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Abstract

Food recognition is an emerging computer vision topic.

The problem is characterized by the absence of rigid struc-

ture of the food and by the large intra-class variations. Ex-

isting approaches tackle the problem by designing ad-hoc

feature representations based on a priori knowledge of the

problem. Differently from these, we propose a committee-

based recognition system that chooses the optimal features

out of the existing plethora of available ones (e.g., color,

texture, etc.). Each committee member is an Extreme Learn-

ing Machine trained to classify food plates on the basis of

a single feature type. Single member classifications are

then considered by a structural Support Vector Machine

to produce the final ranking of possible matches. This is

achieved by filtering out the irrelevant features/classifiers,

thus considering only the relevant ones. Experimental re-

sults show that the proposed system outperforms state-of-

the-art works on the most used three publicly available

benchmark datasets.

1. Introduction

According to the World Health Organization [29], in the

last years there has been a rapid increase of diseases re-

lated to excessive or wrong food intake. In particular, it is

estimated that in 2014 about 39% of the world’s adult pop-

ulation were overweight, including a 13% of obese people,

whose number more than doubled between 1980 and 2014.

Despite obesity being a complex disease involving many

factors, from genetics to life styles, proper actions against

it necessarily include a strict control over the daily food in-

take. This justifies the large amount of food diary appli-

cations for mobile devices that have recently been devel-

oped [5]. However, these apps typically require a man-

ual annotation of the food intake, a tedious task that of-

ten discourages the potential users. To face this problem,

many food recognition works have been recently proposed

(e.g., [7, 3, 25]), whose aim is to automatically classify food

(and possibly its amount) directly from the given pictures.

Regardless of the specific application, automatic food

Figure 1: The intra-class variation is shown in the 10 images

of the UECFood100 dataset. The differences deny a proper

image representation based on the a-priori knowledge.

recognition is a tough problem with many specific chal-

lenges. Differing from other common image classification

tasks, in food recognition there is no spatial layout informa-

tion to be exploited. Food is typically non-rigid, and thus

no structure information can be easily exploited. Intra-class

variation is another source of uncertainty, since the recipe

itself for the same food can vary depending on the location,

the available ingredients and, last but not least, the personal

taste of the cook (see Figure 1). Finally, inter-class confu-

sion is a source of potential problems too, since different

foods may look very similar (e.g., soups where the main

ingredients are not visible). On the other hand, food im-

ages often have distinctive properties which allow humans

to recognize them. Hence, the task is still tractable, despite

the non-trivial challenges.

Existing methods addressed the aforementioned issues

by designing ad-hoc image representations based on a pri-

ori knowledge of the problem (e.g., [26, 8, 43]). Such a

knowledge yields to the combination of different features

(e.g., color, shape, spatial relationships, etc.). Despite their

successful applications (e.g., [19]), there is no guarantee

that such combination of features yields to the best classifi-

cation results. A more robust solution is a system that uses

as many different features as possible but exploits only the

subset that maximizes the classification accuracy. While ex-

isting approaches, like a Random Forest of Decision Trees

(RF) [4], can be exploited for such a task, they require man-

ual parameter tuning, which may yield to excellent or very
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poor performance depending on correct or incorrect param-

eter selection. The aforementioned considerations motivate

the development of a new solution that (i) automatically se-

lects the optimal features out of a large pool of considered

ones; (ii) requires few manually selected parameters.

The proposed Structured COmmittee for food REcog-

nition (SCORE) solution treats the first point by adopting

a supervised committee of classifiers. As demonstrated

in [38, 37, 34], a committee of learners has two main ben-

efits: (i) it generally exhibits better performance than those

of individual committee members. (ii) the general task can

be split into simple subtasks independently solved by the

committee members. In the proposed solution, instead of

being tackled considering the whole combination of a priori

selected features, the classification is carried out by fusing

the results produced by committee members trained on sin-

gle features only.

Following the second motivation, we use an Extreme

Learning Machine (ELM) [14] as a single committee mem-

ber. ELMs have been demonstrated to achieve universal ap-

proximation capabilities by requiring just a limited num-

ber of parameters, thus reducing the tuning effort required

by other approaches such as Deep Nets or RF. In addition,

ELMs have excellent performances in terms of computa-

tional burden and can naturally handle multi-class problems

without significant additional computational costs typically

required by classification approaches relying on one-vs-all

or one-vs-one schemes (e.g., SVMs).

Committee-based approaches require the selection of a

supervisor to fuse the discordant members’ classifications.

The typical output of the supervisor is a class. However,

when classification results must be presented to users, a

rank could be more appropriate. While ranking informa-

tion can be obtained from single committee members, none

of the existing works have adopted a supervisor consider-

ing it. Motivated by this, we introduce a structural Support

Vector Machine [40] as supervisor. It automatically selects

the ranking produced by the members and combines them

to obtain optimal classification performance as well as an

optimal ranking. As it will be shown in the results, other

common schemes do not have such a property, thus sup-

porting the choice of such a supervisor.

2. Related Work

Food Recognition: during the last few years, the topic of

food recognition for health-oriented applications has gained

increasing popularity. In [7], to obtain the image represen-

tation, the Maximum Response Filter Bank (MR) is used in

a Bag of Textons (BoT) scheme. Classification is then per-

formed with a 1-Nearest Neighbor. In [43], the spatial re-

lationships between different ingredients has been studied.

The image is segmented into eight ingredient types using

a Semantic Texton Forest. Pairwise statistics over the de-

tected ingredients are used to compute a multi-dimensional

histogram, later classified with an SVM. It must be noted

that their spatial relationship assumption is valid for some

food types (e.g.. a sandwich, where the meat is always be-

tween the bread slices) but in many food classes this spa-

tial assumption does not hold. Other works also consider

the problem of recognizing multiple foods appearing in the

same picture. For example in [26], outputs of different re-

gion detectors are fused to identify different foods, which

are later classified using texture features and an SVM. Co-

occurrence statistics have been also exploited to improve

performance. Many works are explicitly tuned for food di-

ary applications on smartphones and other mobile devices.

For example, DietCam [20] helps assessing daily food in-

takes. In such a work, classification is done using a SIFT-

based Bag of Visual Words and a nearest-neighbour-based

best match search. The related problem of calories estima-

tion has been addressed in [45]. Images are segmented us-

ing different techniques (connected component analysis, ac-

tive contours and normalized cuts). Color and texture infor-

mation is captured by means of color histograms and Gabor

filters, and classification is done using an SVM.

In general, following the available a priori knowledge

of the problem, all these works generally introduce hand-

crafted feature representation composed either of a single

or multiple feature types. Differently from all such schemes

our approach does not hinge on the manual selection of such

features. Indeed, it addresses the problem by automatically

selecting and exploiting only the optimal features for clas-

sification out of the large pool of considered ones.

Extreme Learning Machines and Learning Commit-

tees: ELMs date back to mid 2000 [15], when they were in-

troduced to address the major bottlenecks (i.e., backpropa-

gation, extensive and iterative training) of feedforward neu-

ral networks. After that, the community proposed differ-

ent ELM schemes tackling complex data [21], on-line [22]

and unsupervised [12] learning problems as well as regres-

sion tasks [14]. Other modifications were devised to intro-

duce sparsity [24], multiple kernel learning [23] and mul-

tiple hidden layers [18]. Despite being a prolific field of

research, ELMs have never been employed in a commit-

tee learning framework. Therefore, our proposed solution

is the first considering such an extension to common ELM

approaches.

Learning committees have been widely used to tackle

different classification tasks [38, 37, 34]. In all such works,

the supervisor objective has always been to fuse single com-

mittee members’ classifications such that optimal classifica-

tion performances are achieved. Differently from these, we

train a supervisor in such a way that it produces not only the

best classification but the optimal ranking as well.

3. The Approach

The proposed food recognition system pipeline is shown

in Figure 2 and works as follows.

The input image is given to the feature extraction mod-

ule that computes discriminative visual features capturing
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ŷ1

ŷ2
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Figure 2: Proposed system architecture pipeline based on four main modules: (i) feature extraction; (ii) extreme learning

committee; (iii) committee structured supervisor and (iv) supervised extreme learning committee decision.

color, shape and texture information. These are then in-

put to the extreme learning committee module (section 3.1)

where each committee member ranks using a single type of

feature only. Obtained ranks are evaluated by a committee

supervisor (section 3.2) that combines them to produces the

optimal ranking (section 3.3).

3.1. Extreme Learning Committee

We adopt Extreme Learning Machines as committee

members, thus each feature type is associated to a differ-

ent ELM. ELMs have been chosen for their proven good

classification performance and low computational burden,

even for multi-class problems [11].

Let x∗ = {xk : xk ∈ R
dk , k = 1, . . . ,K} ∈ X∗ de-

note the set of K different feature types extracted from a

given image where dk indicates the dimensionality of the

k-th feature type. Each vector is associated to a class label

y represented by a m-dimensional unit row vector. Its sin-

gle positive c-th component, denoted as yc, indicates that

x∗ belongs to class c ∈ C = {1, . . . ,m}. In our approach,

each committee member is trained with feature vectors of a

particular type only, hence the row vector xk is the input for

the k-th ELM.

Let {(x
(i)
k ,y(i))}ni=1 be the set of n training samples

pairs. An ELM is a single hidden-layer feed-forward net-

work in which the hidden layer does not need to be tuned,

and thus the training reduces to the solution of the following

linear system

Hkβk = Y (1)

where Y ∈ R
n×m = [y(1) . . .y(n)]T , βk ∈ R

L×m is the

weight matrix between the L hidden nodes and m output

nodes, and Hk ∈ R
n×L = [h(x

(1)
k ) · · ·h(x

(n)
k )]T repre-

sents the output of the hidden layer for each input data.

The function h(x
(i)
k ) : Rd �→ R

L is a nonlinear piecewise

continuous function satisfying the universal approximation

capability theorems [13] and its parameters are randomly

distributed rather than trained. Under this assumption, the

weights βk satisfying eq. (1) solve the classification prob-

lem provided that the hidden layer has enough nodes. In this

case, a minimum-error, minimum-norm solution of eq. (1)

can be defined using the orthogonal projection method as

βk = HT
k (HkH

T
k )

−1Y (2)

given that HkH
T
k is nonsingular. Following the ridge re-

gression theory, better results can be achieved by adding a

regularization term

βk = HT
k

(

I

C
+HkH

T
k

)−1

Y. (3)

A kernel ELM [14] can be defined by using the ker-

nel matrix Φ = HHT : Φi,j = h(x(i)) · h(x(j)) =

φ(x(i),x(j)). In this case, the classification vector output

by a single committee member for a new sample x̂k is:

ŷk = h(x̂k)H
T
k

(

I

C
+HkH

T
k

)−1

Y (4)

=

⎡

⎢

⎣

φ(x̂k,x
(1)
k )

...

φ(x̂k,x
(n)
k )

⎤

⎥

⎦

T

(

I

C
+Φk

)−1

Y. (5)

In this formulation there is no need to tune the number of

hidden nodes and to have an explicit definition for h.

Notice that the solution shown in eq. (5) is similar to the

one obtained using a Least Squares SVM, and in fact, as

demonstrated in [14], ELM can be interpreted as a gener-

alization of a large group of classifiers such as LS-SVM,

Proximal SVM and kernel Ridge Regression. The main

advantage consists in better performance at handling the

multi-class output. In fact, ELM requires the computation

of an n× n kernel matrix, while multi-class LS-SVM is re-

duced to m applications of binary classifiers, leading to the

solution of an n× (nm) linear system [14].

3.2. Committee Structured Supervisor

The committee supervisor task is to learn the coefficients

α of the linear combination of the k = 1, . . . ,K member

answers ŷk such that optimal ranking can be obtained.

3.2.1 The Structural Supervisor Objective

Let X∗ and O denote the input feature (i.e., x∗ ∈ X∗) and

the output (i.e., o ∈ O) spaces, respectively. The idea be-

hind Structural SVM [40] is to discriminatively learn a scor-

ing function f : X∗×O → R over input/output pairs, where
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the space of the outputs O is no longer restricted to contain

only numbered labels (as in common classification prob-

lems), but it is a structured output space whose elements

may be object structures [46], parsing trees [39], segmenta-

tion masks [1], etc. In SCORE, the structured output space

consists in a ranking of the considered classes.

Let {x
(i)
∗ }ni=1 be the set of n training data samples and

c(i) ∈ C = {1, . . . ,m} denote the class of the i-th sam-

ple. For a given sample x
(i)
∗ , the objective is to learn the

coefficients α that order relevant classes C(i)+ ⊆ C (i.e.,

classes “similar” the same class of the sample) before irrel-

evant ones C(i)− ⊆ C (i.e., classes “different” from the class

of the sample).

However, in common classification problems there is

only knowledge of the orders between the relevant (i.e., true

match) and irrelevant classes (i.e., false matches), but not

orders within relevant or irrelevant ones. To sidestep such

a problem, to each sample x
(i)
∗ is associated a partially or-

dered set o(i) defined as

o(i) = {o(i)
+,(i)−}, o(i)

+,(i)− =

{

+1 if c(i)+ ≺ c(i)−

−1 if c(i)+ ≻ c(i)−

(6)

where c(i)+ ≺ c(i)− indicates that a relevant class c(i)+ ∈
C(i)+ is ranked before an irrelevant one c(i)− ∈ C(i)−, and

after otherwise.

Having defined the partial orders o forming the struc-

tured output space O, the objective function for the struc-

tural SVM model with slack rescaling [17] is given by

min
α,ξ≥0

1

2
‖α‖2 +

γ

n

n
∑

i=1

ξi (7)

s.t. ∀i, ∀õ(i) ∈ O \ o(i) :

〈α,Ψ(x
(i)
∗ ,o(i))−Ψ(x

(i)
∗ , õ(i))〉 ≥ 1−

ξi

∆(o(i), õ(i))

where Ψ(x
(i)
∗ ,o(i)) is a combined feature representation of

inputs and outputs, γ is a parameter that controls the trade-

off between the norm of the coefficients α and the average

of the the slack variables ξi. o(i) is a correct partial order

that ranks all relevant classes before irrelevant ones and õ(i)

an incorrect partial order that violates some of the pairwise

relations. ∆(o(i), õ(i)) is a suitable loss function quantify-

ing the loss obtained with a wrong partial order õ(i).

The constraints in eq.(7) state that for each sample, the

score 〈α,Ψ(x
(i)
∗ ,o(i))〉 of a correct order o(i) must be

greater than the score 〈α,Ψ(x
(i)
∗ , õ(i)))〉 of all incorrect or-

ders õ(i) by a required margin. This margin equals 1 in the

slack-rescaling structural SVM formulation.

3.2.2 Supervisor Learning

To properly minimize the objective in eq.(7), its three main

components are defined as follows.

The Combined Feature Representation: In our work we

only know relevant and irrelevant pairs relationships, and

the ranking should be optimized over committee members

scores. Considering this, we use a modification of the par-

tial order feature [16] that is commonly used in rank learn-

ing with strucutral SVM.

First, we let ψ(x
(i)
∗ , c(i)) =

[

ŷ1
c(i)

, . . . , ŷK
c(i)

]T
, where

ŷk
c(i)

is the output computed by the k-th member with re-

spect to the class label c(i). Then, the partial order feature

Ψ(x
(i)
∗ ,o(i)) can be computed as

|C(i)+|
∑

i+=1

|C(i)−|
∑

i−=1

o(i)
+,(i)− (ψ(x

(i)
∗ , c(i)+)−ψ(x

(i)
∗ , c(i)−))

|C(i)+||C(i)−|
.

(8)

Such partial order feature is suitable for the proposed ob-

jective because it only depends on the difference between

relevant and irrelevant pairs. By adding the differences be-

tween members’ scores computed for a correct orders and

subtracting that of incorrect ones, the partial order feature

emphasizes the directions in the optimization space which

are closely related to correct ordering.

The Loss Function: Among all the possible loss functions,

we selected the area under curve (AUC) measure because it

allows to express the difference between relevant and and

irrelevant pairs with only partial order available.

As shown in [16], a ranking is required to compute the

AUC. This can be obtained by ordering each sample accord-

ing to 〈α,ψ(x
(i)
∗ , c)〉, for all c ∈ C. From such obtained

ranking, the partial ordering õ(i) can be computed and the

AUC loss can be efficiently calculated as

∆(o(i), õ(i)) =

|c(i)+|
∑

i+

|C(i)−|
∑

i−

111(o(i)+,(i)− �= õ(i)+,(i)−)

|C(i)+||C(i)−|
(9)

where 111(·) is the indicator function. Thus, the AUC loss

function tells, on average, how many incorrect orders are

obtained with the current partial ordering õ(i).

The Separation Oracle: As shown in [16], learning a rank-

ing function with AUC loss requires a constraint for every

possible wrong output õ(i). Unfortunately, the number of

possible wrong outputs is exponential in the size of C. Such

a problem can be addressed by adopting a a cutting plane

algorithm [17]. In such a case, one key step is to efficiently

determine the separation oracle. In our case, given a fixed

α, for each example x
(i)
∗ the separation oracle aims to find

the worst order

ȯ(i) = argmax
ȯ(i)∈O

〈α,Ψ(x
(i)
∗ ,o(i))〉+∆(o(i), ȯ(i)). (10)

For a fixed α, the argument maximizing eq.(10)

can be found by sorting the committee answers by
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〈α,ψ(x
(i)
∗ , c(i))〉 in descending order. This strongly im-

proves the computational times as the maximization objec-

tive in eq.(10) only requires O(n log n) processing time.

3.3. The Supervised Extreme Learning Committee
Decision

Once the training procedure is done the learned parame-

ters can be exploited to rank a new test data sample x̂. First,

the committee members are asked to produce K classifi-

cations [ŷ1, . . . , ŷK ]. Then, the learned supervisor coeffi-

cients α are used to weights such classifications as

ỹ = αT

⎡

⎢

⎣

ŷT
1
...

ŷT
K

⎤

⎥

⎦
(11)

Finally, the ranking is computed by sorting in descending

order the elements in ỹ.

4. Experimental Results

To validate the proposed SCORE approach, results on

three benchmark datasets for food recognition have been

computed. For each of them, an analysis of the perfor-

mance of the selected features as well as on the benefits

of the proposed approach with respect to standard ELMs is

conducted first. Then, comparisons with existing methods

are presented to show the superior performance of SCORE.

As commonly performed in the evaluation of food recog-

nition approaches [26, 19, 6], the achieved performances

will be provided in terms of recognition accuracy. We also

adopt the top-n criterion [7] to demonstrate the benefits of

our approach in terms of ranking performance. The top-

n criterion defines the chance of finding the correct match

within the first n ranks.

4.1. Experimental Settings

To evaluate the performance of the proposed approach

the following settings have been adopted. All the parame-

ters have been selected through 4-fold cross validation.

4.1.1 Image Feature Representation

To obtain the image feature representation a large set of

features has been considered. In the current framework (i)

color, (ii) shape, (iii) textures and (iv) data-driven features

are extracted from each given image.

Color: Following the suggestions in [41], in the current

framework the HSV, CIELab, RGB, normalized RGB and

Opponent color spaces are exploited to extract color his-

togram features. An histogram is extracted from each im-

age color space component, then histograms belonging to

the same color space are concatenated.

Shape: To capture the shape of a given image the Pyra-

mid Histogram of Oriented Gradients (PHOG) [2] and the

GIST [28] features are used.

Table 1: Feature dimensionalities. The value reported for

color histogram features is intended for each color space

separately. When jointly considered the obtained vector lies

in a 15195-D space. More details are given in the supple-

mentary.

Color

Hist.
PHOG GIST LBP LPQ LCP BGP

MRS4

IFV
CNN

96 2295 512 59 256 81 216 7200 4096

Texture: To capture texture information, Local Binary Pat-

tern (LBP) [27], Local Phase Quantization (LPQ) [32], Lo-

cal Configuration Pattern (LCP) [10], Binary Gabor Pat-

terns [44] and the MRS4 filter bank[42] have been adopted.

To reduce the dimensionality of the MRS4 filter bank fea-

tures these have been encoded by using the Improved Fisher

Vector (IFV) [30] technique with 300 clusters.

Data-Driven: Following [33], to compute the data-driven

feature representation, the image is fed to the OverFeat net-

work [35]. Then, the CNN features are taken from the out-

put of the last convolutional layer.

The dimensionality of the adopted feature vectors is

shown in Table 1.

4.1.2 ELMs and Kernels

When kernel-ELMs are used, their performance are eval-

uated using four different kernels: (i) linear; (ii) cosine;

(iii) exponential χ2; (iv) radial basis function (with free pa-

rameter set to 2); When kernel-ELMs are not used we set

L = 1000. For both the cases we used C = 0.01.

In the state-of-the-art comparisons, the results reported

for the proposed SCORE approach have been computed us-

ing the exponential χ2 kernel for every feature type in all

the three datasets. Notice that, the kernels could have been

separately selected for each dataset to obtain better recog-

nition performance. However, to provide a more general

framework, the choice of the kernel have been kept fixed.

4.1.3 Datasets

To validate the proposed method the following three pub-

licly available benchmark datasets have been due to the dif-

ferent challenges they carry.

PFID: The dataset [6] has three instances of 61 different

food categories acquired under different lighting conditions

and from different viewing angles. Therefore, it is useful to

understand if the proposed method is robust to such chal-

lenges. Following the protocol in [43], performance eval-

uations have also been conducted by re-organizing the 61

PFID food categories into seven major classes: Sandwiches,

Salads&Sides, Chicken, Breads&Pastries, Donuts, Bagels,

and Tacos. In both the cases, 3-fold cross-validation has

been conducted using 12 images from two instances of each

original class for training, and the 6 remaining images of the

third instance of each original class for testing.
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Table 2: Classification accuracies [%] obtained by using single features and different kernels on the fours selected datasets.

Best results for each kernel/dataset are highlighted in boldface font. Best performing feature for each dataset is also underline.

PFID PFID7 UNICT-FD889 UECFood100

No

Kernel

Co-

sine
χ2 -

exp
Linear RBF

No

Kernel

Co-

sine
χ2 -

exp
Linear RBF

No

Kernel

Co-

sine
χ2 -

exp
Linear RBF

No

Kernel

Co-

sine
χ2 -

exp
Linear RBF

CNN 43.64 47.47 48.51 47.47 48.10 83.22 82.49 83.86 82.49 82.76 60.07 66.69 69.10 66.69 69.34 37.06 39.98 49.06 39.98 46.69

PHOG 21.05 28.70 32.89 28.80 31.07 70.47 70.38 76.02 71.74 72.65 8.63 15.84 22.28 14.99 19.93 17.07 18.34 31.53 17.63 27.58

LBP 27.70 19.23 27.07 19.23 19.69 68.28 62.73 75.20 62.73 62.91 4.34 2.14 11.75 2.14 2.26 10.83 9.33 19.29 9.33 10.52

LCP 15.86 8.49 18.69 8.49 9.12 61.91 58.17 70.56 58.17 58.27 2.10 3.28 12.29 3.28 3.61 9.41 7.83 18.26 7.83 8.46

LPQ 29.16 21.69 31.25 21.69 22.15 69.92 62.55 74.39 62.55 62.73 10.75 4.40 20.85 4.40 4.67 15.65 13.60 25.13 13.60 14.63

BGP 30.71 21.24 31.62 21.24 21.24 70.29 58.90 76.12 58.90 58.90 16.93 7.82 22.94 7.82 7.92 18.50 12.97 31.37 12.97 13.20

HIST

HSV
27.07 22.79 27.70 22.69 26.61 74.48 69.74 74.84 70.38 73.93 53.91 25.21 65.39 22.29 63.04 18.81 8.31 25.45 8.54 23.39

HIST

Lab
22.33 17.78 27.61 18.14 23.88 71.74 66.83 76.30 67.46 71.29 54.97 24.30 70.53 22.27 63.37 18.97 8.78 26.95 9.33 22.68

HIST

nRGB
24.52 19.60 26.88 20.96 25.61 73.38 66.64 76.02 67.83 72.38 57.23 27.03 72.16 24.85 65.82 18.10 8.70 26.16 8.62 23.31

HIST

Opp
21.15 16.23 26.06 16.41 23.33 70.74 65.92 73.57 66.83 69.92 51.44 24.15 66.92 21.86 61.24 18.50 8.78 26.08 8.62 23.39

HIST

RGB
22.79 17.78 23.88 19.23 23.33 70.56 68.83 72.02 69.83 71.11 35.36 16.12 51.98 14.64 44.91 15.49 7.99 23.00 7.99 18.81

GIST 28.80 26.52 33.90 26.52 26.88 17.92 68.37 78.21 68.37 68.28 8.21 7.79 13.33 7.79 8.41 7.15 15.73 33.03 15.81 19.21

MRS4-

IFV
19.96 37.27 40.09 36.72 36.90 64.18 77.57 78.24 77.48 75.93 9.62 43.58 51.23 39.59 50.04 23.55 28.69 38.95 25.05 39.98

UNICT-FD889: The dataset [7] has 3583 images of 889

different real food plates acquired by mobile devices in un-

controlled scenarios ensuring geometric and photometric

variability. Hence, results on this dataset provides an es-

timate on how well an algorithm scales to a real scenario.

Results have been computed by averaging the performance

on the same three splits adopted in [7].

UECFood100: The dataset [26] contains 100 different food

categories which can simultaneously appear in each of the

14000 images. Since the proposed system is designed to

focus only on the recognition task, the same protocol in [26]

has been followed to obtain a dataset of images containing

single food items only. As in [26], 1200 single food item

images have been used for testing, the rest of all the images

for training. Due to the large number of images this dataset

is well suited to evaluate the learning performance of the

proposed approach.

To ensure the fixed length input to SCORE all the images

are resized to 256× 256, regardless of their aspect ratios.

4.1.4 Evaluation Protocol

To analyze the performance of the proposed approach three

main different scenarios have been identified: (i) To see

how the single features perform, their individual results

have been computed, also using different kernels. (ii) To

show the benefits of kernel ELM to standard ELM, results

will be also given for the case when kernel is not used.

(iii) To demonstrate the benefits of our fusion approach, the

achieved performance are compared to those obtained by

using common schemes: (a) low-level consists in feature

concatenation; (b) mid-level, where the kernels computed

for different features are combined (e.g., Multiple-Kernel

Learning); (c) high-level, where committee members out-

puts are fused (our method belongs to such a category).

4.1.5 Performance Analysis

In Table 2, the performances obtained by using single fea-

tures and different kernels are shown for all the consid-

Table 3: Classification accuracies [%] and average train-

ing time [sec] computed using existing fusion schemes are

compared to ones achieved by the proposed SCORE ap-

proach. Training time (kernel computation included) is av-

eraged over the four datasets. Best accuracy performance

for each dataset is highlighted in boldface font.

Fusion Method PFID PFID7
UNICT-

FD889

UEC-

Food100

Average

Training

Time

L
o
w

No Kernel 45.10 75.84 41.60 46.22 12.21

Cosine 29.89 81.67 78.14 63.51 53.48

χ
2-exp 44.55 82.13 80.77 70.86 2489.60

Linear 45.01 84.04 73.61 60.83 22.29

RBF 46.74 74.48 76.92 51.03 24.67

M
id

Average

Kernels [9]
36.90 84.31 83.54 77.34 2950.04

Product

Kernels [9]
45.56 77.12 69.61 43.85 2724.05

Sparse

MKELM [23]
35.81 79.12 79.70 70.78 7651.46

Non-Sparse

MKELM [23]
41.18 83.77 85.40 76.47 7342.18

H
ig

h

Average 49.11 79.30 83.75 59.01 2986.07

Lasso 46.37 82.31 69.80 66.91 3353.55

Logistic

Regression
43.91 81.85 68.44 58.14 3798.64

SCORE 52.09 89.34 88.39 80.33 3127.69

ered datasets. Results show that data-driven features per-

form better than any other feature on three out of the four

considered datasets. For the UNICT-FD889 dataset, the

ones achieving best results are histogram features which

outperform data-driven ones by 3%. While texture fea-

tures are considered the most important for food recogni-

tion [7, 8, 25], such a counterexample validates our idea that

the a-priori knowledge might not be sufficient to properly

handle the task. We can also conclude that performances

obtained by using kernel-ELMs are generally better than

the ones achieved by using the standard ELM. Most impor-
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Figure 3: Top–n performance achieved using the proposed SCORE approach are compared to the best performing fusion

methods. Results have been computed for the (a) PFID dataset containing all the 61 classes, the (b) PFID dataset when

only the 7 major ones are considered, the (c) UNICT-FD889 and the (d) UECFood100 dataset. The inside pictures show the

performance on a reduced range of n.
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Figure 4: Performance achieved by the proposed method are shown for 6 challenging query images from the (a) PFID, (b)

UNICT-FD889 and (c) UECFood100 datasets. At the bottom of each of those, bar histograms show the score (in percentage)

of the proposed approach for the true match (in green) and for the remaining top 4 ranked matches (in red). On the y-axis of

each bar histogram a randomly selected training image corresponding to the food class is depicted. (Best viewed in color)

tantly, results obtained using the χ2-exponential kernel are

the best ones for almost every feature used on each dataset.

To demonstrate that the proposed fusion approach is not

only able to correctly capture feature importance but also

produces the optimal ranking, we have computed the results

in Table 3 and Figure 3. The given results are compared to

the ones achieved by using common fusion schemes. For

the low-level fusion case, results have been computed using

concatenated features. For the mid-level fusion case, results

have been computed by kernel averaging [9], kernel prod-

uct [9] and by exploiting the Sparse and Non-Sparse version

of Multiple Kernel ELMs (MKELMs) [23]. Finally, for the

high-level fusion case, score averaging, Lasso and Logistic

Regression have been considered for score weighing. For

both the mid and high-levels, the exponential χ2 kernel has

been used for every feature type.

Results in Table 3 demonstrate that our fusion approach

outperforms the best existing performance by about 4%

for every considered dataset. In particular, leveraging the

abilities of committee classifiers, the proposed approach

strongly improves the results obtained by low-level fusion

schemes.

Results in Figure 3 are provided in terms of top–n per-

formance. These demonstrate that the proposed supervisor

is able to correctly produce a better ranking than best per-

forming standard schemes. Most notably: (i) SCORE sig-

nificantly outperform the existing schemes at first ranks and

(ii) 100% accuracy is always reached sooner. This shows

that using our method less ranks should be searched to find

the true match, which is compliant to our objective.

Finally, in Figure 4, qualitative performance of SCORE

are shown for 6 challenging query images belonging to the

three used datasets (see caption for additional details). Re-

sults show that the proposed approach is able to capture the

global appearance and the tiny details of each food category

that allows it to correctly rank them.
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4.1.6 State-of-the-art Comparisons

In Table 4, the performance of the proposed SCORE ap-

proach are compared to the state-of-the-art ones.

PFID: Results demonstrate that the proposed approach im-

proves the state-of-the-art performance of PRI-CoLBP [31]

by almost 9% and outperforms recent approaches like

Class-BoT [8] and OM [43] by more than 20%.

PFID7: The obtained results show that accuracy perfor-

mance of SCORE (89.34%) is higher than the one of PRI-

CoLBP [31] (87.3%). Better results than any other existing

approach are achieved. The reduction in the performance

gain, with respect to the original PFID dataset, is mainly

due to the imbalanced conditions of the dataset where the

majority of the training samples belong to the “Sandwiches”

class, making the training phase biased [8].

UNICT-FD889: Results demonstrate that SCORE strongly

outperforms the existing ones by improving the best pre-

vious performance by more than 28%. In particular, PRI-

CoLBP [31] that has similar performance to SCORE on the

PFID dataset is now achieving the worst accuracy.

UECFood100: Notice that, methods like Circle, JSEG,

DCR, DPM, and Whole, uses a detector to identify the lo-

cation of the food, while GTBB uses the same ground truth

as SCORE. While results are not directly comparable to

detector-based approaches, results show that that state-of-

the-art performance are significantly improved from 51.4%

(GTBB [26]) to 80.33%. It is finally worth noticing that,

since GTBB uses the same features and learning algorithm

as the aforementioned detector-based approaches to per-

form the classification, it is plausible to assume that SCORE

outperforms these as well if the same detector is used.

4.2. Discussion

Results obtained for the three datasets demonstrate that:

(i) using a kernel function instead of computing a random

mapping between the input and hidden ELM neurons have

significant benefits in terms of classification accuracy; (ii)

the SCORE approach performs better than modeling the

joint feature space with any considered kernel. This shows

the benefits of learning with committee-based approach.

Comparisons with existing fusion schemes showed that the

proposed supervisor is able to correctly capture feature im-

portance and can exploit it to produce better ranking perfor-

mance. (iii) superior performance than state-of-the-art ap-

proaches are achieved on every dataset. This demonstrate

that our approach is not designed to tackle the specific chal-

lenges of a single dataset.

Finally, it is a matter of fact that nowadays, food recog-

nition algorithms are very attractive for mobile devices. As

regards a possible deployment of the SCORE approach on

these, we can state the following. The feature extraction and

kernel computation are computationally demanding, espe-

cially if the training set is very large. On the contrary, the

classification and structured fusion operations can be per-

formed in fractions of a second even on small devices. Thus,

Table 4: Performance comparison of the proposed SCORE

approach with state-of-the-art methods on the four consid-

ered datasets. Results are expressed as classification accu-

racies [%]. Best results for each dataset are highlighted in

boldface font.

PFID PFID7
UNICT-

FD889

UEC-

Food100

Chance [6] 1.60 14.30 – –

BoW SIFT [6] 9.20 55.30 – –

Color [6] 11.30 49.70 – –

GIR-STF [43]+[36] 18.90 69.00 – –

D [43] 19.20 69.70 – –

O [43] 20.80 71.00 – –

M [43] 22.60 74.30 – –

B [43] 21.30 73.80 – –

DO [43] 21.20 72.20 – –

OM [43] 28.20 78.00 – –

Class-BoT [8] 31.30 79.60 – –

PRI-CoLBP + SVM

(Color) [31]
43.10 87.30 – –

PRI-CoLBP

(Color) [7]
– – 56.30 –

SIFT (Color) [7] – – 58.10 –

BoT (Color) [7] – – 60.20 –

Circle [26] – – – 21.04

JSEG [26] – – – 27.99

DCR [26] – – – 30.93

DPM [26] – – – 31.14

Whole [26] – – – 33.67

GTBB [26] – – – 51.35

SCORE 52.09 89.34 88.39 80.33

SCORE Improvement +8.99 +2.04 +28.19 +28.98

we think that the first two operations can be executed on the

cloud, while the last ones can be performed on the device.

5. Conclusion

In this paper, a system for automatic food recognition

based on a committee of classifiers has been introduced.

The SCORE approach uses as many different features as

possible but exploits only a subset of those to obtain opti-

mal ranking performance. Each committee member (i.e., an

ELM) is trained to classify with a single feature type only.

The individual members classification results are then fused

into a single ranking by means of a structural SVM.

To demonstrate the benefits of the proposed SCORE ap-

proach extensive evaluations on three benchmark datasets

have been shown. Results show that SCORE has superior

performance to the single members taken separately. In ad-

dition, better performance than existing fusion schemes are

achieved using the proposed structured supervisor. Compar-

isons with existing methods have shown that SCORE out-

performs state-of-the-art approaches on every datasets.
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