

Faculty & Research
Working Paper

A Structured Approach to Predicting

and Managing Technical Interactions

in Software Development

Manuel SOSA

2007/72/TOM (revised version of 2007/41/TOM)

A Structured Approach to Predicting and Managing Technical

Interactions in Software Development

by

Manuel E. Sosa*

December 2007

* Assistant Professor of Technology Management at INSEAD, Boulevard de Constance,

77305 Fontainebleau Cedex, France, Tel: +33 (0)1 60 72 45 36, Fax: +33 (0) 1 60 74 61 99,

manuel.sosa@insead.edu

A working paper in the INSEAD Working Paper Series is intended as a means whereby a faculty

researcher's thoughts and findings may be communicated to interested readers. The paper should be

considered preliminary in nature and may require revision.

Printed at INSEAD, Fontainebleau, France. Kindly do not reproduce or circulate without permission.

 Page 2 of 39

ABSTRACT

One of the most difficult challenges of managing product development is identifying the

individuals who need to coordinate closely their interdependencies during the design process. “Who

should talk to whom?” and “Which interfaces should they talk about?” are key questions that

engineering managers must address when planning and executing product development efforts. In this

paper, I introduce the notion of the affiliation matrix to map the product architecture onto the

organizational structure and predict potential technical communication patterns. By comparing

potential interactions with actual communications, engineering managers can uncover product

interfaces and organizational interactions that may require special managerial action during the design

phase of development processes. This provides an integrated view of how process, product, and

organizational structures align themselves when developing new products. I illustrate the

implementation of this approach in a software development organization, which offers relevant

insights about the challenges associated with managing new software development.

Keywords: software development, product architecture, design iterations, project management.

 Page 3 of 39

INTRODUCTION

One of the most important challenges in product development is to manage design iterations and

change propagations not only when designing new products but also when redesigning existing ones

(Eppinger et al. 1994, Clarkson et al. 2004, Eckert et al. 2004, MacCormack et al. 2001, 2006,

Cataldo et al. 2006, Chen et al. 2007). Ultimately, this can be done effectively if engineering managers

can identify the individual actors associated with design iterations and the crucial product interfaces

involved in them. In simpler terms, managers need to be able to answer two critical questions when

planning and executing development efforts: “Who should talk to whom?” and “Which interfaces

should they talk about?” To address this challenge, this paper provides a structured and general

approach to predicting and managing potential technical interactions in product development

organizations
1
.

The basic premise of this paper is that technical organizational interactions take place to coordinate

the critical interfaces that connect product components (Henderson and Clark 1990)
2
. However,

identifying and attending the interfaces between product components that require special attention to

coordinate is a challenging task, even when the product architecture maps directly onto the

organizational structure (Sosa et al. 2004). (A direct, or one-to-one, mapping of product and

organizational structures is characterized by the mutually exclusive assignment of the design of each

component of the product to one individual actor or team in the organization.) The managerial

challenge becomes even harder when this mapping is not direct, as has been observed in product

development projects in the electronics industry (Morelli et al. 1995). This is also common in software

development projects in which many individual actors typically contribute to the design and

integration of software components in a flexible development process (MacCormack et al. 2001,

Cataldo et al. 2006, Sosa et al. 2007a). To tackle this challenge, this paper suggests a structured way to

predict communication patterns based on the architecture of the product and the assignment of design

tasks to people in the development organization. The approach introduced in this paper is general not

only because it applies to the development of either hardware or software products but also, and more

importantly, because it is applicable in cases where the mapping between the product and

organizational structures is not one-to-one. More specifically, I introduce the notion of the affiliation

matrix to capture the involvement of organizational actors in the design of the various components of

the product under development (“Who does what?”). With the affiliation matrix, engineering

managers can systematically map the product architecture onto the organizational structure and

1 I refer to product development in a broad sense to include the development of hardware or software

products, or both. However, when referring to software development exclusively, I will make the distinction

explicit.

2 I reserve the use of the word “interfaces” to refer to linkages between product components while

“interactions” refer to actual or potential communications between development actors.

 Page 4 of 39

estimate potential technical communication patterns that would need to take place to coordinate

critical interfaces between product components.

Improving product development efforts typically starts by documenting design tasks and their

information requirements (Eppinger et al. 1994, Browning 2001). By examining the task structure of

the process, managers can uncover the interdependent activities that are more likely to generate design

iterations. To that end, the design structure matrix (DSM) is a matrix-based analytical tool introduced

by Steward (1981) and used by Eppinger and his colleagues to represent and organize design tasks in

complex product development projects (Eppinger et al. 1994). In the product domain, a matrix

representation has also been used to represent hardware and software products as networks of

interconnected components (Pimmler and Eppinger 1994, Sosa et al. 2003, Sharman and Yassine

2004, MacCormack et al. 2006, Lai and Gershenson 2006, Sosa et al. 2007a,b). Finally, in the

organizational domain, development organizations have been considered as social networks of

interacting actors that integrate their efforts to develop new products and services (Allen 1977, Morelli

et al. 1995, Sosa et al. 2004, Cataldo et al. 2006, Olson et al. 2006). Therefore, product development

systems can be considered as a network of design tasks (process architecture) carried out by a social

network of developers (organizational architecture) to develop products comprised of interdependent

components (product architecture). These three dimensions influence one another significantly, and

understanding the way they interrelate is crucial to improving product development systems (Eppinger

and Salminen 2001, Sosa et al. 2004). Moreover, to manage design iterations effectively, it is crucial

to understand how interdependent design tasks and interdependent product components ultimately

determine the technical communication patterns of the organization, which is what this paper aims to

do.

Research in engineering design has also investigated the drivers of design change propagation. This

stream of research has analyzed the architecture of complex products to predict how the change in one

part of the product may result in changes in other parts (Clarkson et al. 2004, Jarratt et al. 2005). This

paper also complements this line of research by emphasizing that to manage change propagation

effectively it is necessary not only to understand “the state of the design and the connectivity between

the parts of the design” (Eckert et al. 2004, p. 20) but also how design changes could propagate into

the organizational structure and impact the technical communication patterns among the development

actors involved.

The organizational literature recognizes the challenge faced by organizations when attempting to

coordinate the links between the components of the system they develop (Allen 1977, Henderson and

Clark 1990, Mihm et al. 2003) and has proposed some strategies to improve the coordination

associated with developing interdependent components (Sanchez and Mahoney 1996, Baldwin and

Clark 2000, Terwiesch et al. 2002). However, this stream of work provides little specific guidance to

predicting technical communication patterns based on the architecture of the systems under

development. A first exception to this stream of research is presented by Sosa et al. (2004), which

 Page 5 of 39

studied the misalignment of the product and organizational structures associated with the development

of a large commercial aircraft engine. This paper extends their work by providing a general and

structured approach to study product and organizational architectures that do not map directly to each

other as observed in software development efforts. Another exception to this stream of work comes

from engineering design and it is provided by Cataldo et al. (2006) which suggest an approach (similar

to the one presented here) to computing coordination requirements and comparing them with actual

coordination mechanisms. This paper, however, differs from Cataldo et al. (2006) in four important

aspects: 1) This paper provides detailed mathematical justification, based on matrix algebra, for the

expressions that allow us to determine systematically potential communication patterns based on the

product architecture and the organizational affiliation of design engineers; 2) This paper acknowledges

that the comparison of potential and actual organizational interactions is approximate and therefore

corrects for any systematic redundancies built in our approach; 3) The analyses in this paper focuses

on identifying mismatches of potential and actual communication patterns which are potentially

indicative of coordination issues that managers might want to attend to. In contrast, Cataldo et al.

(2006) focus their analysis on testing the impact that aligning coordination requirements with actual

coordination mechanisms have on design task performance; 4) This paper uses data collection

methods that differ significantly from the empirical methods used by Cataldo et al. (2006), which

relies primarily on analyzing “modification requests” data in a distributed software development

organization. In that sense, both papers complement each other by providing alternative data collection

mechanisms which managers could consider when implementing their efforts to improve coordination

in software development organizations.

From a methodological viewpoint, this work builds on research in social networks that uses the

notion of affiliation networks to study the relationship between individuals when they are affiliated

with certain groups or events (Wasserman and Faust 1994). The membership of individuals to events,

groups or other collectivities has been important in organizational research because these affiliations

significantly influence the social identity of the individuals involved (Simmel 1955). Past research has

also recognized that various types of networks exist within organizations due to interactions of

systems, knowledge, tasks, and organizational units, and therefore properties can be measured in terms

of any of these networks or combination of them (Carley 2002, p.10). The notion of affiliation

networks formed by both social actors and social events has been represented in alternative ways,

including affiliation matrices (also called incidence matrices), bipartite graphs, and hypergraphs

(Seidman 1981). These representations have been used in engineering design to search for optimal

ways to explore alternative strategies for decomposing complex design problems into more

manageable sub-problems, which can ultimately lead to improved management of design iterations

(Michelena et al. 1995, 1997, Chen et al. 2005, 2007), yet these methods do not evaluate the

organizational implications of various problem decomposition alternatives.

 Page 6 of 39

This paper makes three important contributions to the engineering design literature. First, it

operationalizes a general and structured approach to align product and organizational architectures

with the use of the affiliation matrix. Because the affiliation matrix captures the level of involvement

of organizational actors in the design of product components, it can be used systematically to estimate

technical communication patterns during the planning and execution of product development efforts.

Second, this paper illustrates and validates this structured approach by implementing it in a real

software development setting. Doing this resulted in the identification of product interfaces and

organizational interactions that required special managerial action in the organization studied. Third,

this paper examines the interplay of process, product, and organizational structures in the same

development organization. This provides us with an integrated view of how these separate but related

perspectives align themselves when developing new products.

The structure of this paper is as follows: in the subsequent section, I present the research

motivation by examining the task structure of the development organization studied. Then, I introduce

the research approach and illustrate it with a simple numerical example. An industry example from

software development is detailed in the subsequent section. Finally, after discussing the empirical

results, I conclude the paper with a project management framework that aligns process, product, and

organizational structures for better management of design iterations.

RESEARCH MOTIVATION: EXAMINING THE PROCESS STRUCTURE

Although there are substantial benefits associated with documenting and analyzing the structure of

the process organizations carry out when developing new products (Browning and Ramasesh 2007), it

is important to realize that engineering managers need to go beyond the process domain into the

product and organizational views in order to manage design iterations effectively. Next, I examine the

information requirements of the development activities carried out in the software organization studied

in this paper and illustrate the need to instantiate such a development process with the architecture of a

particular product under development. This, in turn, determines the potential communication patterns

of the organization during the completion of the most iterative set of development tasks.

The task structure of the development process used by the software firm I studied is represented in

the design structure matrix shown in Figure 1. This DSM representation captures their development

process, internally documented in a multi-page process flow diagram. The matrix shown in Figure 1 is

a square matrix, the rows and columns of which are identically labelled with the development tasks,

and an off-diagonal mark, (i,j), indicates that to complete task i (labelling row i) information from the

task in column j is needed. The blocks along the diagonal of such a DSM highlight the groups of tasks

that are executed together (in parallel, sequentially, and/or iteratively) within each phase. As evident

from Figure 1, an important contribution of a DSM representation is the simple and explicit depiction

of complex processes where sets of iterative activities (i.e., design iterations) can be highlighted. The

figure shows three sets of planned interdependent tasks: 1) software architecture definition; 2)

 Page 7 of 39

software release planning; and 3) design and integration of software features
3
. Yet, to effectively

manage these planned design iterations one must examine how this process view is implemented for a

given product with a specific organizational structure.

Figure 1. Software development process at the organization studied

Figure 2 takes a closer look at the most iterative set of development tasks in the process

documented in Figure 1. The efficient completion of this group of planned highly iterative set of

activities depends on both the specific product and organizational structures involved in the process.

For example, the actual communication patterns associated with the tasks “Do unit testing”, “Integrate

code into product”, and “Test integration of PS” (tasks 22, 23 and 24, respectively) were significantly

different depending on the type of product under development
4
: For some legacy products the design

and integration of proposed solutions (i.e. product components) would involve a small set of

developers while designing and integrating components for a novel product such as the one studied in

this paper involved more than half of the developers available in the organization. In addition, the

organizational interactions associated with these design tasks largely depended not only on the

inherent characteristics of the components to be designed, tested, and integrated, but also on the

connectivity of those components with other components in the product. Hence, if managers are to be

able to facilitate the completion of iterative set of design activities (as the ones shown in Figure 2),

they need to understand how the product components that instantiate these design tasks link to one

another (the product architecture) as well as who the people responsible for contributing to the design

3 Note that Figure 1 distinguishes unintended feedback interdependencies that could occur from the “design

and integration” phase to either “release planning”, “software architecture definition”, or “software feature

definition” phases. Because these interdependencies are unintended (or unplanned) they are not considered when

identifying planned design iterations. This DSM also distinguishes the feedback interdependencies associated

with process improvement because they are not part of planned design iterations either.

4 The process illustrated in Figures 1 and 2 was used for developing both legacy and novel software

applications.

 Page 8 of 39

of those product components are (the affiliation of people to the components’ design). Next, I

introduce a structured approach to address this challenge.

Figure 2. "Design and Integration" tasks of the software development process studied

PREDICTING AND MANAGING TECHNICAL INTERACTIONS

In order to improve the management of planned design iterations that typically occur in the design

phase of product development processes, this paper introduces a five-step approach structured in two

phases (see Figure 3). The first phase (steps 1, 2, and 3) focuses on predicting potential technical

interactions based on the architecture of the product and the affiliation (or involvement) of developers

in the design tasks of each product component. The second phase (steps 4 and 5) focuses on validating

the potential interactions identified in the first phase by comparing them against actual interactions,

which, in turn, provides important insights to improve the management of technical interactions.

Fundamental to this approach is the introduction of the affiliation matrix (in step 2) to capture the

design task involvement of the organization, which permits the alignment of product and

organizational structures that do not map one-to-one.

Figure 3. A structured approach to predict and validate technical interactions

Predicting potential technical interactions

The basic assumption behind this first phase of the approach is that design interfaces between

product components generate coordination requirements among the people involved in their design.

This phase focuses on predicting the set of interactions that could potentially take place to coordinate

 Page 9 of 39

the design interfaces of the product being developed. These potential interactions are likely to differ

somewhat from the actual technical interactions that occur in the organization, which is why the

results of this phase are validated by comparing them against the actual interaction patterns in the

second phase of the approach. Predicting potential technical interactions can be done in three steps.

(1) Capture the product architecture

The n components that form the product and the interfaces among them are identified by

interviewing systems architects. The product data are then documented into a product architecture

matrix (P). Pn,n is a square matrix, the rows and columns of which are identically labeled with the n

components of the product. A non-zero, off-diagonal cell, pij, in this matrix indicates that component i

imposes design constraints on component j. Note that this convention to represent design interfaces

between components is opposite to the convention used in previous related work in which the

components that impose constraints on other components are used to label the columns of the product

architecture matrix (Sosa et al. 2003, 2007b, MacCormack et al. 2006). In this paper, I use the

opposite convention because it facilitates the mapping of a matrix representation to a block diagram

representation commonly used in software development (Sangal et al. 2005, Sosa et al. 2007a)
5
. In

addition, I assume that the directionality of the communication patterns follow the same direction as

the directionality of design constraints (Sosa et al. 2004). Even though organizational communications

are likely to be symmetric (i.e. in a dyad an actor seeks information while the other one provides

information), information-seeking behavior (which is the type of organizational relationship we are

aiming to predict) is typically determined by the directionality of design constraints (Eppinger et al.

1994, Sosa et al. 2007c). Nonetheless, for cases in which design constraints are used to predict

symmetric organizational relationships, then the product architecture matrix can be symmetrized.

Regardless of the convention used, the key point at this step is to capture the dependency structure (or

connectivity) of the product components so that the corresponding communication patterns can be

determined from them.

(2) Capture the affiliation network: the affiliation matrix (A)

 In order to capture the involvement of people in the design of product components systematically,

it is important to recognize that development actors and product components form an affiliation

network because developers are affiliated with (i.e. involved in the design of) product components

(Wasserman and Faust 1994). This type of affiliation network is captured by asking the m

development actors about their level of involvement in the design of each of the n product

components. (Alternatively, one could also ask engineering managers about the level of involvement

of each of the m available developers in the design of the n product components.) This information is

documented in the affiliation matrix (A). Am,n is a rectangular matrix in which m rows are labeled with

5 When using block diagrams to represent the structure of software products, components that serve others as

platforms to build upon are typically placed at the bottom of the diagram.

 Page 10 of 39

the development actors and n columns are labeled with the product components. Cell aij indicates the

degree of involvement of actor i in the design of component j. Note that for consistency the columns

of A are sequenced following the same order as in the product architecture matrix (P). As for the order

of the rows, one can sequence people following the formal organizational structure in which

developers are organized into groups so that group members are sequenced together.

Before describing how to use the affiliation and the product architecture matrices to determine

potential organizational interactions, I will first examine the properties of the affiliation matrix, A. To

do this, let us consider a binary affiliation matrix in which aij = 1 if developer i is involved in the

design of component j, otherwise aij = 0. In this case, the row marginal totals of A, ai+ = aij

j

∑ , are

equal to the number of components to which developer i contributes to the design of. (As a result, a

row where the total marginal is equal to zero indicates that such a developer does not contribute to the

design of any product component.) Similarly, the column marginal totals of A, a+ j= aij

i

∑ , are equal to

the number of people that contribute to the design of component j and therefore a column whose

marginal total is equal to zero has no developers contributing to the design of such a component.

Affiliation networks are considered two-mode networks because they consist of a set of actors and

a set of events (or, in our case, a set of components) instead of a set of elements (of the same kind)

with links between them (Wassserman and Faust 1994). However, we are typically interested in the

one-mode networks embedded in the affiliation networks, that is, the communication network of

people in the development organization and/or the design dependency structure of the product under

development. Fortunately, the information contained in the affiliation matrix itself sheds some light on

these one-mode network structures. With the affiliation matrix we can determine “component-related

ties” between people based on their involvement in the design of product components, and similarly,

we can determine “organizational links” between components based on the people involved in their

design.

First, let us compare the columns of the affiliation matrix to determine the number of developers

that any pair of product components has in common. To that end, two components that share the same

developers will have 1’s in the same rows. That is, aik = ail = 1 so that developer i contributes to the

design of both components k and l. Counting the number of times that such an equality occurs for all

the developers (i = 1, …, m) results in the number of developers involved in the design of both

components k and l (pkl). Hence, pkl = aik ⋅ ail

i=1

m

∑

Clearly, if components k and l do not share any developers then pkl = 0 (which is the minimum

possible value) and, if all the developers contribute to the design of these two components, then

pkl = m (which is the maximum possible value). Now, we can define the common-contributor product

matrix (Pcommon-contributor) as a function of the affiliation matrix (A) as follows

Pcommon-contributor = A
T
 A (1)

 Page 11 of 39

This is a square, valued, symmetric matrix of size n in which non-zero off-diagonal cells indicate

the number of developers that any pair of components shares. The diagonal cells indicate the number

of developers who contribute to the design of each component. Also, because the columns of the

affiliation matrix are originally sequenced in the same order as the product architecture matrix (P),

then the Pcommon-contributor preserves the same label sequencing of P.

In a similar fashion, we can use the affiliation matrix (A) to determine the number of common

components to whose design any pair of developers contributes. In such a case, we are interested in

comparing the rows of the affiliation matrix so that aik = ajk = 1 if both developers i and j contribute to

the design of component k. Hence, we can define the common-component potential interaction matrix

(Tcommon-component) as follows

Tcommon-component = A A
T

 (2)

This is a square, valued, symmetric matrix of size m, in which non-zero off-diagonal cells indicate

the number of components to which a pair of developers contributes. The diagonal of such a matrix

captures the number of components to which each developer makes a design contribution. Because

people who contribute to the design of the same components are likely to exchange technical

information related to the intrinsic design of such components, I call this matrix the common-

component potential interaction matrix (Tcommon-component). Note that this matrix does not capture the

potential interactions that would need to take place to coordinate the actual product interfaces

documented in the product interface matrix (P) captured in the previous step. I tackle this challenge in

the next step.

For illustration purposes, let us consider a simple organization with six developers developing a

four-component product. Figure 4 shows the hypothetical affiliation matrix that captures how the six

developers are affiliated with the design of each of the four product components. Figure 4 also shows

how the affiliation matrix determines the potential interactions that could occur between any pair of

developers due to the contribution they make to common components. In this example, person 2 could

potentially interact with person 5 and person 6 because they all contribute to the design of component

C.

It is important to emphasize that A uniquely determines both Pcommon-contributor and Tcommon-component,

but the reverse is not true. Generally, the two latter matrices can be generated by a number of different

affiliation matrices (Breiger 1991), so it is not possible to reconstruct the original affiliation matrix

from either Pcommon-contributor or Tcommon-component. This is because when considering these single-mode

matrices one loses information about the affiliation network. That is, in the Pcommon-contributor matrix one

loses identity of the people that contribute to the linked components, and in the Tcommon-component matrix

one loses information about the components co-designed by any pair of actors. In addition, because

the information captured in the Pcommon-contributor and Tcommon-component corresponds to pairs of components

(which share the same developers) or pairs of developers (who contribute to the same components)

respectively, one cannot infer any properties of subgroups larger than pairs from these one-mode

 Page 12 of 39

network matrices (Breiger 1991, Wasserman and Faust 1994). For example, by examining Tcommon-

component one can say that a pair of developers contributes to the design of certain number of

components; however we cannot say that three or more developers contribute to the same set of

components. To do so, we would need to examine the affiliation matrix (A).

Figure 4. Predicting common-component potential interactions

 (3) Determine potential organizational architectural interactions

I define architectural interactions as those that need to take place to coordinate identified product

interfaces. To determine the set of potential architectural interactions between developers i and j we

need to examine the entries of both the affiliation matrix (A) and the product architecture matrix (P).

More specifically, developer i would look for technical information from developer j (tij>0) if

component k designed by developer i (aik>0) depends on component l (pkl>0) which is designed by

developer j (ajl>0). Hence, (tij>0), if (aik>0) and (pkl>0) and (ajl>0). Moreover, if we consider A and P

to be binary matrices, then we are interested in the number of times that developers i and j need to

coordinate product interfaces between components to which they contribute. That is, we are interested

in adding the number of times that aik = pkl = ajl = 1 for developers i and j. Formally,

tij = aik pklalj

l=1

n

∑
k=1

n

∑ (3)

Now, I can formally define the potential architectural interaction matrix (Tarchitectural) to record the

number of design interfaces in which each pair of developers would potentially need to interact. This

matrix is, as might be expected, a function of both the affiliation matrix (A) and the product

architecture matrix (P). Hence,

Tarchitectural = A P A
T
 (4)

 Page 13 of 39

This matrix is a square, valued matrix of size m. Note that this matrix is not symmetric if P is not

symmetric, which is typically the case in software products. A non-zero cell, tij, indicates that

developer i provides information to developer j because they are involved in the design of product

components that share design interfaces. As for the diagonal elements of this matrix, they indicate the

number of interdependent components with which a developer is involved.

Note that if one substitutes P by the identity matrix, I, in equation (4), then one obtains the

common-component interaction matrix, Tcommon-component, which captures the potential organizational

interactions that could take place among developers contributing to the same set of components

without considering the interdependencies among components. As a result, to obtain the total set of

potential technical interactions we simply add Tarchitectural and Tcommon-component.

To illustrate the rationale behind equation (4), let us extend the simple numerical example

introduced in Figure 4. Figure 5 shows the product architecture matrix (P) of the four-component

product with six design interfaces, designed by an organization with six developers whose

involvement in the design of each component is captured by the affiliation matrix (A). The product

A P produces a rectangular matrix in which non-zero cells capture the number of components with

which developer i is involved, imposing design constraints on component j. For example, person 2 is

involved in the design of two components that impose design constraints on component A (such

components are components B and C). Then, to obtain the potential architectural interaction matrix

one must multiply this matrix by A
T
. Again, because we are using binary matrices, the cells in the

resulting matrix capture the number of design interfaces that two developers potentially need to be

able to coordinate. For example, person 2 has three design interfaces that he or she would potentially

need to coordinate with person 6. More specifically, person 2 might need to provide design

information to person 6 about three product interfaces. Those interfaces are the two design interfaces

from components B and C to component A (because person 2 is involved in the design of components

B and C and person 6 is involved in design of component A), and the interface from component B to

component C (because person 2 is involved in the design of component B and person 6 is involved in

the design of component C). Of course, some of these potential interactions might not take place either

because the same person is involved in the design of the two interdependent components (e.g. person 2

is involved in the design of both components B and C, which share design interfaces in both

directions) or because there is another pair of actors involved in those interfaces who are indeed

coordinating such an interface. That is, in the same way that there is a potential interaction from

person 2 to person 6 to deal with the interface from component B to component A, there are two other

potential interactions that could take place to deal with such an interface. Those are the potential

interactions between person 2 and person 1, and between person 2 and person 3.

 Page 14 of 39

Figure 5. A structured approach to predict potential architectural interactions

Note that equation (4) allows us to determine “who should potentially seek technical information

from whom?” to address direct dependencies between product components. However, such an

expression could be slightly modified to predict the set of interdependent actors associated with

indirect design interfaces. Because design changes tend to propagate beyond adjacent components

(Clarkson et al. 2004, MacCormack et al. 2006, Sosa et al. 2007b), managers may be interested in

determining who should seek information from whom to handle indirect interfaces between product

components. For example, the system in Figure 5 contains an indirect interface from component D to

component B through component C. To determine the pairs of actors that could potentially handle such

an indirect interface we can simply substitute P for P
2
 in equation (4) because the non-zero cells of the

square of a binary product architecture matrix documents the pairs of components that are linked

through at least one intermediary component (i.e. product interface chains of length 2). Doing so, we

find that person 4 could seek information from person 2 to handle the indirect interface between

components D and B. Similarly, we could use P
3
 to predict potential interactions associated with

product interface chains of length 3 and so on. Nonetheless, the intention at this phase of the approach

is simply to identify all possible potential interactions that could take place to address the identified

direct product interfaces, given certain design task involvement in the organization captured in the

affiliation matrix. Next, I compare potential interactions against actual interactions to test the validity

of this approach.

 Page 15 of 39

Validating potential technical interactions

In order to test the predictive power of the approach described in the three steps above it is

important to compare the set of potential technical interactions between development actors against

the actual technical interactions that take place during the development effort. This not only allows us

to determine when a “match” of potential and actual interaction occurs, but more importantly it also

allows us to uncover “mismatched” interactions, which are defined by the lack of overlap of potential

and actual technical interactions. There are two types of mismatched interactions: 1) unpredicted

interactions, which occur when an actual interaction is not predicted by a potential interaction, and 2)

unattended interactions, which occur when a potential interactions does not correspond to an actual

interaction. Hence, to identify matched and mismatched interactions two additional steps need to be

carried out.

(4) Capture actual organizational interactions

By surveying the m development actors involved in the development of the product, their actual

product-related interactions (or the actual intentions to interact) are captured and documented onto a

square (person to person) actual communication matrix (Cm,m). To be consistent with the convention

used in steps 2 and 3, the sequence of the rows and columns of this matrix is identical to the sequence

of rows in the affiliation matrix. In addition, to be consistent with the convention used in the product

architecture matrix, the rows of the actual communication matrix (C) are labeled with the “providers”

of product-related information while the columns are labeled with the “recipients” of information.

Hence, cell cij indicates that actor j reports actual interactions with actor i (i.e., actor j “goes to” actor i

to request product-related information).

(5) Compare potential and actual interactions

In general, by overlaying binary versions of a potential interaction matrix and the actual

communication matrix, one can systematically identify the set of potential mismatched interactions in

the comparison matrix that emerges from such a comparison. However, we would need to perform

different comparisons to determine the two types of mismatched interactions of interest.

Identifying unpredicted interactions

Because unpredicted interactions are defined as those actual interactions that take place even

though there are no potential interactions associated with them, it is important to compare actual

interactions with all possible potential interactions identified. Hence, by overlaying the total potential

interaction matrix (T = Tcommon-component + Tarchitectural) and the actual communication matrix (C), one

can systematically document not only unpredicted interactions but also matched interactions in the

preliminary comparison matrix. Figure 6 shows how the binary version of the total set of potential

interactions maps onto the actual interactions in our hypothetical numerical example. The preliminary

comparison matrix shows that the interactions from person 3 to person 2 and from person 2 to person

4 are unpredicted by the architecture of the product and the design task involvement of the

 Page 16 of 39

organization. Uncovering this type of mismatch is important for managers because their existence

indicates that there might be unidentified product interfaces about which developers are interacting.

Unpredicted interactions could also be the result of the “unofficial” involvement of some developers in

the design of other components not assigned to them and therefore not captured in the affiliation

matrix. The preliminary comparison matrix also shows a set of six cells (labeled “#”),in which the

paired developers involved share both potential and actual interactions. Finally, there is a significantly

high proportion of potential interactions that are not attended by actual interactions. Which of these are

truly potential unattended interactions? That is the question I need to address next.

Figure 6. Comparing potential and actual technical interactions

Identifying truly potential unattended interactions

I define truly potential unattended interactions as the subset of unattended potential interactions

associated with product interfaces whose corresponding potential interactions are all unmatched by

actual interactions. To identify the set of truly potential unattended interactions, we first filter out

common-component potential interactions because we are interested in identifying the absolute

minimum set of potential interactions that needs to take place to coordinate the identified set of

product interfaces. First remember that, by definition, common-component potential interactions are

not associated with any of the product interfaces, so we do not consider them when identifying truly

potential unattended interactions
6
. Next, we filter out “redundant interactions” associated with each

6 If we were to determine the truly potential unattended “common-component” interactions, we could do so

by comparing the Tpure-common-component matrix and the actual communication matrix (C), where the entry

 Page 17 of 39

product interface identified. I define redundant interactions as those that do not necessarily take place

because other people are already coordinating the product interface that generates such potential

interactions. There are two types of redundant interactions: 1) common-contributor redundant

interactions, which are potential interactions associated with product interfaces that have one or more

people involved in the design of both interdependent components; and 2) common-partner redundant

interactions, which are potential interactions associated with product interfaces in which at least one

potential interaction is matched by an actual interaction.

Figure 7 illustrates how to identify systematically the two types of redundant interaction in order to

obtain the truly potential unattended interactions in our hypothetical example. First, using the

affiliation matrix we can identify the pairs of components that share developers involved in both

interdependent components (“common-contributor components”). Such a matrix is the common-

contributor product matrix (Pcommon-contributor) defined in equation (1). Figure 7 shows that components A

and C and components B and C have person 6 and person 2 as “common contributors” respectively.

Note that the potential interactions associated with the interfaces corresponding with non-zero cells in

the common-contribution matrix are common-contributor redundant interactions. To determine the

common-partner redundant interactions, we must subtract the common-contributor interfaces from the

product architecture matrix (P) to obtain a subset of interfaces whose potential interactions are either

common partner redundant interactions or truly potential unattended interactions. Hence, the

preliminary set of potential unattended interfaces are defined by the following expression

[P – A
T
 A]

+
 (5)

where the [•]
+
 operator ensures that only the positive cells of the resultant matrix contained within

brackets are considered potential unattended interfaces. In the example shown in Figure 7, there are

only three preliminary potential unattended interfaces between components D and C, D and A, and B

and A, respectively.

To determine the common-partner redundant interactions, the potential interactions associated with

each preliminary potential unattended interface are compared to the actual organizational interactions,

similar to the method shown in Figure 6. For example, the potential unattended interface from

component D to component C shown in Figure 7 generates three potential interactions (from person 4

to person 2, to person 5, and to person 6. Yet, the latter one is the only potential interactions matched

by an actual interaction. This makes the other two potential interactions common-partner redundant

interactions. In general, we obtain a comparison matrix for each preliminary potential unattended

interface. If such a comparison matrix contains at least one “matched” interaction, the potential

interactions are common-partner redundant interactions because there is at least one pair of people that

could coordinate such a product interface. Otherwise, the preliminary potential unattended interface is

indeed a potential unattended product interface and its corresponding potential interactions are truly

Tpure-common-component (i,j) = 1 if Tcommon-component (i,j) > 0 and Tarchitectural (i,j) =0. Such a comparison would yield the

common-component potential interactions that were unattended by actual interactions.

 Page 18 of 39

potential unattended interactions. Figure 7 shows that the potential interactions associated with the

first two preliminary potential unattended interfaces are common-partner redundant interactions, while

the interface from component B to A has three potential interactions that are truly potential unattended

interactions. Note that these three potential interactions are neither common-contributor redundant

interactions nor common-partner redundant interactions and as a result are truly potential unattended

technical interactions. I have kept on using the term “potential” to refer to both unattended interfaces

and unattended interactions because there might be alternative coordination mechanisms, such as

interface standardization, that would not require the use of actual organizational interactions to handle

these interfaces. Yet, this approach aims to help managers identify the subset of product interfaces that

have higher risk of being overlooked in case there is no alternative mechanisms put in place to handle

them.

Figure 7. Identifying truly potential unattended interactions

Finally, Figure 8 shows the final comparison matrix, which does not contain any redundant

potential interactions. Out of the eight actual interactions, six were matched by potential interactions

and two were unpredicted interactions. Interestingly, only three out of a total of 15 potential

unattended interactions (see Figure 6) were truly potential unattended interactions.

 Page 19 of 39

Figure 8. Final comparison matrix

Managing technical interactions

If the approach described above indeed predicts systematically potential technical interactions,

engineering managers could proactively select a subset of potential interactions to coordinate a subset

of product interfaces that would be likely to change during the (re)design of a product. This is

certainly relevant in software development because of the additive and flexible manner in which

software products are developed (MacCormack et al. 2001, Sosa et al. 2007a). This is also important

in the rapid redesign of hardware products in which some components are modified or added to an

existing product architecture (Chen et al. 2007).

To illustrate how potential interactions can be managed proactively, let us consider again the

example in Figure 5, “Who should talk to whom if component B is redesigned?” (For simplicity I will

assume that there are no architectural changes, that is, product interfaces may change but they will not

appear or disappear.) Using equation (4) with the same hypothetical affiliation matrix as before, Figure

9 shows the potential interactions associated with the interfaces of component B. The top of Figure 9

shows the potential interactions associated with all the interfaces of component B while the bottom

shows the potential interactions associated with two subsets of interfaces separately. These two subsets

correspond to the interfaces of component B with components A and C, respectively. The strong

message that emerges from Figure 9 is that person 2 needs to coordinate some of (or perhaps all) the

interfaces of component B. Certainly, person 2 would need to coordinate with either person 1, 3,

and/or 6 on the interface between components B and A. In addition, the bi-directional interface

between components B and C could be handled entirely by person 2 (because she or he is involved in

the design of these two components) or by having person 2 interacting with persons 5 and 6.

This approach does not provide a prescriptive recommendation about which product interface to

facilitate; however, it systematically predicts the subset of potential organizational interactions from

which to choose to fulfill product architectural requirements. By combining these coordination

requirements based on the product architecture and design task involvement with other organizational

requirements, such as individual design capability and individual workload, engineering managers can

decide how to assign responsibilities and coordination mechanisms to ensure that critical interfaces are

dealt with. As mentioned, some of those coordination mechanisms can be interface standardization.

 Page 20 of 39

That is, some potential interactions might not require any actual organizational interactions because

the corresponding product interfaces are standardized somehow. Moreover, by examining the number

of potential interactions associated with certain product interfaces managers would be able to decide

which interfaces to standardize in order to remove the need for managing certain organizational

interactions. Finally, it is important to emphasize that this use of potential interactions is relevant if the

predictive power of the approach described in the first phase of the approach (steps 1, 2, and 3) is

significant when applied to a real setting. The next section provides empirical evidence that this may

well be the case.

Figure 9. Managing potential interactions to handle redesign of component B

A SOFTWARE DEVELOPMENT EXAMPLE

I illustrate the implementation of the approach described above in the context of the development

of a new software application. The hosting firm is a mature public European company and one of the

leaders in the market for a specific type of application for business customers. The firm’s portfolio of

development projects included seven distinct software applications. At the time of data collection, the

firm was allocating over 60% of its development resources to the development of one radically new

product, an effort that had started within the previous 12 months. The product comprised 34

interdependent modules and the development organization included 66 people, many of whom

 Page 21 of 39

contributed to the conception and design implementation of the 34 modules of the product. Two

important factors informed the selection of this project. First, the firm was interested in examining

their process, product, and organizational structures to accelerate the development of the product

studied. Second, the architecture of the product studied and the development organizational structure

did not map directly to each other. This provided an ideal opportunity to test the validity of the

structured approach detailed earlier. In addition, it is important to emphasize that understanding

software development is valuable for two reasons: 1) complex products contain both software and

hardware subsystems with software-related components playing increasingly important functional

roles in product performance; 2) software development is somewhat different than hardware

development because it is typically faster, more flexible, and the mapping between the product

architecture and the organizational structure is not one-to-one.

I implemented the structured approach described in the previous section in five steps (see Figure

10). First, the software architecture was documented. Then, affiliation matrices were constructed to

capture various levels of design involvement of the development actors. In step 3, potential interaction

matrices were determined based on the product architecture and the affiliation matrices. Next, I

documented the actual technical communication patterns in the development organization. Finally, by

comparing potential and actual interactions, comparison matrices were created and matched and

mismatched interactions were identified.

Figure 10. Five steps to predict and validate technical interactions

Step 1: Capturing the software architecture

After a long concept development phase, during which the firm assessed its market needs and

technological opportunities, the architecture of the product to be analysed in this study was

 Page 22 of 39

established. The product comprised 34 modules, the detailed design of which would address all the

functional requirements of the product. System architects had also identified how each of these

modules would depend on the others. With this information, a 34 x 34 product architecture binary

matrix was constructed, where the off-diagonal marks (i,j) indicate that to design the module in

column j, designers “need to know about” the module in row i. Such a convention facilitates the

mapping of a matrix representation to a block diagram representation commonly used in software

development. Note that because of the highly asymmetric nature of interdependences in software

products, I used a partitioning algorithm (instead of a clustering algorithm) to identify the highly

interdependent modules in the product (Sangal et al. 2005, Sosa et al. 2007a). The product architecture

matrix captures the directionality of the dependencies between product modules because system

architects documented their dependency structure by explicitly considering their directionality so that

“[developers] responsible for implementing and testing the specifications of module j should also find

out about the specifications of module i.”For example, because product modules included in groups 5

and 6 (shown in Figure 11) depended on most of the components included in group 1, managers were

expecting developers of the former groups to seek technical information from developers involved in

the design implementation of the components included in group 1.

In sum, I built a partitioned product architecture matrix to capture the dependency structure of the

34 modules that formed the software product studied. Figure 11 shows how the 34 modules of the

product are organized into six groups of components. System engineers identified 250 critical design

interfaces among the 34 modules. Although all the interfaces needed careful attention to ensure that

the modules integrated well and the entire software application fulfilled its functional requirements,

some interfaces posed significant managerial challenges due to the iterative constraints they would

impose on some of the components. These interfaces are highlighted in blue in Figure 11. In addition,

the product architecture matrix highlights sub-system boundaries to show whether design interfaces

occur other components within the group or across group boundaries. In addition, Figure 11 shows

both a matrix representation and a block diagram of the product studied.

 Page 23 of 39

Figure 11. Software product architecture studied

Step 2: Capturing the design task involvement of the organization

The development organization studied was formed by 66 people organized into 11 functional

groups distributed in three different sites in Europe. Eight groups were dedicated to software

development (i.e., programming), six of which were mainly responsible for the design of the 34

modules of the product studied. The other three groups provided support to the rest of the organization

in areas such as quality assurance, system architecture design and technical marketing, and technical

documentation and IT support. A comprehensive web survey among all the 66 people involved in the

development organization was distributed to capture not only their level of involvement in the design

of the components of the product studied but also their product-related interactions with all the other

people in the development organization. The web survey was completed by 59 respondents resulting

in an 89% overall response rate. The survey was part of a comprehensive study that related the

workload and the formal and informal organizational structure of this organization. Responses were

missing from a few people on vacation during the data collection period or members of the support

group whose input to the development process was less relevant. Moreover, the response rate among

people involved in programming and testing activities was over 95%.

As part of the web survey questionnaire, respondents were asked to rate their level of involvement

in the conception and implementation design of each of the 34 product modules. The six-point scale

used to capture their level of involvement included the values “Not involved”, “Barely involved”,

“Somewhat involved”, “Involved”, “Very involved”, and “Strongly involved”. I documented these

data in a valued affiliation matrix. The columns of the affiliation matrix are labelled identically to the

34 columns of the product architecture matrix (see step 1 above) while the rows of the affiliation

matrix are labelled with the 59 development actors that filled out the web survey. Hence, cell (i,j) in

this matrix indicates the level of involvement of the person in row i in the conception and design

implementation of the software module in column j. Finally, binary affiliation matrices were built for

the following two cases: 1) design involvement rated as “strongly involved” only; 2) design

involvement rated at least as “barely involved”. Figure 12 shows the two binary affiliation matrices for

these two cases respectively.

 Page 24 of 39

Figure 12. Affiliation matrices in the organization studied

Step 3: Determining potential organizational interactions

Using the affiliation matrix, as indicated in equation (2), one can determine the potential

interactions that could take place among developers involved in the design of the same components

(i.e. potential common-component interactions). Using the two binary affiliation matrices built in step

2, I obtained 212 and 2124 potential common-component interactions for strong-only and all-levels of

design involvement respectively. By combining the product architecture matrix and the affiliation

matrices, as indicated in equation (4), one can determine the total number of interfaces between

product modules on which any pair of developers need potentially to coordinate (i.e. potential

architectural interactions). Hence, for the case of strong-only design involvement, the potential

architectural interaction matrix captures 594 potential interactions. Such a matrix has a density of

17%. For all-levels design involvement, the potential architectural interaction matrix shows 2,306

potential interactions, which results in a communication network density of 67% (Figure 13).

Figure 13. Potential architectural interactions matrices

 Page 25 of 39

Step 4: Capturing the formal and informal development organizational structure

As described in step 2, the actual formal and informal organizational structures were captured by

surveying almost all members of the development organization studied. The data were documented

into an actual communication matrix where off-diagonal marks (i,j) indicate how often the person in

column j went (or intended to go) to person in row i to request product-related information during the

last year. Note that the sequencing of the rows and columns of this matrix is identical to the sequence

used in the rows of the affiliation matrices (as well as the sequencing obtained in the potential

interaction matrices). Figure 14 shows the actual technical communication patterns associated with the

development of the product studied in a 59 x 59 organizational communication matrix. Respondents

reported 511 product-related interactions in which actor j “went to (or intended to go to)” actor i for

product-related information. This results in a communication network density of 15%. Figure 14 also

shows the formal structure of the development organization into 11 functional groups. Note that the

actual communication matrix highlights group boundaries with boxes along the diagonal so that

interactions within boundaries (enclosed by those boxes) are distinguished from interactions across

organizational groups.

Figure 14. Actual communication matrix

Step 5: Comparing actual and potential interactions

As described in the previous section, two distinct comparisons are needed to identify matched and

mismatched interactions. The first comparison is focused on identifying unpredicted technical

interactions while the second is used to uncover truly potential unattended interactions. Remember

that unpredicted interactions are those that take place between development actors, even though they

are not involved in the design of components that share interfaces with the other actors’ components,

while truly potential unattended interactions are those that correspond to pairs of developers who are

 Page 26 of 39

expected to interact because the components they design are interdependent, and no one else in the

organization addresses such interdependences.

Before describing how I identified mismatched interactions, it is important to mention two

singularities in the organizational data collected. First, one of the respondents from the first

development group (see Figure 14) filled out completely the questions relevant to building the

affiliation matrices; however, he or she did not manage to fill out the portion of the survey regarding

the reporting of product-related interactions. As a result the column corresponding to this person is

artificially empty in the actual communication matrix shown in Figure 14. This column is therefore

excluded from the comparison analysis described below, but the row corresponding to this person is

kept in the analysis because it captures all the interactions from other members of the organization

who requested technical information from this person. Second, the “managers and system architects”

group (see Figure 14) included two “technical marketing” managers who were “strongly involved”

(from a marketing viewpoint) in the conceptualization and specification of over 75% of the product

modules, however they were not expected to be involved in the design implementation of any of the

product modules. This resulted in significantly (yet “artificially”) dense rows in the affiliation matrix

corresponding to these two technical marketing managers. As explained below, this will be an

important factor to consider when identifying truly potential unattended interactions.

Identifying unpredicted interactions

To identify unpredicted interactions it is important to compare actual interactions with all potential

interactions to rule out as far as possible any reasons that would justify the existence of actual product-

related interactions. As a result, I compare actual organizational interactions with all the potential

interactions for “all-levels” of design involvement. Note that the potential interaction matrix used

combines both common-component and architectural potential interactions as determined by equations

(2) and (4) respectively. In this case, the total potential interaction matrix shows a high communication

density of 68% (2315 potential interactions) because any two people who are at least “barely

involved” in the design of any of the 34 modules would need to interact with other actors if their

components share interfaces or if they are involved in the design of the same components. Yet, even

after controlling for such a possibility, I still found, as shown in Figure 15, 71 unpredicted interactions

(i.e., 14% of the actual interactions were unpredicted by the architecture of the product). These

interactions took place between people who interacted (or planned to interact), even though they did

not contribute to the design of the same components, nor did the components they designed share

technical interfaces. This comparison also yields the set of potentially matched interactions, because I

am assuming that even being “barely involved” in the design of a component provides enough

justification for two interdependent actors to have technical organizational interaction. As a result, a

total of 440 actual interactions were matched by potential interactions. Yet, the main objective of this

comparison is to uncover the actual interactions that took place even though there were no technical

reasons captured in both the product architecture and “all-levels” affiliation matrix to do so. In the

 Page 27 of 39

next section I will discuss the organizational factors associated with the 71 unpredicted interactions

uncovered here, but before doing so let us identify the other type of mismatched interactions.

Figure 15. Identifying matched and unpredicted interactions

Identifying truly potential unattended interactions

To identify the interactions that are truly potentially unattended, one needs to compare actual

interactions with the minimum set of potential interactions that are expected to be truly necessary in

the design process to coordinate the set of product interfaces identified. I started this comparison by

considering the set of potential interactions among developers who are “strongly involved” in the

design of the product components. Yet, in order to obtain the final set of truly potential unattended

interactions, it is imperative to filter out potentially “redundant interactions” associated with each

product interface identified. Hence, the underlying objective of this comparison is to identify the

product interfaces whose potential interactions are not redundant interactions. Remember that a

product interface may have several potential interactions associated with it because there might be

several actors strongly involved in the design of the two components connected by such an interface.

As a result some of these potential interactions may well be redundant interactions. As mentioned in

the previous section, there are two types of redundant interactions: 1) potential interactions associated

with an interface connecting two components that have at least one person strongly involved in the

design of both components (common-contributor redundant interactions); and 2) potential interactions

associated with an interface of which at least one of those potential interactions is matched by an

actual interaction (common-partner redundant interactions).

Following the approach described in the previous section, to systematically identify truly potential

unattended interactions I first filtered out the “common-contributor” redundant interactions using

equation (1) with the “strong-only” affiliation matrix shown in Figure 12, and then, filtered out

“common-partner” redundant interactions. Interestingly, when doing this, the comparison yielded no

truly potential unattended interactions. Does this mean that all the potential unattended interactions

 Page 28 of 39

identified were redundant interactions? Very unlikely. Because the original “strong-only” affiliation

matrix captured the involvement of the two “technical marketing” managers who were strongly

involved in the specification of over 75% of the software modules but would not contribute to their

design implementation, it was not realistic to assume that the potential interactions associated with

them qualified as redundant interactions. As a result, it was necessary to revise the “strong-only”

affiliation matrix by removing the entries in the rows corresponding to these two “technical

marketing” managers. Note that this is not an issue with any other member of the organization because

none else could report “strong involvement” in the design of a component without actually being

involved in its design implementation.

Finally, after revising the “strong-only” affiliation matrix, I was able to identify the truly potential

unattended interactions (see Figure 16). First, I filtered out the “common-contributor” redundant

interactions. Using equation (1) with the “revised” affiliation matrix, I identified 72 product interfaces

(out of 250 product interfaces captured in the product architecture matrix) that had the same group of

people strongly involved in the corresponding pair of interdependent components (see Figure 16). That

yielded a set of 178 product interfaces which were examined one by one, as illustrated in Figure 7, to

determine which of them would be associated with common-partner redundant interactions. The result

of this exercise yielded 38 product interfaces which generated 100 potential interactions that were not

matched by actual interactions (i.e. 100 truly potential unattended interactions). (Remember that those

product interfaces, whose totality of potential interactions are not matched by actual interactions, are

defined as potential unattended product interfaces, and those potential (unmatched) interactions are

truly potential unattended interactions.) Identifying this set of potentially unattended interfaces is

important because engineering managers can check whether they were intentionally unattended

(because other coordination mechanisms, such as interface standardization, were associated with

them) or they were indeed unintentionally unattended by the organization, in which case managerial

action would need to follow.

Figure 16. Identifying truly potential unattended interactions

 Page 29 of 39

The aggregated results of the two comparisons are documented in a final comparison matrix shown

in Figure 17. The cells with an “X” indicate truly unattended potential interactions, the cells with an

“O” show the unpredicted interactions, and the cells with an “#” mark matched interactions.

Figure 17. Final comparison matrix

ANALYSIS AND DISCUSSION OF RESULTS

An important benefit of implementing the structured approach described in this paper is that it

provides a systematic way to identify potential mismatches between product and organizational

architectures in cases where their structures do not map one-to-one. Identifying these mismatches in a

systematic way can help managers steer their attention to areas within the product and the organization

that may require special managerial action. More specifically, I found that only 14% of the 511 actual

product-related interactions were unpredicted by potential interactions, while 29% of the 348 potential

unattended interactions identified were truly potentially unattended. Moreover, in order to determine

truly potential unattended interactions, I had to identify the product interfaces that were not associated

with actual organizational interactions. In particular, of the 250 product interfaces identified by system

architects, 15% of them had not been matched by actual interactions of people significantly involved

in the design of such interdependent software modules.

Analyzing the final comparison matrix further allows us to test whether unattended and unpredicted

interactions are concentrated in a few actors or are distributed throughout the development network.

Figure 18 shows a reordered final comparison matrix that clusters the 11 functional groups of the

organization into three major groups according to their type of involvement in the product studied.

First, the technical group, formed by the 31 members of the six development groups and the 11

members of the quality assurance group. These are the groups that are responsible for design, testing,

and integration (i.e. programming, bug fixing, and product integration) of new (or redesigned)

software modules of the products under development. Hence, they were expected to concentrate the

majority of the technical interactions associated with the design implementation of the product studied.

 Page 30 of 39

Second, the managers group, formed by the people who did not have a technical responsibility on the

design implementation and testing of the product studied, yet have managerial responsibilities in the

definition of the software modules (and their interfaces) to be implemented. This group included the

seven managers of the organization including the director of the development organization, two

technical marketing managers, two product line managers, and two system architects. Finally, the non-

related group, formed by the seven members of the special projects groups and the three members of

the documentation and IT support group. This group was not expected to have any significant

interactions related with the conceptualization or design implementation of the product studied.

Figure 18. Reordered final comparison matrix

Table 1 shows how matched and mismatched interactions are distributed across the three groups

defined above. First, note that 86% of the actual product-related communications were associated with

potential interactions with a statistically significant large proportion of matched interactions occurring

among members of the technical and managers groups
7
. Although it is not surprising to see that actual

interactions were highly correlated with the existence of potential interactions, the benefit of

identifying matched interaction is that when doing so, one can uncover unpredicted interactions. Table

1 shows that a statistically significant large proportion of unpredicted interactions occurred between

7 To test statistically the significance of the difference between the proportions of matched interactions

(within technical and managers group versus non-related group), I carried out a chi-square test over the 440

matched interactions. The expected values were determined by the probability that a matched interaction would

randomly occur between technical and manager actors instead of with non-related actors. Such probabilities were

defined by the available set of possible interactions in these two categories. The test resulted in a χ2 of 136.9,

which is clearly greater than the critical value of χ2
(0.99, 1) = 6.63.

 Page 31 of 39

people in the technical group
8
, which suggests that technical interactions occurred for reasons that

were not captured by either the architecture of the product or the affiliation network of the

organization. Table 1 also shows that 92% of the truly potential interactions occurred within the

technical group, which suggests that potentially unattended product interfaces are likely to be

associated with lack of interaction among technical people in the organization that were supposed to

be significantly involved in the design implementation of the product.

More generally, because mismatched interactions reveal important information about potentially

unattended identified product interfaces as well as unanticipated technical interactions, the results

reported in Table 1 suggest that it is particularly valuable to applying the structured approach

presented in this paper to the group of technical people that are supposed to be directly involved in the

iterative design activities of the product under development. Accordingly, it is important to examine

further how mismatched interactions are distributed within the technical group in order to understand

the driving forces behind their occurrence.

Table 1. Overall Distribution of Technical Interactions

 Counts of

matched

interactions

Counts of

unpredicted

interactions

Counts of truly

potential unattended

interactions

Interactions within technical group 248 (56%) 49 (69%) 92 (92%)

Interactions with managers group 162 (37%) 9 (13 %) 8 (8%)

Interactions with non-related group 30 (7%) 13 (18%) 0 (0%)

Total 440 71 100

Factors associated with potentially unattended and unpredicted interactions

I found that truly potential unattended interactions were significantly concentrated in a small group

of actors. Ninety-one percent of the 92 truly potential unattended interactions within the technical

group were associated with nine actors. This is good news for managers because they can focus their

attention on a small set of actors to minimize the risk of overlooking critical product interfaces.

Interestingly, 100% of these potentially unattended interactions occurred across group boundaries,

which confirms the importance of carefully identifying and managing cross-boundary interfaces; these

suffer from communication barriers imposed by organizational boundaries between development

groups which typically hinder the attention that needs to be paid to technical interdependencies (Sosa

et al. 2004). As mentioned before, an important benefit of the suggested approach to identifying truly

potential unattended interactions is that it requires the identification of product interfaces that are not

matched by actual interactions. I found that 38 product interfaces (out of 250) were not attended by

actual interactions. Figure 19 shows these potentially unattended product interfaces, of which 27 (or

71%) involved components from subsystem “group 4”, which clustered a set of particularly novel

8 To test the significance of this result, a chi-square test was carried out over the 71 unpredicted interactions.

This test resulted in a χ2 of 13.2, which is greater than the critical value of χ2
(0.99, 1) = 6.63.

 Page 32 of 39

software modules that were subsequently highlighted for special attention during the detailed design

phase.

Certainly, potentially unattended product interfaces can be coordinated in many different ways. In

addition to actual interactions between the people significantly involved in the design implementation

of these interdependent components, alternative coordination mechanisms available for organizations

include: interface standardization, indirect interactions through intermediary actors (either within the

technical group or with other members of the organization), and interface coordination through actual

interactions between people with lower level of design task involvement. In the product studied,

interface standardization was less likely to play an important role at this stage of the development

process because the architecture of the product was based on functional components to be designed

and implemented. I also tested for the possibility that actors with lower levels of design involvement

would coordinate some of these potentially unattended interfaces and found that over 21% of the 38

potential unattended interfaces could have not been handled by other actors with lower levels of

involvement in the design of these components. More generally, it is worth emphasizing that the value

of identifying potentially unattended interfaces is to “raise a flag” around a subset of product

interfaces that have higher risk of being overlooked by the organization so that managers investigate

whether they are intentionally or unintentionally unattended.

Figure 19. Unattended product interfaces

As for the unpredicted interactions within the technical group, three people (one developer and two

members of the quality group) were involved in 92% of them. There are two distinct explanations for

this: either the product architecture matrix did not capture some important interfaces that motivated

these unpredicted interactions or the affiliation matrix did not capture the involvement of these people

in some design activities associated with some product components. In this case, the empirical

evidence suggests that the second explanation is the most plausible one. These three development

actors did not report any level of involvement in the design of any of the components of the product

studied (i.e. their corresponding rows in the affiliation matrix were empty for all levels of

 Page 33 of 39

involvement) because they were supposed to be involved in the design and testing activities of other

products in the firm’s portfolio. However, the member of the development group in question was

likely to be involved in technical discussions about the product studied with other developers in his

group because he was considered “expert” in some of the technologies relevant for the product

studied, and this was reflected in his actual communication patterns. As for the two quality assurance

engineers, they were likely to be involved in some “testing” tasks associated with the product studied

to help cover the excess demand for quality related activities associated with this product development

effort. After understanding the main reasons behind the unpredicted interactions with these three

people, the other unpredicted interactions became candidates to be investigated by engineering

managers to find out whether they were related to any previously unidentified product interface not

captured in the original product architecture matrix.

It is worth highlighting the fact that the predictive power of our approach to determine and validate

potential interactions depends significantly on the accuracy of the data collected. Certainly,

measurement errors in any of the matrices can systematically generate mismatched interactions. As a

result, managers should first double check that the systematic occurrence of mismatched interactions is

not simply the result of systematic errors during the data collection. Fortunately, the codified nature of

software products and the increasing use of information technology to manage software development

projects may help reducing inaccuracies in the data collected.

MANAGERIAL AND ACADEMIC IMPLICATIONS

This research has important implications for both managers and academics. Research in

engineering design has suggested that the identification of design iterations is essential to managing

them effectively (Eppinger et al. 1994, Eckert et al. 2004). In this paper I argue that to manage

planned design iterations, it is essential for engineering managers to identify the set of actors who need

to interact and the interfaces they need to interact around. This is particularly relevant in software

development in which design and integration activities take place concurrently as products are built.

This paper presents a structured approach to this challenge. Moreover, the systematic implementation

of this approach to small “portions” of the product and within the relevant technical group in the

development organization can help managers to manage design iterations at a more granular level

because they can identify systematically the potential interactions that need to take place to address a

subset of product interfaces. Because “potential interactions” represent the set of interactions that

could potentially coordinate a set of product interfaces, managers must select and facilitate the subset

of the potential interactions that would address those interfaces effectively.

Figure 20 illustrates how, by bringing together the process, product, and organizational views,

managers can effectively facilitate the management of design iterations associated with a subset of

product components. Figure 20 starts with a representation of the development process in which its

main iterative phases are highlighted, including the “design integration” phase in which most of the

planned design iterations take place. To manage those iterations effectively, managers capture the

 Page 34 of 39

architecture of the specific product whose product components are to be designed, tested, and

integrated. For illustration purposes, let us assume that managers are interested in facilitating the

design iterations associated with designing, testing, and integrating the product components of the

particularly novel subsystem “group 4”. As a result, the product architecture shown in Figure 20 only

shows the interfaces (both within and across subsystem boundaries) associated with the product

components of subsystem “group 4”. By combining the affiliation matrix and the product architecture

matrix, managers can predict the set of potential interactions that would need to take place between the

technical people of the development organization who significantly contribute to the design, test, and

integration of the software modules whose interfaces are highlighted in the product architecture

matrix. Based on the results discussed in the previous section, I have resized both the affiliation matrix

and the potential interaction matrix to consider interactions within the development and quality

assurance groups only (i.e. the technical group). The potential interaction matrix provides managers

with the set of people and technical interactions from which to choose to coordinate the identified

product interfaces effectively. Moreover, the top half of Figure 21 shows the potential interactions,

some of which, would be needed to coordinate the interfaces between components within the “group

4” subsystem. On the other hand, the bottom half of Figure 21 shows the potential interactions, some

of which, would be needed to coordinate the interfaces between the components of “group 4” and

components in other subsystems. Note that most of the within-subsystem boundary interfaces can be

handled by members of two development groups (labeled as G4 and G6 in Figure 21)while to

coordinate the set of cross-boundary interfaces developers from five of the six development groups

would potentially be involved as well as a couple of members of the quality assurance group. Having

considered these potential interaction patterns, then it is up to engineering managers to establish the

appropriate coordination mechanisms to facilitate the management of such product interfaces.

As illustrated in Figure 20, to implement a project management framework like this, it is essential

to document both the product architecture and the design task affiliation of the organization. With

product architecture and affiliation matrices, a project management tool can be implemented to

automate the systematic prediction and management of potential interactions. The automation of the

structured approach introduced in this paper would allow for the rapid evaluation of the organizational

impact of changes in either the architecture of the product or the affiliation network of the

organization.

 Page 35 of 39

Figure 20. Aligning process, product, and organizational views in software development

Figure 21. Facilitating potential technical interactions

 Page 36 of 39

In practical terms, this paper highlights the importance of capturing both the connectivity of

product components and the involvement of developers in the design of those components. Doing so is

facilitated in software development due to the highly codified nature of software products. This paper

has shown how the software architecture can be documented based on functional components of the

product, however after product components are implemented into “pieces” of source code, the source

code itself can be used to capture the architecture of the product being implemented and maintained.

(Refer to Sangal et al. 2005, MacCormack et al. 2006, and Sosa et al. 2007a for examples of how to

document software architectures based on source code.) Once a product architecture matrix is

constructed, then engineering managers and developers can easily determine which other components

are likely to be affected if a group of components are to be changed. Then, with the affiliation matrix

managers and developers can also identify which people to contact to coordinate any particular

interface between the focal component and any other components. Again, this sort of project

management framework is particularly relevant in software development where products are

developed in an additive fashion and product changes are implemented over an established product

architecture that is relatively easy to document.

More generally, the approach presented in this paper allows engineering managers to identify

potential mismatches between actual and potential interactions. This is important because mismatched

interactions offer important guidance to engineering managers to update product (or process)

information when new interfaces are uncovered by unpredicted interactions, and to reorganize

development actors to attend interfaces that could otherwise be overlooked. Although the approach has

been illustrated in an in-depth case study in a software development organization, additional validation

in other types of technical organizations would be required before generalizing the results presented

here. From a theoretical viewpoint, the implications of this approach rest on the analytical usage of the

affiliation matrix (in its binary and valued forms) to explore alternatives ways to cluster organizational

groups to minimize tension across organizational boundaries.

ACKNOWLEDGEMENT

I appreciate the active participation of the executive team and members of the development

organization of the firm where the empirical study was conducted. I thank Jürgen Mihm for his

insightful feedback on an earlier version of this article. Portion of this manuscript was presented at the

14
th
 International Conference in Engineering Design (ICED ‘07 Paris, France). Finally, I appreciate

the comments and suggestions of three anonymous reviewers which helped significantly in improving

the final version of this article.

 Page 37 of 39

REFERENCES

1. Allen, T. J., 1977. Managing the Flow of Technology. Cambridge, Mass.: MIT Press.

2. Baldwin, C. Y., and Clark, K. B., 2000, Design Rules: Volume 1: The Power of Modularity.

MIT Press, Cambridge, MA.

3. Breiger, R. L., 1991, Explorations in Structural Analysis: Dual and Multiple Networks of Social

Structure, New York: Garland Press.

4. Browning, T. R., 2001, “Applying the Design Structure Matrix to System Decomposition and

Integration Problems: A review and New Directions,” IEEE Trans. Eng. Mgmt. 48(3), 292–306.

5. Browning, T. R. and Ramasesh, R.V., 2007, “A Survey of Activity Network-Based Process

Models for Managing Product Development Projects,” Production and Operations

Management, 16(2), pp. 217-240.

6. Carley, K.M., 2002, “Smart Agents and Organizations of the Future,” The Handbook of New

Media (edited by Leah Lievrouw and Sonia Livingstone), Chapter 12, pp. 206-220, Thousand

Oaks, CA, Sage.

7. Cataldo, M., Wagstrom, P., Herbsleb, J.D., and Carley, K.M., 2006, “Identification of

Coordination Requirements: Implications for the Design of Collaboration and Awareness

Tools,” Proceedings of ACM Conference on Computer-Supported Cooperative Work, Banff

Canada, pp. 353-362.

8. Chen, L., Ding, Z., and Li, S., 2005, “A Formal Two-Phase Method for Decomposition of

Complex Design Problems,” ASME J. Mech. Des., 127, pp. 184-195.

9. Chen, L., Macwan, A., Li, S., 2007, “Model-based Rapid Redesign Using Decomposition

Patterns,” ASME Journal of Mechanical Design, 129, pp. 283–294.

10. Clarkson, P. J., Simons, C. S., and Eckert, C. M., 2004, “Predicting Change Propagation in

Complex Design,” ASME Journal of Mechanical Design, 126(5), pp. 765-797.

11. Eckert, C. M., Clarkson, P. J., and Zanker, W., 2004, “Change and Customization in Complex

Engineering Domains,” Research in Engineering Design, 15(1), pp. 1-21.

12. Eppinger S. D. and Salminen, V.K., 2001, “Patterns of product development interactions,” In

International Conference on Engineering Design, ICED ’01, Vol. 1, pp. 283-290.

13. Eppinger, S. D., Whitney, D. E., Smith, R. P., and Gebala, D.A., 1994, “A Model-Based

Method for Organizing Tasks in Product Development,” Res. in Eng'g. Des. 6(1), pp. 1–13.

14. Henderson, R., and Clark, K., 1990, “Architectural Innovation: The Reconfiguration of Existing

Product Technologies and the Failure of Established Firms. Admin. Sci. Quart. 35(1), pp. 9-30.

15. Jarratt, T., Clarkson, J. and Eckert, C. 2005. “Engineering Change,” In Design Process

Improvement- A Review of Current Practices, pp. 266-285.

16. Lai, X., and Gershenson, J.K., 2006, “Representation of Similarity and Dependency for

Assembly Modularity,” Proceedings of the ASME Design Engineering Technical Conferences –

18
th
 International Conference on Design Theory and Methodology, Philadelphia, PA.

 Page 38 of 39

17. MacCormack, A., J. Rusnack, and Baldwin, C., 2006, “Exploring the Structure of Complex

Software Designs: An Empirical Study of Open Source and Proprietary Code,” Management

Science, 52(7), pp. 1015-1030.

18. MacCormack, A., Verganti, R., and Iansiti, M., 2001, “Developing products on Internet time:

The anatomy of a flexible product development process,” Management Science, 2001 47(1), pp.

133-150.

19. Michelena, N. and Papalambros, P. Y., 1995, “A Network Reliability Approach to Optimal

Decomposition of Design Problems,” ASME J. Mech. Des. 117(3), pp. 433-440.

20. Michelena, N. and Papalambros, P. Y., 1997, “A Hypergraph Framework for Optimal Model-

Based Decomposition of Design Problems,” Computational Optimization and Applications,

8(2), pp. 173-196.

21. Mihm, J., Loch, C., and Huchzermeier, A., 2003, “Problem-Solving Oscillations in Complex

Engineering Projects,” Manag. Sci. 46(6), pp. 733-750.

22. Morelli, M. D., Eppinger, S. D., and Gulati, R. K., 1995, “Predicting technical communication

in product development organizations,” IEEE Trans. Eng'g. Management, 42(3), 215-222.

23. Olson, J., Cagan, J., and Kotovsky, K., 2006, “Unlocking organizational potential: A

computational platform for investigating structural interdependence in design,” Proceedings of

ASME Conference on Design Theory and Methodology.

24. Pimmler, T. U., and Eppinger, S. D., 1994, “Integration Analysis of Product Decompositions,”

ASME Conference on Design Theory and Methodology. Minneapolis, MN. pp. 343-351.

25. Sanchez, R. and Mahoney, J. T., 1996, “Modularity, Flexibility, and Knowledge Management in

Product and Organization Design,” Strategic Management Journal, 17, pp. 63-76.

26. Sangal, N., Jordan, E., Sinha, V., and Jackson, D., 2005, “Using Dependency Models to Manage

Complex Software Architecture,” Proceedings of the 20
th
 Annual ACM SIGPLAN Conference

on Object Oriented Programming, Systems, Languages, and Applications. San Diego, CA.

27. Seidman, S., 1981, “Structures Induced by Collections of Subsets: A Hypergraph Approach’”

Mathematical Social Sciences, 1, pp. 381-396.

28. Sharman, D., and Yassine, A., 2004, “Characterizing Complex Products Architectures,” Systems

Engineering, 7(1), pp. 35-60.

29. Simmel, G., 1955, Conflict and the Web of Group Affiliations. Glencoe, IL: Free Press.

30. Sosa, M. E., Browning, T., and Mihm, J., 2007a, “Studying the Dynamics of the Architecture of

Software Products,” Proceedings of the ASME Design Theory and Methodology Conference.

31. Sosa, M. E., Eppinger, S. D., and Rowles, C. M., 2003, “Identifying Modular and Integrative

Systems and Their Impact on Design Team Interactions,” Journal of Mech. Design, 125(2), pp.

240-252.

32. Sosa, M. E., Eppinger, S. D., and Rowles, C. M., 2004, “The Misalignment of Product

Architecture and Organizational Structure in Complex Product Development,” Management

 Page 39 of 39

Science, 50(12), pp. 1674-1689.

33. Sosa, M. E., Eppinger, S. D., and Rowles, C. M., 2007b, “A network approach to define

modularity of components in complex products,” ASME Journal of Mechanical Design

(forthcoming).

34. Sosa, M.E., Gargiulo, M. and Rowles, C.M. 2007c, “Component Connectivity, Team Network

Structure, and Attention to Technical Interfaces in Complex Product Development,” INSEAD

Working Paper 2007/68/TOM/OB.

35. Steward, D., 1981, The Design Structure Matrix: A Method for Managing the Design of

Complex Systems,” IEEE Trans. Eng'g. Manag. EM-28(3), pp. 71-74.

36. Terwiesch, C., Loch, C. H., and De Meyer, A., 2002, “Exchanging preliminary information in

concurrent engineering: Alternative coordination strategies, ”Org. Sci. 13(4): 402–419.

37. Wasserman, S., and Faust, K., 1994, Social Network Analysis. Cambridge University Press, NY.

Europe Campus

Boulevard de Constance,

77305 Fontainebleau Cedex, France

Tel: +33 (0)1 6072 40 00

Fax: +33 (0)1 60 74 00/01

Asia Campus

1 Ayer Rajah Avenue, Singapore 138676

Tel: +65 67 99 53 88

Fax: +65 67 99 53 99

www.insead.edu

