interested in the number of times that developers i and j need to 

coordinate product interfaces between components to which they contribute. That is, we are interested 

in adding the number of times that aik = pkl = ajl = 1 for developers i and j. Formally,  

tij = aik pklalj

l=1

n

∑
k=1

n

∑           (3) 

Now, I can formally define the potential architectural interaction matrix (Tarchitectural) to record the 

number of design interfaces in which each pair of developers would potentially need to interact. This 

matrix is, as might be expected, a function of both the affiliation matrix (A) and the product 

architecture matrix (P). Hence,  

Tarchitectural = A P A
T
          (4) 
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This matrix is a square, valued matrix of size m. Note that this matrix is not symmetric if P is not 

symmetric, which is typically the case in software products. A non-zero cell, tij, indicates that 

developer i provides information to developer j because they are involved in the design of product 

components that share design interfaces. As for the diagonal elements of this matrix, they indicate the 

number of interdependent components with which a developer is involved.   

Note that if one substitutes P by the identity matrix, I, in equation (4), then one obtains the 

common-component interaction matrix, Tcommon-component, which captures the potential organizational 

interactions that could take place among developers contributing to the same set of components 

without considering the interdependencies among components. As a result, to obtain the total set of 

potential technical interactions we simply add Tarchitectural and Tcommon-component.  

To illustrate the rationale behind equation (4), let us extend the simple numerical example 

introduced in Figure 4. Figure 5 shows the product architecture matrix (P) of the four-component 

product with six design interfaces, designed by an organization with six developers whose 

involvement in the design of each component is captured by the affiliation matrix (A). The product     

A P produces a rectangular matrix in which non-zero cells capture the number of components with 

which developer i is involved, imposing design constraints on component j. For example, person 2 is 

involved in the design of two components that impose design constraints on component A (such 

components are components B and C). Then, to obtain the potential architectural interaction matrix 

one must multiply this matrix by A
T
.  Again, because we are using binary matrices, the cells in the 

resulting matrix capture the number of design interfaces that two developers potentially need to be 

able to coordinate. For example, person 2 has three design interfaces that he or she would potentially 

need to coordinate with person 6. More specifically, person 2 might need to provide design 

information to person 6 about three product interfaces. Those interfaces are the two design interfaces 

from components B and C to component A (because person 2 is involved in the design of components 

B and C and person 6 is involved in design of component A), and the interface from component B to 

component C (because person 2 is involved in the design of component B and person 6 is involved in 

the design of component C). Of course, some of these potential interactions might not take place either 

because the same person is involved in the design of the two interdependent components (e.g. person 2 

is involved in the design of both components B and C, which share design interfaces in both 

directions) or because there is another pair of actors involved in those interfaces who are indeed 

coordinating such an interface. That is, in the same way that there is a potential interaction from 

person 2 to person 6 to deal with the interface from component B to component A, there are two other 

potential interactions that could take place to deal with such an interface. Those are the potential 

interactions between person 2 and person 1, and between person 2 and person 3.  
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Figure 5. A structured approach to predict potential architectural interactions 

 

Note that equation (4) allows us to determine “who should potentially seek technical information 

from whom?” to address direct dependencies between product components. However, such an 

expression could be slightly modified to predict the set of interdependent actors associated with 

indirect design interfaces. Because design changes tend to propagate beyond adjacent components 

(Clarkson et al. 2004, MacCormack et al. 2006, Sosa et al. 2007b), managers may be interested in 

determining who should seek information from whom to handle indirect interfaces between product 

components. For example, the system in Figure 5 contains an indirect interface from component D to 

component B through component C. To determine the pairs of actors that could potentially handle such 

an indirect interface we can simply substitute P for P
2
 in equation (4) because the non-zero cells of the 

square of a binary product architecture matrix documents the pairs of components that are linked 

through at least one intermediary component (i.e. product interface chains of length 2). Doing so, we 

find that person 4 could seek information from person 2 to handle the indirect interface between 

components D and B. Similarly, we could use P
3
 to predict potential interactions associated with 

product interface chains of length 3 and so on. Nonetheless, the intention at this phase of the approach 

is simply to identify all possible potential interactions that could take place to address the identified 

direct product interfaces, given certain design task involvement in the organization captured in the 

affiliation matrix. Next, I compare potential interactions against actual interactions to test the validity 

of this approach. 
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Validating potential technical interactions 

In order to test the predictive power of the approach described in the three steps above it is 

important to compare the set of potential technical interactions between development actors against 

the actual technical interactions that take place during the development effort. This not only allows us 

to determine when a “match” of potential and actual interaction occurs, but more importantly it also 

allows us to uncover “mismatched” interactions, which are defined by the lack of overlap of potential 

and actual technical interactions. There are two types of mismatched interactions: 1) unpredicted 

interactions, which occur when an actual interaction is not predicted by a potential interaction, and 2) 

unattended interactions, which occur when a potential interactions does not correspond to an actual 

interaction. Hence, to identify matched and mismatched interactions two additional steps need to be 

carried out. 

(4) Capture actual organizational interactions  

By surveying the m development actors involved in the development of the product, their actual 

product-related interactions (or the actual intentions to interact) are captured and documented onto a 

square (person to person) actual communication matrix (Cm,m). To be consistent with the convention 

used in steps 2 and 3, the sequence of the rows and columns of this matrix is identical to the sequence 

of rows in the affiliation matrix. In addition, to be consistent with the convention used in the product 

architecture matrix, the rows of the actual communication matrix (C) are labeled with the “providers” 

of product-related information while the columns are labeled with the “recipients” of information. 

Hence, cell cij indicates that actor j reports actual interactions with actor i (i.e., actor j “goes to” actor i 

to request product-related information). 

(5) Compare potential and actual interactions  

In general, by overlaying binary versions of a potential interaction matrix and the actual 

communication matrix, one can systematically identify the set of potential mismatched interactions in 

the comparison matrix that emerges from such a comparison. However, we would need to perform 

different comparisons to determine the two types of mismatched interactions of interest.  

Identifying unpredicted interactions 

Because unpredicted interactions are defined as those actual interactions that take place even 

though there are no potential interactions associated with them, it is important to compare actual 

interactions with all possible potential interactions identified. Hence, by overlaying the total potential 

interaction matrix (T = Tcommon-component + Tarchitectural) and the actual communication matrix (C), one 

can systematically document not only unpredicted interactions but also matched interactions in the 

preliminary comparison matrix. Figure 6 shows how the binary version of the total set of potential 

interactions maps onto the actual interactions in our hypothetical numerical example. The preliminary 

comparison matrix shows that the interactions from person 3 to person 2 and from person 2 to person 

4 are unpredicted by the architecture of the product and the design task involvement of the 
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organization. Uncovering this type of mismatch is important for managers because their existence 

indicates that there might be unidentified product interfaces about which developers are interacting. 

Unpredicted interactions could also be the result of the “unofficial” involvement of some developers in 

the design of other components not assigned to them and therefore not captured in the affiliation 

matrix. The preliminary comparison matrix also shows a set of six cells (labeled “#”),in which the 

paired developers involved share both potential and actual interactions. Finally, there is a significantly 

high proportion of potential interactions that are not attended by actual interactions. Which of these are 

truly potential unattended interactions? That is the question I need to address next. 

 

Figure 6. Comparing potential and actual technical interactions 

 

Identifying truly potential unattended interactions 

I define truly potential unattended interactions as the subset of unattended potential interactions 

associated with product interfaces whose corresponding potential interactions are all unmatched by 

actual interactions. To identify the set of truly potential unattended interactions, we first filter out 

common-component potential interactions because we are interested in identifying the absolute 

minimum set of potential interactions that needs to take place to coordinate the identified set of 

product interfaces. First remember that, by definition, common-component potential interactions are 

not associated with any of the product interfaces, so we do not consider them when identifying truly 

potential unattended interactions
6
.  Next, we filter out “redundant interactions” associated with each 

                                                      

6 If we were to determine the truly potential unattended “common-component” interactions, we could do so 

by comparing the Tpure-common-component matrix and the actual communication matrix (C), where the entry           
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product interface identified. I define redundant interactions as those that do not necessarily take place 

because other people are already coordinating the product interface that generates such potential 

interactions. There are two types of redundant interactions: 1) common-contributor redundant 

interactions, which are potential interactions associated with product interfaces that have one or more 

people involved in the design of both interdependent components; and 2) common-partner redundant 

interactions, which are potential interactions associated with product interfaces in which at least one 

potential interaction is matched by an actual interaction.  

Figure 7 illustrates how to identify systematically the two types of redundant interaction in order to 

obtain the truly potential unattended interactions in our hypothetical example. First, using the 

affiliation matrix we can identify the pairs of components that share developers involved in both 

interdependent components (“common-contributor components”). Such a matrix is the common-

contributor product matrix (Pcommon-contributor) defined in equation (1). Figure 7 shows that components A 

and C and components B and C have person 6 and person 2 as “common contributors” respectively. 

Note that the potential interactions associated with the interfaces corresponding with non-zero cells in 

the common-contribution matrix are common-contributor redundant interactions. To determine the 

common-partner redundant interactions, we must subtract the common-contributor interfaces from the 

product architecture matrix (P) to obtain a subset of interfaces whose potential interactions are either 

common partner redundant interactions or truly potential unattended interactions. Hence, the 

preliminary set of potential unattended interfaces are defined by the following expression 

[P – A
T
 A]

+
            (5) 

where the [•]
+
 operator ensures that only the positive cells of the resultant matrix contained within 

brackets are considered potential unattended interfaces. In the example shown in Figure 7, there are 

only three preliminary potential unattended interfaces between components D and C, D and A, and B 

and A, respectively. 

To determine the common-partner redundant interactions, the potential interactions associated with 

each preliminary potential unattended interface are compared to the actual organizational interactions, 

similar to the method shown in Figure 6. For example, the potential unattended interface from 

component D to component C shown in Figure 7 generates three potential interactions (from person 4 

to person 2, to person 5, and to person 6. Yet, the latter one is the only potential interactions matched 

by an actual interaction. This makes the other two potential interactions common-partner redundant 

interactions. In general, we obtain a comparison matrix for each preliminary potential unattended 

interface. If such a comparison matrix contains at least one “matched” interaction, the potential 

interactions are common-partner redundant interactions because there is at least one pair of people that 

could coordinate such a product interface. Otherwise, the preliminary potential unattended interface is 

indeed a potential unattended product interface and its corresponding potential interactions are truly 

                                                                                                                                                                      

Tpure-common-component (i,j) = 1 if Tcommon-component (i,j) > 0 and Tarchitectural (i,j) =0. Such a comparison would yield the 

common-component potential interactions that were unattended by actual interactions. 
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potential unattended interactions. Figure 7 shows that the potential interactions associated with the 

first two preliminary potential unattended interfaces are common-partner redundant interactions, while 

the interface from component B to A has three potential interactions that are truly potential unattended 

interactions. Note that these three potential interactions are neither common-contributor redundant 

interactions nor common-partner redundant interactions and as a result are truly potential unattended 

technical interactions. I have kept on using the term “potential” to refer to both unattended interfaces 

and unattended interactions because there might be alternative coordination mechanisms, such as 

interface standardization, that would not require the use of actual organizational interactions to handle 

these interfaces. Yet, this approach aims to help managers identify the subset of product interfaces that 

have higher risk of being overlooked in case there is no alternative mechanisms put in place to handle 

them.  

 

Figure 7. Identifying truly potential unattended interactions 

 

Finally, Figure 8 shows the final comparison matrix, which does not contain any redundant 

potential interactions.  Out of the eight actual interactions, six were matched by potential interactions 

and two were unpredicted interactions. Interestingly, only three out of a total of 15 potential 

unattended interactions (see Figure 6) were truly potential unattended interactions.  
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Figure 8. Final comparison matrix 

Managing technical interactions 

If the approach described above indeed predicts systematically potential technical interactions, 

engineering managers could proactively select a subset of potential interactions to coordinate a subset 

of product interfaces that would be likely to change during the (re)design of a product. This is 

certainly relevant in software development because of the additive and flexible manner in which 

software products are developed (MacCormack et al. 2001, Sosa et al. 2007a). This is also important 

in the rapid redesign of hardware products in which some components are modified or added to an 

existing product architecture (Chen et al. 2007).  

To illustrate how potential interactions can be managed proactively, let us consider again the 

example in Figure 5, “Who should talk to whom if component B is redesigned?” (For simplicity I will 

assume that there are no architectural changes, that is, product interfaces may change but they will not 

appear or disappear.) Using equation (4) with the same hypothetical affiliation matrix as before, Figure 

9 shows the potential interactions associated with the interfaces of component B. The top of Figure 9 

shows the potential interactions associated with all the interfaces of component B while the bottom 

shows the potential interactions associated with two subsets of interfaces separately. These two subsets 

correspond to the interfaces of component B with components A and C, respectively. The strong 

message that emerges from Figure 9 is that person 2 needs to coordinate some of (or perhaps all) the 

interfaces of component B. Certainly, person 2 would need to coordinate with either person 1, 3, 

and/or 6 on the interface between components B and A. In addition, the bi-directional interface 

between components B and C could be handled entirely by person 2 (because she or he is involved in 

the design of these two components) or by having person 2 interacting with persons 5 and 6.  

This approach does not provide a prescriptive recommendation about which product interface to 

facilitate; however, it systematically predicts the subset of potential organizational interactions from 

which to choose to fulfill product architectural requirements. By combining these coordination 

requirements based on the product architecture and design task involvement with other organizational 

requirements, such as individual design capability and individual workload, engineering managers can 

decide how to assign responsibilities and coordination mechanisms to ensure that critical interfaces are 

dealt with. As mentioned, some of those coordination mechanisms can be interface standardization. 
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That is, some potential interactions might not require any actual organizational interactions because 

the corresponding product interfaces are standardized somehow. Moreover, by examining the number 

of potential interactions associated with certain product interfaces managers would be able to decide 

which interfaces to standardize in order to remove the need for managing certain organizational 

interactions. Finally, it is important to emphasize that this use of potential interactions is relevant if the 

predictive power of the approach described in the first phase of the approach (steps 1, 2, and 3) is 

significant when applied to a real setting. The next section provides empirical evidence that this may 

well be the case. 

 

Figure 9. Managing potential interactions to handle redesign of component B 

 

A SOFTWARE DEVELOPMENT EXAMPLE 

I illustrate the implementation of the approach described above in the context of the development 

of a new software application. The hosting firm is a mature public European company and one of the 

leaders in the market for a specific type of application for business customers. The firm’s portfolio of 

development projects included seven distinct software applications. At the time of data collection, the 

firm was allocating over 60% of its development resources to the development of one radically new 

product, an effort that had started within the previous 12 months. The product comprised 34 

interdependent modules and the development organization included 66 people, many of whom 
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contributed to the conception and design implementation of the 34 modules of the product. Two 

important factors informed the selection of this project. First, the firm was interested in examining 

their process, product, and organizational structures to accelerate the development of the product 

studied. Second, the architecture of the product studied and the development organizational structure 

did not map directly to each other. This provided an ideal opportunity to test the validity of the 

structured approach detailed earlier. In addition, it is important to emphasize that understanding 

software development is valuable for two reasons: 1) complex products contain both software and 

hardware subsystems with software-related components playing increasingly important functional 

roles in product performance; 2) software development is somewhat different than hardware 

development because it is typically faster, more flexible, and the mapping between the product 

architecture and the organizational structure is not one-to-one. 

I implemented the structured approach described in the previous section in five steps (see Figure 

10). First, the software architecture was documented. Then, affiliation matrices were constructed to 

capture various levels of design involvement of the development actors. In step 3, potential interaction 

matrices were determined based on the product architecture and the affiliation matrices. Next, I 

documented the actual technical communication patterns in the development organization. Finally, by 

comparing potential and actual interactions, comparison matrices were created and matched and 

mismatched interactions were identified. 

 

Figure 10. Five steps to predict and validate technical interactions 

Step 1: Capturing the software architecture  

After a long concept development phase, during which the firm assessed its market needs and 

technological opportunities, the architecture of the product to be analysed in this study was 
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established. The product comprised 34 modules, the detailed design of which would address all the 

functional requirements of the product. System architects had also identified how each of these 

modules would depend on the others. With this information, a 34 x 34 product architecture binary 

matrix was constructed, where the off-diagonal marks (i,j) indicate that to design the module in 

column j, designers “need to know about” the module in row i. Such a convention facilitates the 

mapping of a matrix representation to a block diagram representation commonly used in software 

development. Note that because of the highly asymmetric nature of interdependences in software 

products, I used a partitioning algorithm (instead of a clustering algorithm) to identify the highly 

interdependent modules in the product (Sangal et al. 2005, Sosa et al. 2007a). The product architecture 

matrix captures the directionality of the dependencies between product modules because system 

architects documented their dependency structure by explicitly considering their directionality so that 

“[developers] responsible for implementing and testing the specifications of module j should also find 

out about the specifications of module i.”For example, because product modules included in groups 5 

and 6 (shown in Figure 11) depended on most of the components included in group 1, managers were 

expecting developers of the former groups to seek technical information from developers involved in 

the design implementation of the components included in group 1. 

In sum, I built a partitioned product architecture matrix to capture the dependency structure of the 

34 modules that formed the software product studied. Figure 11 shows how the 34 modules of the 

product are organized into six groups of components. System engineers identified 250 critical design 

interfaces among the 34 modules. Although all the interfaces needed careful attention to ensure that 

the modules integrated well and the entire software application fulfilled its functional requirements, 

some interfaces posed significant managerial challenges due to the iterative constraints they would 

impose on some of the components. These interfaces are highlighted in blue in Figure 11. In addition, 

the product architecture matrix highlights sub-system boundaries to show whether design interfaces 

occur other components within the group or across group boundaries. In addition, Figure 11 shows 

both a matrix representation and a block diagram of the product studied. 
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Figure 11. Software product architecture studied 

Step 2: Capturing the design task involvement of the organization   

The development organization studied was formed by 66 people organized into 11 functional 

groups distributed in three different sites in Europe. Eight groups were dedicated to software 

development (i.e., programming), six of which were mainly responsible for the design of the 34 

modules of the product studied. The other three groups provided support to the rest of the organization 

in areas such as quality assurance, system architecture design and technical marketing, and technical 

documentation and IT support. A comprehensive web survey among all the 66 people involved in the 

development organization was distributed to capture not only their level of involvement in the design 

of the components of the product studied but also their product-related interactions with all the other 

people in the development organization. The web survey was completed by 59 respondents resulting 

in an 89% overall response rate. The survey was part of a comprehensive study that related the 

workload and the formal and informal organizational structure of this organization. Responses were 

missing from a few people on vacation during the data collection period or members of the support 

group whose input to the development process was less relevant. Moreover, the response rate among 

people involved in programming and testing activities was over 95%. 

As part of the web survey questionnaire, respondents were asked to rate their level of involvement 

in the conception and implementation design of each of the 34 product modules. The six-point scale 

used to capture their level of involvement included the values “Not involved”, “Barely involved”, 

“Somewhat involved”, “Involved”, “Very involved”, and “Strongly involved”. I documented these 

data in a valued affiliation matrix. The columns of the affiliation matrix are labelled identically to the 

34 columns of the product architecture matrix (see step 1 above) while the rows of the affiliation 

matrix are labelled with the 59 development actors that filled out the web survey. Hence, cell (i,j) in 

this matrix indicates the level of involvement of the person in row i in the conception and design 

implementation of the software module in column j. Finally, binary affiliation matrices were built for 

the following two cases: 1) design involvement rated as “strongly involved” only; 2) design 

involvement rated at least as “barely involved”. Figure 12 shows the two binary affiliation matrices for 

these two cases respectively. 
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Figure 12. Affiliation matrices in the organization studied 

Step 3: Determining potential organizational interactions  

Using the affiliation matrix, as indicated in equation (2), one can determine the potential 

interactions that could take place among developers involved in the design of the same components 

(i.e. potential common-component interactions). Using the two binary affiliation matrices built in step 

2, I obtained 212 and 2124 potential common-component interactions for strong-only and all-levels of 

design involvement respectively. By combining the product architecture matrix and the affiliation 

matrices, as indicated in equation (4), one can determine the total number of interfaces between 

product modules on which any pair of developers need potentially to coordinate (i.e. potential 

architectural interactions). Hence, for the case of strong-only design involvement, the potential 

architectural interaction matrix captures 594 potential interactions. Such a matrix has a density of 

17%. For all-levels design involvement, the potential architectural interaction matrix shows 2,306 

potential interactions, which results in a communication network density of 67% (Figure 13). 

 

Figure 13. Potential architectural interactions matrices 
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Step 4: Capturing the formal and informal development organizational structure  

As described in step 2, the actual formal and informal organizational structures were captured by 

surveying almost all members of the development organization studied. The data were documented 

into an actual communication matrix where off-diagonal marks (i,j) indicate how often the person in 

column j went (or intended to go) to person in row i to request product-related information during the 

last year. Note that the sequencing of the rows and columns of this matrix is identical to the sequence 

used in the rows of the affiliation matrices (as well as the sequencing obtained in the potential 

interaction matrices). Figure 14 shows the actual technical communication patterns associated with the 

development of the product studied in a 59 x 59 organizational communication matrix. Respondents 

reported 511 product-related interactions in which actor j “went to (or intended to go to)” actor i for 

product-related information. This results in a communication network density of 15%. Figure 14 also 

shows the formal structure of the development organization into 11 functional groups. Note that the 

actual communication matrix highlights group boundaries with boxes along the diagonal so that 

interactions within boundaries (enclosed by those boxes) are distinguished from interactions across 

organizational groups. 

 

Figure 14. Actual communication matrix 

Step 5: Comparing actual and potential interactions  

As described in the previous section, two distinct comparisons are needed to identify matched and 

mismatched interactions. The first comparison is focused on identifying unpredicted technical 

interactions while the second is used to uncover truly potential unattended interactions. Remember 

that unpredicted interactions are those that take place between development actors, even though they 

are not involved in the design of components that share interfaces with the other actors’ components, 

while truly potential unattended interactions are those that correspond to pairs of developers who are 
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expected to interact because the components they design are interdependent, and no one else in the 

organization addresses such interdependences.  

Before describing how I identified mismatched interactions, it is important to mention two 

singularities in the organizational data collected. First, one of the respondents from the first 

development group (see Figure 14) filled out completely the questions relevant to building the 

affiliation matrices; however, he or she did not manage to fill out the portion of the survey regarding 

the reporting of product-related interactions. As a result the column corresponding to this person is 

artificially empty in the actual communication matrix shown in Figure 14. This column is therefore 

excluded from the comparison analysis described below, but the row corresponding to this person is 

kept in the analysis because it captures all the interactions from other members of the organization 

who requested technical information from this person. Second, the “managers and system architects” 

group (see Figure 14) included two “technical marketing” managers who were “strongly involved” 

(from a marketing viewpoint) in the conceptualization and specification of over 75% of the product 

modules, however they were not expected to be involved in the design implementation of any of the 

product modules. This resulted in significantly (yet “artificially”) dense rows in the affiliation matrix 

corresponding to these two technical marketing managers. As explained below, this will be an 

important factor to consider when identifying truly potential unattended interactions. 

Identifying unpredicted interactions  

To identify unpredicted interactions it is important to compare actual interactions with all potential 

interactions to rule out as far as possible any reasons that would justify the existence of actual product-

related interactions. As a result, I compare actual organizational interactions with all the potential 

interactions for “all-levels” of design involvement. Note that the potential interaction matrix used 

combines both common-component and architectural potential interactions as determined by equations 

(2) and (4) respectively. In this case, the total potential interaction matrix shows a high communication 

density of 68% (2315 potential interactions) because any two people who are at least “barely 

involved” in the design of any of the 34 modules would need to interact with other actors if their 

components share interfaces or if they are involved in the design of the same components. Yet, even 

after controlling for such a possibility, I still found, as shown in Figure 15, 71 unpredicted interactions 

(i.e., 14% of the actual interactions were unpredicted by the architecture of the product). These 

interactions took place between people who interacted (or planned to interact), even though they did 

not contribute to the design of the same components, nor did the components they designed share 

technical interfaces. This comparison also yields the set of potentially matched interactions, because I 

am assuming that even being “barely involved” in the design of a component provides enough 

justification for two interdependent actors to have technical organizational interaction. As a result, a 

total of 440 actual interactions were matched by potential interactions. Yet, the main objective of this 

comparison is to uncover the actual interactions that took place even though there were no technical 

reasons captured in both the product architecture and “all-levels” affiliation matrix to do so. In the 
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next section I will discuss the organizational factors associated with the 71 unpredicted interactions 

uncovered here, but before doing so let us identify the other type of mismatched interactions. 

 

Figure 15. Identifying matched and unpredicted interactions 

Identifying truly potential unattended interactions  

To identify the interactions that are truly potentially unattended, one needs to compare actual 

interactions with the minimum set of potential interactions that are expected to be truly necessary in 

the design process to coordinate the set of product interfaces identified. I started this comparison by 

considering the set of potential interactions among developers who are “strongly involved” in the 

design of the product components. Yet, in order to obtain the final set of truly potential unattended 

interactions, it is imperative to filter out potentially “redundant interactions” associated with each 

product interface identified. Hence, the underlying objective of this comparison is to identify the 

product interfaces whose potential interactions are not redundant interactions. Remember that a 

product interface may have several potential interactions associated with it because there might be 

several actors strongly involved in the design of the two components connected by such an interface. 

As a result some of these potential interactions may well be redundant interactions. As mentioned in 

the previous section, there are two types of redundant interactions: 1) potential interactions associated 

with an interface connecting two components that have at least one person strongly involved in the 

design of both components (common-contributor redundant interactions); and 2) potential interactions 

associated with an interface of which at least one of those potential interactions is matched by an 

actual interaction (common-partner redundant interactions). 

Following the approach described in the previous section, to systematically identify truly potential 

unattended interactions I first filtered out the “common-contributor” redundant interactions using 

equation (1) with the “strong-only” affiliation matrix shown in Figure 12, and then, filtered out 

“common-partner” redundant interactions. Interestingly, when doing this, the comparison yielded no 

truly potential unattended interactions. Does this mean that all the potential unattended interactions 
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identified were redundant interactions? Very unlikely. Because the original “strong-only” affiliation 

matrix captured the involvement of the two “technical marketing” managers who were strongly 

involved in the specification of over 75% of the software modules but would not contribute to their 

design implementation, it was not realistic to assume that the potential interactions associated with 

them qualified as redundant interactions. As a result, it was necessary to revise the “strong-only” 

affiliation matrix by removing the entries in the rows corresponding to these two “technical 

marketing” managers. Note that this is not an issue with any other member of the organization because 

none else could report “strong involvement” in the design of a component without actually being 

involved in its design implementation. 

Finally, after revising the “strong-only” affiliation matrix, I was able to identify the truly potential 

unattended interactions (see Figure 16). First, I filtered out the “common-contributor” redundant 

interactions. Using equation (1) with the “revised” affiliation matrix, I identified 72 product interfaces 

(out of 250 product interfaces captured in the product architecture matrix) that had the same group of 

people strongly involved in the corresponding pair of interdependent components (see Figure 16). That 

yielded a set of 178 product interfaces which were examined one by one, as illustrated in Figure 7, to 

determine which of them would be associated with common-partner redundant interactions. The result 

of this exercise yielded 38 product interfaces which generated 100 potential interactions that were not 

matched by actual interactions (i.e. 100 truly potential unattended interactions). (Remember that those 

product interfaces, whose totality of potential interactions are not matched by actual interactions, are 

defined as potential unattended product interfaces, and those potential (unmatched) interactions are 

truly potential unattended interactions.) Identifying this set of potentially unattended interfaces is 

important because engineering managers can check whether they were intentionally unattended 

(because other coordination mechanisms, such as interface standardization, were associated with 

them) or they were indeed unintentionally unattended by the organization, in which case managerial 

action would need to follow.  

 

Figure 16. Identifying truly potential unattended interactions 
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The aggregated results of the two comparisons are documented in a final comparison matrix shown 

in Figure 17. The cells with an “X” indicate truly unattended potential interactions, the cells with an 

“O” show the unpredicted interactions, and the cells with an “#” mark matched interactions. 

 

Figure 17. Final comparison matrix 

ANALYSIS AND DISCUSSION OF RESULTS 

An important benefit of implementing the structured approach described in this paper is that it 

provides a systematic way to identify potential mismatches between product and organizational 

architectures in cases where their structures do not map one-to-one. Identifying these mismatches in a 

systematic way can help managers steer their attention to areas within the product and the organization 

that may require special managerial action. More specifically, I found that only 14% of the 511 actual 

product-related interactions were unpredicted by potential interactions, while 29% of the 348 potential 

unattended interactions identified were truly potentially unattended. Moreover, in order to determine 

truly potential unattended interactions, I had to identify the product interfaces that were not associated 

with actual organizational interactions. In particular, of the 250 product interfaces identified by system 

architects, 15% of them had not been matched by actual interactions of people significantly involved 

in the design of such interdependent software modules.  

Analyzing the final comparison matrix further allows us to test whether unattended and unpredicted 

interactions are concentrated in a few actors or are distributed throughout the development network. 

Figure 18 shows a reordered final comparison matrix that clusters the 11 functional groups of the 

organization into three major groups according to their type of involvement in the product studied. 

First, the technical group, formed by the 31 members of the six development groups and the 11 

members of the quality assurance group. These are the groups that are responsible for design, testing, 

and integration (i.e. programming, bug fixing, and product integration) of new (or redesigned) 

software modules of the products under development. Hence, they were expected to concentrate the 

majority of the technical interactions associated with the design implementation of the product studied. 
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Second, the managers group, formed by the people who did not have a technical responsibility on the 

design implementation and testing of the product studied, yet have managerial responsibilities in the 

definition of the software modules (and their interfaces) to be implemented. This group included the 

seven managers of the organization including the director of the development organization, two 

technical marketing managers, two product line managers, and two system architects. Finally, the non-

related group, formed by the seven members of the special projects groups and the three members of 

the documentation and IT support group. This group was not expected to have any significant 

interactions related with the conceptualization or design implementation of the product studied.  

 

Figure 18. Reordered final comparison matrix 

 

Table 1 shows how matched and mismatched interactions are distributed across the three groups 

defined above. First, note that 86% of the actual product-related communications were associated with 

potential interactions with a statistically significant large proportion of matched interactions occurring 

among members of the technical and managers groups
7
. Although it is not surprising to see that actual 

interactions were highly correlated with the existence of potential interactions, the benefit of 

identifying matched interaction is that when doing so, one can uncover unpredicted interactions. Table 

1 shows that a statistically significant large proportion of unpredicted interactions occurred between 

                                                      

7 To test statistically the significance of the difference between the proportions of matched interactions 

(within technical and managers group versus non-related group), I carried out a chi-square test over the 440 

matched interactions. The expected values were determined by the probability that a matched interaction would 

randomly occur between technical and manager actors instead of with non-related actors. Such probabilities were 

defined by the available set of possible interactions in these two categories. The test resulted in a χ2 of 136.9, 

which is clearly greater than the critical value of χ2
(0.99, 1) = 6.63. 
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people in the technical group
8
, which suggests that technical interactions occurred for reasons that 

were not captured by either the architecture of the product or the affiliation network of the 

organization. Table 1 also shows that 92% of the truly potential interactions occurred within the 

technical group, which suggests that potentially unattended product interfaces are likely to be 

associated with lack of interaction among technical people in the organization that were supposed to 

be significantly involved in the design implementation of the product.  

More generally, because mismatched interactions reveal important information about potentially 

unattended identified product interfaces as well as unanticipated technical interactions, the results 

reported in Table 1 suggest that it is particularly valuable to applying the structured approach 

presented in this paper to the group of technical people that are supposed to be directly involved in the 

iterative design activities of the product under development. Accordingly, it is important to examine 

further how mismatched interactions are distributed within the technical group in order to understand 

the driving forces behind their occurrence.  

Table 1. Overall Distribution of Technical Interactions 

 Counts of 

matched 

interactions 

Counts of 

unpredicted 

interactions 

Counts of truly 

potential unattended 

interactions 

Interactions within technical group 248 (56%) 49 (69%) 92 (92%) 

Interactions with managers group 162 (37%) 9 (13 %) 8 (8%) 

Interactions with non-related group 30 (7%) 13 (18%) 0 (0%) 

Total 440 71 100 

Factors associated with potentially unattended and unpredicted interactions 

I found that truly potential unattended interactions were significantly concentrated in a small group 

of actors. Ninety-one percent of the 92 truly potential unattended interactions within the technical 

group were associated with nine actors. This is good news for managers because they can focus their 

attention on a small set of actors to minimize the risk of overlooking critical product interfaces. 

Interestingly, 100% of these potentially unattended interactions occurred across group boundaries, 

which confirms the importance of carefully identifying and managing cross-boundary interfaces; these 

suffer from communication barriers imposed by organizational boundaries between development 

groups which typically hinder the attention that needs to be paid to technical interdependencies (Sosa 

et al. 2004). As mentioned before, an important benefit of the suggested approach to identifying truly 

potential unattended interactions is that it requires the identification of product interfaces that are not 

matched by actual interactions. I found that 38 product interfaces (out of 250) were not attended by 

actual interactions. Figure 19 shows these potentially unattended product interfaces, of which 27 (or 

71%) involved components from subsystem “group 4”, which clustered a set of particularly novel 

                                                      

8 To test the significance of this result, a chi-square test was carried out over the 71 unpredicted interactions. 

This test resulted in a χ2 of 13.2, which is greater than the critical value of χ2
(0.99, 1) = 6.63. 
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software modules that were subsequently highlighted for special attention during the detailed design 

phase.   

Certainly, potentially unattended product interfaces can be coordinated in many different ways. In 

addition to actual interactions between the people significantly involved in the design implementation 

of these interdependent components, alternative coordination mechanisms available for organizations 

include: interface standardization, indirect interactions through intermediary actors (either within the 

technical group or with other members of the organization), and interface coordination through actual 

interactions between people with lower level of design task involvement. In the product studied, 

interface standardization was less likely to play an important role at this stage of the development 

process because the architecture of the product was based on functional components to be designed 

and implemented. I also tested for the possibility that actors with lower levels of design involvement 

would coordinate some of these potentially unattended interfaces and found that over 21% of the 38 

potential unattended interfaces could have not been handled by other actors with lower levels of 

involvement in the design of these components. More generally, it is worth emphasizing that the value 

of identifying potentially unattended interfaces is to “raise a flag” around a subset of product 

interfaces that have higher risk of being overlooked by the organization so that managers investigate 

whether they are intentionally or unintentionally unattended.  

 

Figure 19. Unattended product interfaces 

As for the unpredicted interactions within the technical group, three people (one developer and two 

members of the quality group) were involved in 92% of them. There are two distinct explanations for 

this: either the product architecture matrix did not capture some important interfaces that motivated 

these unpredicted interactions or the affiliation matrix did not capture the involvement of these people 

in some design activities associated with some product components. In this case, the empirical 

evidence suggests that the second explanation is the most plausible one. These three development 

actors did not report any level of involvement in the design of any of the components of the product 

studied (i.e. their corresponding rows in the affiliation matrix were empty for all levels of 
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involvement) because they were supposed to be involved in the design and testing activities of other 

products in the firm’s portfolio. However, the member of the development group in question was 

likely to be involved in technical discussions about the product studied with other developers in his 

group because he was considered “expert” in some of the technologies relevant for the product 

studied, and this was reflected in his actual communication patterns. As for the two quality assurance 

engineers, they were likely to be involved in some “testing” tasks associated with the product studied 

to help cover the excess demand for quality related activities associated with this product development 

effort. After understanding the main reasons behind the unpredicted interactions with these three 

people, the other unpredicted interactions became candidates to be investigated by engineering 

managers to find out whether they were related to any previously unidentified product interface not 

captured in the original product architecture matrix. 

It is worth highlighting the fact that the predictive power of our approach to determine and validate 

potential interactions depends significantly on the accuracy of the data collected. Certainly, 

measurement errors in any of the matrices can systematically generate mismatched interactions. As a 

result, managers should first double check that the systematic occurrence of mismatched interactions is 

not simply the result of systematic errors during the data collection. Fortunately, the codified nature of 

software products and the increasing use of information technology to manage software development 

projects may help reducing inaccuracies in the data collected. 

MANAGERIAL AND ACADEMIC IMPLICATIONS 

This research has important implications for both managers and academics. Research in 

engineering design has suggested that the identification of design iterations is essential to managing 

them effectively (Eppinger et al. 1994, Eckert et al. 2004). In this paper I argue that to manage 

planned design iterations, it is essential for engineering managers to identify the set of actors who need 

to interact and the interfaces they need to interact around. This is particularly relevant in software 

development in which design and integration activities take place concurrently as products are built. 

This paper presents a structured approach to this challenge. Moreover, the systematic implementation 

of this approach to small “portions” of the product and within the relevant technical group in the 

development organization can help managers to manage design iterations at a more granular level 

because they can identify systematically the potential interactions that need to take place to address a 

subset of product interfaces. Because “potential interactions” represent the set of interactions that 

could potentially coordinate a set of product interfaces, managers must select and facilitate the subset 

of the potential interactions that would address those interfaces effectively.  

Figure 20 illustrates how, by bringing together the process, product, and organizational views, 

managers can effectively facilitate the management of design iterations associated with a subset of 

product components. Figure 20 starts with a representation of the development process in which its 

main iterative phases are highlighted, including the “design integration” phase in which most of the 

planned design iterations take place. To manage those iterations effectively, managers capture the 
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architecture of the specific product whose product components are to be designed, tested, and 

integrated. For illustration purposes, let us assume that managers are interested in facilitating the 

design iterations associated with designing, testing, and integrating the product components of the 

particularly novel subsystem “group 4”. As a result, the product architecture shown in Figure 20 only 

shows the interfaces (both within and across subsystem boundaries) associated with the product 

components of subsystem “group 4”. By combining the affiliation matrix and the product architecture 

matrix, managers can predict the set of potential interactions that would need to take place between the 

technical people of the development organization who significantly contribute to the design, test, and 

integration of the software modules whose interfaces are highlighted in the product architecture 

matrix. Based on the results discussed in the previous section, I have resized both the affiliation matrix 

and the potential interaction matrix to consider interactions within the development and quality 

assurance groups only (i.e. the technical group). The potential interaction matrix provides managers 

with the set of people and technical interactions from which to choose to coordinate the identified 

product interfaces effectively. Moreover, the top half of Figure 21 shows the potential interactions, 

some of which, would be needed to coordinate the interfaces between components within the “group 

4” subsystem. On the other hand, the bottom half of Figure 21 shows the potential interactions, some 

of which, would be needed to coordinate the interfaces between the components of  “group 4” and 

components in other subsystems. Note that most of the within-subsystem boundary interfaces can be 

handled by members of two development groups (labeled as G4 and G6 in Figure 21)while to 

coordinate the set of cross-boundary interfaces developers from five of the six development groups 

would potentially be involved as well as a couple of members of the quality assurance group. Having 

considered these potential interaction patterns, then it is up to engineering managers to establish the 

appropriate coordination mechanisms to facilitate the management of such product interfaces. 

As illustrated in Figure 20, to implement a project management framework like this, it is essential 

to document both the product architecture and the design task affiliation of the organization. With 

product architecture and affiliation matrices, a project management tool can be implemented to 

automate the systematic prediction and management of potential interactions. The automation of the 

structured approach introduced in this paper would allow for the rapid evaluation of the organizational 

impact of changes in either the architecture of the product or the affiliation network of the 

organization. 
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Figure 20. Aligning process, product, and organizational views in software development 

 

 

 

Figure 21. Facilitating potential technical interactions 
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In practical terms, this paper highlights the importance of capturing both the connectivity of 

product components and the involvement of developers in the design of those components. Doing so is 

facilitated in software development due to the highly codified nature of software products. This paper 

has shown how the software architecture can be documented based on functional components of the 

product, however after product components are implemented into “pieces” of source code, the source 

code itself can be used to capture the architecture of the product being implemented and maintained. 

(Refer to Sangal et al. 2005,  MacCormack et al. 2006, and Sosa et al. 2007a for examples of how to 

document software architectures based on source code.) Once a product architecture matrix is 

constructed, then engineering managers and developers can easily determine which other components 

are likely to be affected if a group of components are to be changed. Then, with the affiliation matrix 

managers and developers can also identify which people to contact to coordinate any particular 

interface between the focal component and any other components. Again, this sort of project 

management framework is particularly relevant in software development where products are 

developed in an additive fashion and product changes are implemented over an established product 

architecture that is relatively easy to document. 

More generally, the approach presented in this paper allows engineering managers to identify 

potential mismatches between actual and potential interactions. This is important because mismatched 

interactions offer important guidance to engineering managers to update product (or process) 

information when new interfaces are uncovered by unpredicted interactions, and to reorganize 

development actors to attend interfaces that could otherwise be overlooked. Although the approach has 

been illustrated in an in-depth case study in a software development organization, additional validation 

in other types of technical organizations would be required before generalizing the results presented 

here. From a theoretical viewpoint, the implications of this approach rest on the analytical usage of the 

affiliation matrix (in its binary and valued forms) to explore alternatives ways to cluster organizational 

groups to minimize tension across organizational boundaries.  
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