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Abstract

The development of dynamic hand orthoses is a fast-growing field of research and has resulted in many different

devices. A large and diverse solution space is formed by the various mechatronic components which are used in these

devices. They are the result of making complex design choices within the constraints imposed by the application, the

environment and the patient’s individual needs. Several review studies exist that cover the details of specific

disciplines which play a part in the developmental cycle. However, a general collection of all endeavors around the

world and a structured overview of the solution space which integrates these disciplines is missing. In this study, a

total of 165 individual dynamic hand orthoses were collected and their mechatronic components were categorized

into a framework with a signal, energy and mechanical domain. Its hierarchical structure allows it to reach out towards

the different disciplines while connecting them with common properties. Additionally, available arguments behind

design choices were collected and related to the trends in the solution space. As a result, a comprehensive overview

of the used mechatronic components in dynamic hand orthoses is presented.
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Background
Human hands are complex and versatile instruments.

They play an essential role in the interaction between a

person and the environment. Many people suffer from

hand impairments like spasticity, lack of control or mus-

cle weakness, which may be due to the consequences

of stroke, paralysis, injuries or muscular diseases. Such

impairments may limit an individual’s independence in

performing activities of daily living (ADL) and the abil-

ity to socially interact (e.g. non-verbal communication).

Devices like hand exoskeletons, rehabilitation robots and

assistive devices, here collectively termed as dynamic

hand orthoses, aim to overcome these limitations. Their

development is a fast-growing field of research and has

already resulted in a large variety of devices [1–4].

Each individual has different demands for a dynamic

hand orthoses. Some patients benefit from rehabilitation

therapy (e.g. stroke patients [5]) while others would more
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likely benefit from daily assistance (e.g. DuchenneMuscu-

lar Dystrophy [6]). The resulting diversity between the dif-

ferent devices can be illustrated by the elaborate overviews

on robotic devices [4], training modalities [3] and inten-

tion detection systems [7] they use. Clearly, there are

many mechatronic components to choose from and are

often the result of making particular design choices within

the imposed design constraints. However, not everybody

has the resources (i.e. time, accessibility) to investigate all

possible design choices within these constraints. More-

over, not always are design choices reported in literature

and are therefore hard to retrieve. The full potential of

learning from each other’s endeavors is therefore not yet

fully exploited, leaving several questions in this field of

research unanswered. For example, there is the discussion

whether pneumatic or electric actuation is better for some

applications.

The goal of this study is to collect a high quantity of

dynamic hand orthoses and extract the mechatronic com-

ponents which are used. Their collective properties are

analyzed by using a framework which uses a generic cate-

gorization applicable for any mechatronic system: a signal

domain (e.g. controllers, sensors), energy domain (e.g.
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energy sources, actuators) and mechanical domain (e.g.

cables, linkages). Additionally, feasible technologies from

other, but similar, disciplines are included (e.g. prosthet-

ics, haptics). Trends are then visualized using bar charts

and compared to available arguments behind design

choices. This not only includes arguments from often-

cited success-stories, but also from small-scale projects.

Referring to the case of using pneumatic or electric actu-

ation, this approach can answer how often each method

is used and what arguments are reported, which may help

in scoping further research and making a well-considered

choice.

This paper is structured in different sections. The

“Scope” section describes the boundaries and limitations

of this study and Framework introduces the basis of

the framework structure that is proposed. The “Results”

section describes the quantitative results which illus-

trate the trends. How this relates to the functionality

of the components, is discussed and summarized in the

“Discussion” and “Conclusion” section, respectively.

Scope

Search strategy

The used terminology often varies between studies due to

different backgrounds or field of application. For exam-

ple, the term ‘exoskeleton’ has been presented as a type of

rehabilitation robot [4] or, conversely, as a device that is

not used for limb pathologies but to augment the strength

of able-bodied people [8]. In this study, following the

example from [9] and in conformity with ISO 8549-1:1989

[10], the term ‘orthosis’ is used to cover the full range of

applications. The added term ‘dynamic’ then provides a

scope towards devices that facilitate movement.

In order to collect a large quantity of dynamic hand

orthoses, sources of literature were searched in Scopus,

where a set of keywords was used to search in titles and

abstracts. A visual representation of the search query and

selection procedure can be seen in Fig. 1.

Boolean operators and wildcard symbols were used

to include alternative spellings and synonyms. The used

search query was (hand OR finger OR grasp*) AND

((rehab* W/10 robot* OR glove) OR (exoskelet* OR

orthos?s OR “orthotic”)). The inclusion criteria were

defined as regular articles in the English language which

presented a dynamic orthosis, supporting at least a finger

joint. Using standardized terminology from ISO 8549-

3:1989 [11], this includes the finger orthosis (FO), hand

orthosis (HdO) and wrist-hand-finger orthosis (WHFO).

The wrist-hand orthosis (WHO) was not included, as it

stems from the deprecated term wrist orthosis (WO) [11]

and therefore does not necessarily support a finger joint.

Whenever a combined arm and hand support system

was presented, e.g. a shoulder-elbow-wrist-hand orthosis

(SEWHO), only the hand and wrist module was included.

Based on the inclusion criteria, the search results under-

went a title and abstract selection. Additional sources

were added from relevant citations and references, as

well as other possibly linked publications from the same

author(s)/institution(s). Ultimately, this resulted in a total

of 296 articles, describing 165 unique devices. Other sup-

plementary sources of information used in this study

include websites/brochures for commercial devices, key

hand
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“orthotic”

robot*

glove
rehab*

1682 articles

(January 2016)
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1078 articles excluded
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165 individual
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Fig. 1 Search query and selection procedure. a A visualization of the search query is shownwhich resulted in 1682 articles. Here, connections in series

represent ’AND’ and proximity (’W/10’) operators, those in parallel represent ’OR’ operators. b The results underwent title/abstract selection based on

inclusion criteria and more sources were added through references/citations. Finally, articles were grouped in order to extract the individual devices
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review studies, standards and articles describing funda-

mentals on specific topics.

Year of publication was considered to cover the tempo-

ral aspect of trends and technology. Devices were placed

into groups of before 2006, 2006–2010 and 2011–2015,

where a device’s year was defined by the most recent

publication in which change to the design is reported.

Applications

As a preliminary classification, the dynamic hand orthoses

were split up into different applications. These can be both

medical and non-medical. Medical applications focus on

enhancing or recovering hand function for a wide range of

patients with disabilities in the hand. Non-medical appli-

cations, on the other hand, focus on haptic interfaces or

providing additional strength for more demanding tasks.

In many cases, a device’s application was explicitly stated

in available literature, whereas in other cases it needed to

be derived from the imposed design constraints. In the

latter case, the most restrictive constraints were used as

distinguishing features (e.g. strict constraints on porta-

bility can indicate home use). The different applications

which were used are described below.

A research tool is often used for making accurate mea-

surements, investigating the fundamental working prin-

ciple and properties of the hand [12]. Additionally, they

can be used to simulate different treatments and analyze

the ideal strategies for other applications [13]. Emphasis is

mostly put on accuracy and reliability, rather than size and

ease of use.

A clinical tool can be used for diagnostic purposes, but

are mostly used for robot-assisted rehabilitation at the

clinic with reduced active workload for the professional

caregiver [5, 14–16].

A home rehabilitation tool can be similar to a clini-

cal tool, but does not require personal supervision and

poses more strict design constraints regarding to its size,

portability and ease of use. Examples are systems that use

continuous passive motion (CPM) and/or virtual reality

(VR) environments, in which fun and gaming are critical

aspects for increasing patient motivation [16, 17]. In most

cases, progress is remotely or occasionally monitored by

a clinician, allowing for personalized rehabilitation pro-

grams and the ease of staying at home. This is an increas-

ingly popular field in rehabilitation devices, as it ideally

reduces time in the clinic andmaximizes hours of physical

therapy [5].

A daily assistive tool is intended to assist during ADL.

These types of devices are meant to be used for sev-

eral hours a day without supervision from a caregiver.

They are more invasive to a person’s daily routine and,

similar to prosthetics [18], the comfort, cosmesis and con-

trol presumably become key factors. They differ from

home rehabilitation tools as they aim to assist in task

execution, rather than to perform physical therapy. Some-

times physical therapy can be offered through assistance

[19], in which case the daily assistance imposes the most

restrictive design constraints.

A haptic device is originally a non-medical device and is

used as a master hand. They interact with a VR environ-

ment or perform teleoperation while providing the user

with haptic feedback. Due to similar design constraints,

haptic devices become comparable with medical applica-

tions and are sometimes reported to be able to perform

both (e.g. [20, 21]).

Lastly, Extra-Vehicular Activity (EVA) gloves for astro-

nauts are included as a non-medical application. Their

intended function is to compensate the high stiffness of

an astronaut’s gloves during activities that require a space-

suit. Similar to haptic devices, these devices are included

due to comparable design constraints (e.g. [22, 23]).

Framework

Structure

In order to collectively analyze a large quantity of dynamic

hand orthoses, a framework was constructed which uses

the concept of tree diagrams. Firstly, the basic compo-

nents of a dynamic hand orthosis were identified. Their

relations are illustrated in Fig. 2, along with the interac-

tions with the human and environment. Also shown in

this figure, is a division of these components into three

different domains:

- signal domain (controller, command signal, user

feedback): determines the training modalities, how

the human can control the device and how the

human is informed about the device’s status;

- energy domain (energy storage, actuation):

determines the source of energy and the conversion

into mechanical work that is applied through the

system;

- mechanical domain (transmission, mechanism):

determines how mechanical work is transported and

how the different joints are supported.

These domains were chosen such that they are all-

inclusive and describe a generalized mechatronic system

that interacts with a human. Starting from these general

domains, tree diagrams were defined which describe the

mechatronic components thatmake up the solution space.

See Fig. 3 for a schematic. At each branching point, the

level of detail increases. This method was chosen as it

visualizes possible design choices at several levels of detail

and categorizes them among three separable domains.

Characteristics & limitations

The proposed framework was used as a subjective tool

from which objective observations could be made. This is
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mechanical domain
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energy storage
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(w/ application)
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Fig. 2 Basic interactions for a dynamic hand orthosis. The device consists of several components which can be categorized into the signal, energy

and mechanical domain. Gray arrows represent signal traffic, which can be made of visual or auditory stimuli, as well as electrical currents used for

artificial control or the nervous system. Black arrows indicate physical interactions in the form of forces and motions. The human interacts with the

device through its mechanism, but additional interactions can be provided through the command signal or user feedback

because there are multiple ways of defining the branch-

ing points, as long as the divisions are as all-inclusive

as possible to accommodate all possible solutions. More-

over, it was constructed in order to discuss components

and trends as a whole, rather than scoping down into full

detail which is already covered in other useful reviews
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Fig. 3 Conceptual framework. Several tree diagrams are categorized

into the signal, energy and mechanical domain. Towards the right

side, branches lead to the solution space in increasing level of detail

and classifications [3, 7, 24–26]. Existing relevantmethods

and terminology from these studies were used as much as

possible, such that their definitions are covered in their

respective sources.

The process of categorization involved investigating the

available literature for each device and checking which

ends of the tree branches were used. By counting all

checked occurrences, the trends for each tree branch

could be seen in terms of numbers grouped by year

ranges. It is important to note that these numbers indi-

cate a rate of popularity and does not always correlate to

functionality, which is treated in the Discussion section.

High numbers could arise because something is suc-

cessful, easily accessible or common practice. Low num-

bers, on the other hand, could indicate that the respec-

tive solution is still experimental, not easily accessible,

not well-known or it simply does not work for a given

application.

A visualization of the completed framework can be

seen in Figs. 4, 5 and 6 as part of the “Results” section.

Embedded in this framework is a set of terms, which are

discussed below per domain.

Signal

The first tree diagram within this domain encompasses

the training modalities from [3] employed by the con-

troller, subdivided according to who has authority over

the device’s movement [27]. The passive modality appears

three times due to this additional subdivision. Automated

passive training (machine authority) most resembles the

traditional passive training modality. From a patient’s per-

spective, self-triggered passive training (shared authority)

can be considered to invoke different cognitive processes

and—depending on the trigger—approaches the situation
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of an active-assistive modality. From the device’s per-

spective, teleoperated passive training (human authority)

implies different lower level control strategies. A second

tree diagram covers the command signal required to acti-

vate the device, similar to [7]. The third tree diagram

describes the modes of feedback which are available to

the user, using principles from motor learning [24]. Here,

standard physiological feedback is assumed and changes

due the orthosis by augmentation or attenuation were

considered.

Energy

Within the energy domain, the tree diagrams incorpo-

rate types of energy storage and actuation. The diagrams

have a similar structure and are subdivided according to

feasible types of energy and stimulus from [25] and [26].

Methods of energy storage were scoped towards portable

solutions. Nuclear, wind and solar energy were consid-

ered infeasible, as well as using thermal energy for energy

storage.

Mechanical

For an all-inclusive incorporation of components in the

mechanical domain, one can refer to Reuleaux’s classi-

fication of kinematic pairs from 1876, largely available

as a digital library from the Cornell University [28].

Instead, to make the framework more compact, a more

crude categorization is proposed in terms of princi-

ples encountered in dynamic hand orthoses. Hence,

the first tree diagram includes transmission compo-

nents which are used to transfer mechanical energy,

whereas the second tree diagram describes the mech-

anism by its shape (i.e. structure), how the anatomical

joints are supported (i.e. joint articulation) and which

couplings are added to simplify the mechanism (i.e.

underactuation and constraints). More specifically for

joint articulation, the axis of rotation is monocentric

or polycentric according to ISO 13404:2007 [29]. Joint-

less and external methods of articulation were added to

also encompass glove and end-effector types of devices,

respectively.
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Fig. 4 Signal domain. Tree diagrams within the signal domain and their number of occurrences in found devices, grouped by year ranges
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Fig. 5 Energy domain. Tree diagrams within the energy domain and their number of occurrences in found devices, grouped by year ranges
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Fig. 6Mechanical domain. Tree diagrams within the mechanical domain and their number of occurrences in found devices, grouped by year ranges
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Results
A total of 165 different dynamic hand orthoses were

found, of which 109 cases presented changes most

recently published between 2011 and 2015. A list of all

devices is divided according to application and is shown

in Tables 1, 2, 3, 4, 5 and 6. These tables contain rele-

vant references and additional descriptive information per

device. See Additional file 1 for more detailed information

on these devices and their individual categorization.

The majority of devices were home rehabilitation tools

(56), followed by daily assistive tools (46), clinical tools

(34) and research tools (9). Additionally, 16 haptic devices

and 4 EVA glove mechanisms were found.

The resulting framework is split up into three figures,

which are shown in Figs. 4, 5 and 6. The number of occur-

rences are added at the ends of the branches and grouped

by year ranges.

Discussion

General

Results show that the development of dynamic hand

orthoses has accelerated, as more than half of the found

devices has undergone development in the last five years.

Moreover, the amount of home rehabilitation and daily

assistive tools indicate that the majority focuses on the

development of devices that are used in a domestic set-

ting, concentrating on being able to perform physical

therapy at home or to help with ADL. Such observa-

tions can be linked to the trend where patient care

is brought to their homes and workload on caregivers

reduced [30–32].

The list of devices as presented in the tables, reveals

several trends not covered in the framework. Only in rare

cases, pathologies like tetraplegia, tendon injuries, arthri-

tis or muscular weaknesses are specifically addressed in

found literature. Consequently, these less targeted patient

groups may fall short in specialized devices compared to

more prevalent groups like stroke survivors. The tables

also show that the wrist is often supported, albeit locked

or assisted. In some cases, it is because the size of the

mechanism or actuator module simply extends over the

wrist. In other cases, however, the wrist is considered to

be a crucial element in supporting overall hand function.

Especially in the case of synergies or muscular weak-

ness, supporting the combination of wrist and grasping

function can be essential.

The presented framework illustrates the large span and

variety of the solution space. The emerged collection of

solutions can help future developers to form morpho-

logical overviews, to contemplate on the many possible

combinations and to make concept choices. The unbal-

anced distribution and presence of outliers (i.e. very high

or low number of occasions) indicate that some solu-

tions are clearly more popular than others. A few are also

never used (i.e. zero occurrences), such solutions were

found by means of the framework or by inspiration from

other fields of research (e.g. cineplasty from prosthetics,

[33, 34]). It should be clear, however, that these numbers

do not necessarily correlate to the functionality of the

component. The reasons behind these differences remain

speculations, but they can be due to performance, accessi-

bility, popularity or because a solution is still experimen-

tal. Further detailed observations on the functionalities

are described below per domain.

Signal

Controller

Similar to the detailed review on training modalities

[3], the passive-mirrored, corrective and path guidance

modalities are used the least. They are also the least

similar to the type of therapy a physical therapist can

provide, and their low use implies that these methods

Table 1 Overview of included dynamic hand orthoses classified as research tool

Name/ID Country Year rangea ISO abbr. Reported function Actuator DOFb Wrist supportb

MR_CHIROD v.2
[113–115]

USA 2005–2008 HdO post-stroke measurement 1 N/A

FingerBot [48] USA 2010 FO post-stroke measurement 3 N/A

ATX [116] USA 2011 FO post-stroke measurement 5 N/A

Fiorilla [12, 117] Italy 2009–2011 FO normal measurement 2 Limited (PS)
Locked (FE, RUD)

Ramos [118, 119] Germany 2009–2012 WHFO post-stroke therapy 4 Locked (PS, FE, RUD)

Tang [120–123] Japan 2011–2013 FO post-stroke measurement/therapy 1 Limited (FE)

CAFE [13, 124, 125] USA 2007–2014 FO post-stroke measurement 6 Locked (FE, RUD)

Kim 2 [126] South Korea 2015 WHFO general measurement/therapy 1 Limited (PS, FE, RUD)

Lee 2 [127] South Korea 2015 HdO post-stroke measurement 5 N/A

aYear ranges are determined by the year span between found literature sources and my differ from the actual time of development
bActuator DOF = number of individually controlled actuators (zero means fully passive)
cWrist can be assisted, resisted, limited or locked [29] in pronation/supination (PS), flexion/extension (FE) and radial/ulnar deviation (RUD)
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Table 2 Overview of included dynamic hand orthoses classified as clinical tool

Name/ID Country Year rangea ISO abbr. Reported function Actuator DOFb Wrist supportb

HWARD [30] USA 2005 WHFO post-stroke therapy 2 (+1 wrist) Locked (PS, RUD)
Assisted (FE)

HIFE [20] Slovenia 2006 FO general physical therapy 2 Locked (PS, FE, RUD)

Gentle/G hand device [49] UK 2007 WHFO post-stroke therapy 3 Locked (FE, RUD)

InMotion Hand Robot
[89, 128, 129]

USA 1991–2007 HdO post-stroke therapy 1 N/A

CPM/CAM [130] Canada 2008 HdO general CPM/CAM 2 N/A

Fu [90, 131] China 2008 FO general CPM 2 N/A

ADLER FES grasp glove
[132, 133]

USA 2007–2009 HdO post-stroke therapy Not clear Not clear

IntelliArm hand module
[134, 135]

USA 2008–2009 WHFO post-stroke measurement/therapy 1 (+2 wrist) Assisted (PS, FE)
Locked (RUD)

Sun [72, 136] China 2006–2009 WHFO post-stroke therapy 2 Limited (PS, FE, RUD)

Wang [137–141] China 2009–2011 FO general physical therapy 4 Limited (FE, RUD)

Yamaura [142] Japan 2009 FO general physical therapy 2 N/A

HenRiE grasp module
[143–145]

Slovenia 2008–2010 WHFO post-stroke therapy 0 Locked (FE, RUD)

HEXORR [64] USA 2010 WHFO post-stroke therapy 2 Locked (PS, FE, RUD)

PneuGlove [146–148] USA 2006–2010 HdO post-stroke therapy 5 N/A

Unluhisarcikli [149] USA 2008–2010 WHFO post-stroke therapy 2 (+1 wrist) Assisted (PS)

ExoHand [21] Germany 2012 WHFO tele-operation, post-stroke therapy 8 Limited (FE, RUD)

iHandRehab [91, 137, 150] China 2009–2012 HdO general physical therapy 8 N/A

Kim 1 [151] South Korea 2013 WHFO post-stroke therapy 10 Locked (PS)
Limited (FE, RUD)

Sooraj [152] India 2013 WHFO general physical therapy 5 Locked (PS, FE, RUD)

Amadeo [153–155] Austria 2010–2014 WHFO general measurement/therapy 5 Locked (PS, FE, RUD)

AMES hand module
[53, 54, 156, 157]

USA 2009–2014 WHFO post-stroke therapy 1 (+1 wrist) Locked (PS, RUD)
Assisted (FE)

AssistOn-Finger [109, 158] Turkey 2009–2014 FO tendon injury treatment 1 Locked (FE, RUD)

Bi [159–161] China 2011–2014 WHFO post-stroke therapy 5 Locked (FE, RUD)

Chan [162] Malaysia 2014 HdO post-stroke therapy, general assis-
tance

3 N/A

FINGER [52, 163, 164] USA 2011–2014 FO post-stroke therapy 1 Locked (PS, FE, RUD)

HIT-Glove [165–168] China 2010–2014 FO post-stroke therapy 6 N/A

Kawasaki [44, 169–172] Japan 2004–2014 WHFO post-stroke therapy 16 (+ 2 wrist) Assisted (PS, FE)
Locked (RUD)

King [47, 173, 174] USA 2009–2014 HdO post-stroke therapy 7 N/A

PMHand [175] UK 2014 HdO post-stroke therapy 1 N/A

ReachMAN2 [106, 176, 177] UK 2009–2014 WHFO post-stroke therapy 1 (+1 wrist) Assisted (PS)
Locked (FE, RUD)

Reha-Digit [178–180] Germany 2008–2014 HdO general CPM 1 Limited (PS, FE, RUD)

Ushiba [181] Japan 2014 WHFO post-stroke therapy 1 Locked (FE, RUD)

IHRG [182–187] Romania 2013–2015 HdO post-stroke therapy 4 N/A

READAPT [188–192] USA 2008–2015 WHFO post-stroke measurement/therapy 8 (+3 wrist) Assisted (PS, FE, RUD)

aYear ranges are determined by the year span between found literature sources and my differ from the actual time of development
b2Actuator DOF = number of individually controlled actuators (zero means fully passive)
cWrist can be assisted, resisted, limited or locked [29] in pronation/supination (PS), flexion/extension (FE) and radial/ulnar deviation (RUD)



Bos et al. Journal of NeuroEngineering and Rehabilitation  (2016) 13:62 Page 9 of 25

Table 3 Overview of included dynamic hand orthoses classified as home rehabilitation tool

Name/ID Country Year rangea ISO abbr. Reported function Actuator DOFb Wrist supportb

Sarakoglou [50] UK 2004 HdO general physical therapy 7 N/A

Luo [193, 194] USA 2005 HdO post-stroke therapy 1 N/A

Mulas [195] Italy 2005 WHFO general physical therapy 2 Limited (PS, FE, RUD)

Haptic Knob [31, 196] Singapore 2007 WHFO post-stroke therapy 1 (+1 wrist) Assisted (PS)
Limited (FE, RUD)

MRAGES [197] USA 2007 HdO general physical therapy 5 N/A

Wege [37, 87, 198–200] Germany 2005–2007 HdO general physical therapy 20 N/A

Carpi [201] Italy 2008 WHFO general impairment
compensation

1 Locked (FE, RUD)

HandCARE [202] Singapore 2008 HdO post-stroke therapy 1 Limited (PS, FE, RUD)

Chen [203] China 2009 WHFO post-stroke therapy 5 Locked (FE, FE, RUD)

HIRO III [204] Japan 2010 HdO general physical therapy 15 N/A

Mohamaddan [205] Malaysia 2010 HdO post-stroke therapy 2 N/A

NeReBot hand add-on
[60, 206]

Italy 2009–2010 WHFO post-stroke therapy 1 Locked (PS, FE, RUD)

Burton [207, 208] UK 2011–2012 WHFO post-stroke therapy 6 Limited (FE, RUD)

J-Glove [40, 209] USA 2009–2011 WHFO post-stroke therapy 1 Locked (FE, RUD)

PRoGS [210] Singapore 2010–2011 WHFO post-stroke therapy 5 N/A

SaeboFlex [211, 212] USA 2011 WHFO post-stroke therapy, hypertonia
compensation

0 Locked (FE, RUD)

Tzemanaki [213] UK 2011 HdO general therapy 5 N/A

DULEX-II [45, 214] South Korea 2009–2012 WHFO post-stroke therapy 2 (+ 1 wrist) Assisted (FE)
Locked (RUD)

ExoFlex [215] USA 2012 HdO general therapy 4 N/A

HANDEXOS [98, 216, 217] Italy 2009–2012 FO post-stroke therapy 1 N/A

JACE H440 Hand CPM [218] USA 2012 WHFO general physical therapy 1 Locked (PS, FE, RUD)

Kazemi [219] Canada 2012 WHFO post-stroke measurement/therapy 1 (+1 wrist) Assisted (PS)

Naidu [220, 221] South Africa 2011–2012 WHFO post-stroke therapy 2 (+1 wrist) Assisted (PS)
Locked (FE, RUD)

Polotto [222] Canada 2012 FO post-stroke therapy/assistance 4 N/A

WaveFlex Hand CPM
[223–225]

USA 1997–2012 WHFO general physical therapy 1 Locked (FE, RUD)

Wu [71, 75, 226–229] China 2008–2012 WHFO post-stroke therapy 2 Limited (PS)
Locked (FE, RUD)

CAFEx [230] Malaysia 2013 HdO post-stroke therapy 1 N/A

Gloreha Lite [231, 232] Italy 2013 HdO general physical therapy 5 N/A

Hand of Hope [105, 233–236] China 2010–2013 HdO post-stroke therapy 5 N/A

mRes [95] Germany 2013 HdO post-stroke therapy 4 N/A

Orlando [237, 238] India 2010–2013 FO post-stroke therpapy 3 N/A

Rahman [239, 240] Australia 2012–2013 WHFO post-stroke therapy 5 N/A

Shafi [241] Pakistan 2013 HdO general physical therapy 4 N/A

Song [242] Taiwan 2013 HdO post-stroke therapy/assistance 3 Limited (FE)

UoA hand exoskeleton
[61, 74]

Australia 2012–2013 WHFO post-stroke therapy 11 Limited (PS, FE, RUD)

BiomHED [97, 243, 244] USA 2014 WHFO post-stroke therapy 7 Limited (PS)
Locked (FE, RUD)

Coffey [245] Ireland 2014 WHFO post-stroke therapy 1 Limited (PS, RUD)
Assisted (FE)

Guo [246] China 2014 FO post-stroke therapy 1 N/A
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Table 3 Overview of included dynamic hand orthoses classified as home rehabilitation tool (Continued)

HEXOSYS-I [86, 247, 248] Italy 2010–2014 HdO general physical therapy 2 N/A

IOTA [249] USA 2014 WHFO pediatric rehabilitation 2 N/A

Maestra [250, 251] France 2014 WHFO general physical therapy 1 Assisted (PS, FE, RUD)

Maestra Portable [250, 251] France 2014 WHFO general physical therapy 1 Locked (FE, RUD)

PAFEx [38, 252] Japan 2009–2014 HdO post-stroke therapy 3 N/A

Pu [253, 254] Taiwan 2014–2015 WHFO general physical therapy 4 Locked (FE, RUD)

ReHand-II [255, 256] China 2014 HdO post-stroke therapy 2 N/A

ReHapticKnob [257–259] Switzerland 2011–2014 WHFO post-stroke measurement/therapy 1 (+1 wrist) Assisted (PS)

SPO [32, 260, 261] Netherlands 2013–2014 WHFO post-stroke therapy 0 Resisted (F), Assisted (E)
Locked (RUD)

Tang 2 [81, 262] China 2013–2014 HdO general physical therapy 10 N/A

ULERD hand module
[263, 264]

China 2013–2014 WHFO post-stroke therapy 1 (+2 wrist) Assisted (PS, FE)
Locked (RUD)

Ab Patar [265, 266] Japan 2015 HdO post-stroke therapy 3 N/A

HEXOSYS-II [267–270] Italy 2010–2015 WHFO general physical therapy 5 Limited (FE, RUD)

HX [96, 271–274] Italy 2013–2015 WHFO general physical therapy 2 Locked (RUD)

NESS H200 [275, 276] USA 1996–2015 WHFO general physical therapy Not clear Not clear

Ramirez [277] Mexico 2015 WHFO general physical therapy 6 Limited (PS)
Locked (FE, RUD)

Richards [278] UK 2015 HdO post-stroke rehabilitation 2 (+1 palm) N/A

SAO-i3 [279, 280] Netherlands 2014–2015 WHFO post-stroke therapy 1 Assisted (FE, RUD)

aYear ranges are determined by the year span between found literature sources and my differ from the actual time of development
bActuator DOF = number of individually controlled actuators (zero means fully passive)
cWrist can be assisted, resisted, limited or locked [29] in pronation/supination (PS), flexion/extension (FE) and radial/ulnar deviation (RUD)

are still in experimental phase. Little can be said about

their efficacy, as the exact working principles behind a

successful rehabilitation program are not yet fully known

[17]. Nonetheless, their development helps in understand-

ing these principles and exploring the full potential of

involving robotic technology.

In general, the training modalities which are mostly

used in dynamic hand orthoses, have the human in full

authority over the movement. Due to the large amount

of daily assistive tools, home rehabilitation tools and the

inclusion of haptic devices, the assistive, resistive and pas-

sive training modalities show the highest frequencies and

skew the distribution compared to a previous review on

training modalities [3]. Especially for daily assistive tools,

emphasis is more often put on regaining hand function

rather than recovery of the physiological abilities. In these

cases, assistive and self-triggered passive modalities are

more popular.

Command signal

Detecting the user’s intention to serve as a command sig-

nal for the device is one of the larger challenges, because

the control of the device is expected to be both intu-

itive and robust [35]. From the inspected dynamic hand

orthoses, most state that measuring the command signal

in series with the intended movement is most intuitive

[23, 36]. This is also reflected in the results, as 100

cases use methods in series against 32 cases in paral-

lel. The use of interaction forces and motions from the

human plant is the most popular method of using a

command signal in series. Here, issues due to sweat, sen-

sor placement and signal quality are less interfering as

compared to alternatives. Electromyography (EMG) as

a measure of muscle activation is also often used and

widely accepted in externally powered upper limb pros-

thetics, but more challenges are encountered in electrode

placement and separation of signals [37–41]. Nonethe-

less, recent studies have shown that both methods

(plant forces/motions and EMG) are feasible as a control

interface [42, 43].

Parallel methods are considered less complex, useful

for self-controlled mirror therapy [44, 45], or sometimes

inevitable due to the absence of physiological signals

directly relating to the intended motion [36, 46]. How-

ever, these methods can also take away useful func-

tionalities (e.g. bimanual tasks, muscle use) and pro-

viding intuitive control is important to achieve user

acceptance, stressing the advantages of using command

signals in series whenever this fits within the design

constraints.



Bos et al. Journal of NeuroEngineering and Rehabilitation  (2016) 13:62 Page 11 of 25

Table 4 Overview of included dynamic hand orthoses classified as daily assistive tool

Name/ID Country Year rangea ISO abbr. Reported function Actuator DOFb Wrist supportb

Hardiman project
[281–283]

USA 1967–1971 WHFO power assistance 2 (+2 wrist) Assisted (PS, FE)
Locked (RUD)

Hamonet [284] France 1974 HdO tetraplegic assistance 1 N/A

K U finger splint S-type
[285]

Japan 1978 WHFO general impairment compen-
sation

0 Limited (FE, RUD)

K U finger splint W-type
[285]

Japan 1978 WHFO general impairment compen-
sation

0 Limited (FE, RUD)

WDFHO [102, 286, 287] USA 1978–2013 WHFO tetraplegic assistance 1 Assisted (FE), Locked (RUD)

Dollfus [288] France 1984 HdO tetraplegic assistance 1 N/A

Benjuya [51] USA 1990 HdO tetraplegic assistance 1 N/A

Slack [289] Canada 1992 WHFO tetraplegic assistance 1 Limited (PS, FE, RUD)

Brown [290] USA 1993 HdO tetraplegic assistance 5 N/A

SMART WHO [80] Canada 1993 WHFO tetraplegic assistance 1 Limited (FE), Locked (RUD)

DiCicco [291] USA 2004 WHFO tetraplegic assistance 2 Limited (FE, RUD)

Watanabe [55, 292] Japan 2005–2007 WHFO arthritis assistance 1 Locked (FE, RUD)

Alutei [293] Romania 2009 WHFO general assistance 1 (+1 wrist) Assisted (PS)
Locked (FE, RUD)

Moromugi 1 [173] Japan 2009 HdO general assistance 7 N/A

Exo-Finger [46] Japan 2010 HdO post-stroke assistance 1 N/A

Moromugi 2 [294] Japan 2010 HdO tetraplegic assistance 1 Locked (RUD)

Tadano [73] Japan 2010 HdO power assistance 10 N/A

HandSOME [62] USA 2011 WHFO post-stroke impairment com-
pensation

0 Locked (FE, RUD)

PowerGrip [295] USA 2011 WHFO general assistance 1 Locked (FE, RUD)

Toya [296] Japan 2011 HdO general assistance 4 N/A

Baqapuri [297] Pakistan 2012 WHFO tetraplegic assistance 4 Limited (PS, FE, RUD)

SEM Glove [94] Sweden 2012 HdO general assistance 3 N/A

Arata [63] Japan 2013 HdO general therapy/assistance 1 Limited (FE, RUD)

KULEX grasping module
[298–300]

South Korea 2012–2013 WHFO general assistance 1 (+3 wrist) Assisted (PS, FE, RUD)

Lambercy [301] Switzerland 2013 FO post-stroke therapy/assistance 1 N/A

Moromugi 3 [302] Japan 2013 HdO tetraplegic assistance 3 N/A

MUNDUS hand orthosis
[36]

Italy 2013 HdO tetraplegic assistance 1 N/A

Zheng [82] China 2013 HdO general assistance Not clear Not clear

Aw [83] Australia 2014 HdO general assistance 14 N/A

Kudo [303] Japan 2014 HdO tetraplegic assistance 1 N/A

Lee 1 [84, 304] South Korea 2012–2014 HdO general assistance 5 N/A

Nishad [305] India 2014 HdO general therapy/assistance 8 Limited (FE, RUD)

OFX [58, 306, 307] South Korea 2013–2014 WHFO general assistance 1 Locked (FE, RUD)

Puzo [308] USA 2014 HdO general therapy/assistance 5 N/A

SaeboGlove [212] USA 2014 WHFO general impairment compen-
sation

0 Locked (FE, RUD)

Sasaki [39, 41, 309] Japan 2004–2014 HdO general assistance 5 N/A

BRAVO Hand Exoskele-
ton [310–312]

Italy 2011–2015 HdO post-stroke therapy/assistance 2 N/A

Conti [313] Italy 2015 HdO general assistance 4 N/A

Cui [314] Australia 2015 HdO general assistance 5 N/A
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Table 4 Overview of included dynamic hand orthoses classified as daily assistive tool (Continuation)

Delph II [99, 315] USA 2013–2015 HdO post-stroke therapy/assistance 5 N/A

ExoGlove [316–319] Singapore 2015 HdO general therapy/assistance 1 N/A

Gasser [320] USA 2015 HdO post-stroke assistance 2 N/A

Hasegawa
[321–326]

Japan 2008–2015 WHFO power assistance 8 (+ 4 wrist) Assisted (PS, FE)

OHAE [92, 327–330] USA 2009–2015 WHFO general assistance 3 Limited (FE, RUD)

Polygerinos [19, 331,
332]

USA 2013–2015 HdO general therapy/assistance 4 N/A

SNU Exo-Glove
[85, 93, 333–335]

South Korea 2011–2015 WHFO general therapy/assistance 3 N/A

aYear ranges are determined by the year span between found literature sources and my differ from the actual time of development
bActuator DOF = number of individually controlled actuators (zero means fully passive)
cWrist can be assisted, resisted, limited or locked [29] in pronation/supination (PS), flexion/extension (FE) and radial/ulnar deviation (RUD)

Other methods that were encountered appear less feasi-

ble, less successful or experimental. For example, periph-

eral nerve interfaces (PNI) are not encountered as they

can be considered as too invasive; measuring brain activity

through electroencephalography (EEG) has an increased

risk of false positives and negatives (even with a binary

system [47]); force myography (FMG) remains in exper-

imental phase [7]; and, mechanomyography (MMG) is

subject to environmental sounds and limb-movement

artifacts [7].

User feedback

A large portion of the investigated devices (67 out of

165) use augmented user feedback. Especially multimodal

feedback is a popular method of providing the user with

additional cues. Here, VR environments are often used as

a platform to provide audiovisual cues (e.g. [48]), audio-

visuohaptic cues (e.g. [49]) or haptic rendering (e.g. [50]).

Amongst others, this can enhance a sense of reality or

provide information on performance. Augmenting uni-

modal feedback (i.e. visual, auditory or haptic) can also be

used in various manners. For example, the force exerted

by the device can be visualized [51], music can facilitate

motor output [52] and stimulation of the muscle spin-

dles through vibrations can give an enhanced sensation of

motion to further enhance rehabilitation success [53, 54].

From a different perspective, augmented feedback can

be used to compensate for an attenuation of haptic feed-

back [55, 56]. A spatial separation between the palmar

surface and the environment can affect force perception

[57], hence facilitating tactile sensation is considered to be

of great importance in dynamic hand orthoses [58].

The design of augmented feedback signals, however,

should be considered carefully. It does not always work

effectively [55] and may even prove to be counterpro-

ductive [59]. Determining the ideal form of augmented

feedback signals is challenging, hard to verify and in

many cases related to task complexity [24]. Nonethe-

less, proper designs have shown potential in robot-aided

rehabilitation [60].

Energy

Energy storage

The usage of components for energy storage is rarely

reported, which is reflected by the low number of cases

where this could be determined (73 out of 165). Of these

cases, the method of energy storage is usually a con-

sequence of choices in actuation, which is why electric

batteries are often used because of the high use of elec-

tric/magnetic actuators. It should be noted, however, that

tapping energy from a centralized system (e.g. mains elec-

tricity or compressed air systems) was not considered. It’s

Table 5 Overview of included dynamic hand orthoses classified as EVA glove

Name/ID Country Year rangea ISO abbr. Reported function Actuator DOFb Wrist supportb

Shields [111] USA 1997 HdO power assistance 3 Limited (FE, RUD)

SkilMate [56, 336] Japan 2001–2004 HdO power assistance 3 N/A

Matheson 1 [22, 23] Australia 2011–2012 WHFO general assistance 1 Limited (PS, FE, RUD)

Matheson 2 [22, 23] Australia 2011–2012 FO general assistance 2 Limited (PS, FE, RUD)

aYear ranges are determined by the year span between found literature sources and my differ from the actual time of development
bActuator DOF = number of individually controlled actuators (zero means fully passive)
cWrist can be assisted, resisted, limited or locked [29] in pronation/supination (PS), flexion/extension (FE) and radial/ulnar deviation (RUD)
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Table 6 Overview of included dynamic hand orthoses classified as haptic device

Name/ID Country Year rangea ISO abbr. Reported function Actuator DOFb Wrist supportb

SKK Hand Master
[68, 337]

South Korea 1999–2000 HdO VR feedback 7 N/A

Koyama [338] Japan 2002 HdO VR feedback, teleoperation 0 N/A

Rutgers
Master-II-ND [70]

USA 2002 HdO VR feedback 4 N/A

LRP hand master
[339]

France 2003 HdO VR feedback 14 N/A

Stergiopoulos [65] France 2003 HdO VR feedback 2 N/A

Lelieveld [88, 340] Japan 2006 FO VR feedback 4 N/A

Nakagawara
[341, 342]

Japan 2005–2007 HdO tele-operation 6 N/A

Ryu [69] South Korea 2008 WHFO VR feedback 3 Not clear

CyperGrasp [343] USA 2009 HdO VR feedback 5 N/A

Fang [344, 345] China 2009 HdO teleoperation 5 N/A

Charoenseang [346] Thailand 2011 HdO VR feedback 9 N/A

Fontana [347, 348] Italy 2009–2013 HdO VR feedback, teleoperation 6 N/A

Dexmo F2 [349, 350] China 2014 HdO VR feedback 5 N/A

SPIDAR-10 [351] Japan 2014 WHFO VR feedback 20 (+1 wrist) Assisted (PS)
Limited (FE, RUD)

Jo [352, 353] South Korea 2013–2015 HdO VR feedback 5 N/A

SAFE Glove
[354, 355]

USA 2015 HdO VR feedback 6 N/A

aYear ranges are determined by the year span between found literature sources and my differ from the actual time of development
bActuator DOF = number of individually controlled actuators (zero means fully passive)
cWrist can be assisted, resisted, limited or locked [29] in pronation/supination (PS), flexion/extension (FE) and radial/ulnar deviation (RUD)

usage is in many cases hard to verify from available lit-

erature and its effects on portability are covered in the

mechanical domain.

The most-often used form of energy storage is with

elastic energy, of which a helical spring is the most

straightforward example. They are often added to real-

ize antagonistic movement when the primary actuation

or transmission method is not able to do so [61]. Other

usages include applications where unidirectional and pas-

sive forces are sufficient to overcome an impairment,

which is the case when compensating hyperflexion [62].

A special case of utilizing elastic energy lies in compliant

structures. Aside from introducing mechanical potential

energy, they can function like a mechanism and provide

for an articulating and load-bearing structure. Compliant

mechanisms are both efficient and inherently flexible [63],

but also introduce complications in defining rotation cen-

ters and there is a careful balance between stiffness and

elasticity [23].

Actuation

The most prominent result from the trends on actua-

tion components is the large amount (113 out of 165)

of devices that use a form of electromagnetic actua-

tion. DC motors have the upper hand within this group,

but reasonings behind this choice are hard to retrieve.

Reported arguments include the increased possibilities for

both position and torque control [64], high mechanical

bandwidth [65] and general performance in the torque-

velocity space [13]. Such properties appear most use-

ful in applications where variability in control strategies

is sought-after or when high-frequent perturbations or

interactions need to be applied. For applications that

focus more on general assistance, the lower torque-to-

speed ratios of DC motors need to be reduced to coin-

cide with the higher ratio demands for human move-

ment. As a result, gearheads are added to reduce the

high speeds, adding backlash and reducing inherent back-

drivability of the device [65]. An interesting develop-

ment here lies in the twisted string actuation system,

which reaches high reduction ratios by twisting strands

on one end and creating linear motion on the other end

[66, 67]. Alternatively, ceramic piezoelectricity as used in

ultrasonic motors can also provide for a more suitable

torque-to-speed ratio. They are silent, have high power-

to-weight ratio and are able to facilitate free motion [68].

However, they also require high voltages [69] and show

hysteresis [68].

An often mentioned substitute for electromagnetic

actuation, is the use of pneumatic actuation. They are
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intrinsically compliant, lightweight, act similar to natural

muscles and high power-to-weight ratios are reported [23,

58, 61, 70–74]. Still, no commercial pneumatically pow-

ered prosthesis or orthosis exists to date to our knowledge.

The main reported drawbacks are difficulties in control,

expensive components and low bandwidth [69, 71, 75].

The stated arguments, however, impress as ambiguous

due to vague definitions and lack of comparison with

design requirements. For example, definitions for power-

to-weight ratios are often unclear [76] and a distinction

can bemade between high- and low-force bandwidth [77].

Concerning the latter, human force control operates at

around 7 Hz [78] and rehabilitation does not necessar-

ily require high bandwidths [4], displaying values that do

appear within range of pneumatic actuators.

Other methods of actuation appear to be more exper-

imental or impractical. The natural muscle can be used

as an actuator and is the crux in body-powered pros-

thetics. Although applicable for local impairments at the

hand, this becomes less practical in orthotics when the

muscle itself requires support, as this would add the need

for yet another force amplifier. Active polymers appear

more promising, being thin, lightweight, compliant and

able to perform both sensing and actuation. However,

in [79], it was stated that fundamental enhancements

would be required for feasible use in upper limb pros-

thetics. Similar to shape memory alloys [80–82], forces

are generally low and take time to build up (i.e. low

bandwidths), which results in the need for large stacked

configurations [83, 84].

Mechanical

Transmission

No existing studies were found that presented a form

of categorization on transmission components usable for

dynamic hand orthoses. Consequently, the results and

interpretation are based on (and limited by) a catego-

rization from the authors’ perspective. Some approaches

can be considered as a direct consequence from design

choices in the energy domain. For example, gears are most

often used to alter DCmotor speeds and compliant mech-

anisms integrate both energy storage and transmission.

Other approaches are more a result of choice in mech-

anism, where n-bar linkages are well-known methods

of facilitating path trajectories. Nonetheless, additional

notable approaches can be reviewed and coupled with

reported argumentations.

The most arguments are reported for pulley-cable and

Bowden cable systems. Pulley-cable systems are spatially

constrained and require a continuous control of cable

tension to maintain traction on the pulleys [13, 85, 86].

Bowden cable systems, on the other hand, are a type of

cable-conduit and are essentially flexible, but introduce

variable and high friction forces dependent on curvature

[87–91]. Nonetheless, both cable systems most resem-

ble the tendon mechanism in the natural hand [61, 92–

97] and are often an effective method of proximally plac-

ing the actuators to reduce the inertia of moving parts

[13, 85, 96, 98, 99].

Fluidic transmissions are generally more efficient for

larger channel diameters, which could explain the low

use in dynamic hand orthoses (3 out of 165). Despite

this, hydraulic transmissions remain promising at simi-

lar scales [100] and are able to provide a more efficient

alternative compared to a similar cable mechanism [101].

In comparison with hydraulics, a pneumatic transmission

can offer faster responses due to the use of low-viscosity

fluids [69, 100], but is not encountered in the included

dynamic hand orthoses.

Mechanism

The alignment of anatomical and mechanical joints is

the essence of many mechanical design papers on hand

orthoses, which is especially the case for exoskeleton-

based devices [4]. Misalignments may cause numerous

sources of discomfort to the user, resulting in possible

frustration by the user, rejection of the device and eventual

hindrance in the rehabilitation program [102]. Even tissue

damage can occur, where pressure sores, joint dislocations

or cartilage damage are among the possibilities depend-

ing on the user [102, 103]. The main design challenges lie

in limited available space, differences in hand sizes and

coping with the compliance of skin tissue. Additionally,

the rotation axis of a finger joint is not constant [104],

i.e. polycentric. Despite the latter, however, almost half

of the dynamic hand orthoses use monocentric rotation

(79 out of 165). This includes the more straightforward

hinge joints [61], but also those that use a virtual center of

rotation with fixed rotation axis (e.g. concentric rotation

in [105]). In these cases, the rotation centers need to be

manually aligned and results in a time-consuming process

for different hand sizes [90]. This is where self-aligning

joint centers are often-used alternatives. They are able to

adapt to various hand sizes [44] and prevent strong dis-

comfort for the user [96, 98]. Self-aligning mechanisms

are essentially polycentric and conform to whatever rota-

tion the anatomical joint imposes. Moreover, efficiency

is increased as the device finds less resistance from the

user.

End-effector-based devices omit the constriction of

joint movement by only moving the most distal end

of the fingers [4], forming a kinematic chain with the

ground. This makes it advantageous over exoskeleton-

based devices [106], but also less suitable for applications

with more strict design constraints on portability (i.e.

home rehabilitation and daily assistive tools).

A general trend towards simplification of the hand kine-

matics can be seen. This includes the introduction of



Bos et al. Journal of NeuroEngineering and Rehabilitation  (2016) 13:62 Page 15 of 25

couplings by force (i.e. underactuation) and by motion

(i.e. constraints) in order to reduce the complexity of

the device. These methods are similar to the mechan-

ical couplings and control synergies that exist in the

natural hand [104, 107]. This concept can be gener-

alized under the term functional degrees of freedom

(fDOF) [108], which means that complex movement

patterns can be generalized and achieved by less com-

plex actuation strategies. This is a viable approach for

dynamic hand orthoses as complex multi-DOF move-

ments are unnecessary for many rehabilitation purposes

[60, 109] and grasping patterns that are used during

ADL can be generalized [110]. Underactuation, in par-

ticular, is a popular method as it reduces weight and

complexity [65, 74, 86, 93, 97, 109, 111] and it facili-

tates passive adaptation for better object manipulation

[86, 94]. From the results, it appears that intrafinger (i.e.

across joints) underactuation is preferred, as opposed to

interfinger (i.e. across fingers) underactuation which is

an upcoming feature and allows passive adaptation to 3D

objects [93, 112].

Conclusion
A high quantity of dynamic hand orthoses was gathered

and shows that their development is becoming increas-

ingly prevalent. A framework was developed in an attempt

to collectively analyze the diverse solution space, whose

general methodology can be used for other mechatronic

systems that interact with the human. The investigated

solution space reveals several outliers, for example the

preference for EMG or force/motion control and elec-

tromagnetic actuation. There are also less-used solutions

that do seem feasible, like compliant mechanisms, fluidic

transmission/actuation and interfinger underactuation.

By nomeans is the framework complete, asmore branches

can be added to the tree diagrams that expand and extend

further into the solution space at increased level of detail.

Even so, a comprehensive analysis was performed that can

be used as a general exploration on mechatronic design of

dynamic hand orthotics—and possibly other related fields

as well.

Additional file

Additional file 1: An Excel spreadsheet which contains obtained

information from all devices and categorization into the presented

framework. (XLSX 143 kb)
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