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ABSTRACT

This paper proposes a new model for extracting an interpretable sentence embed-
ding by introducing self-attention. Instead of using a vector, we use a 2-D matrix
to represent the embedding, with each row of the matrix attending on a different
part of the sentence. We also propose a self-attention mechanism and a special
regularization term for the model. As a side effect, the embedding comes with an
easy way of visualizing what specific parts of the sentence are encoded into the
embedding. We evaluate our model on 3 different tasks: author profiling, senti-
ment classification and textual entailment. Results show that our model yields a
significant performance gain compared to other sentence embedding methods in
all of the 3 tasks.

1 INTRODUCTION

Much progress has been made in learning semantically meaningful distributed representations of
individual words, also known as word embeddings (Bengio et al., 2001; Mikolov et al., 2013).
On the other hand, much remains to be done to obtain satisfying representations of phrases and
sentences. Those methods generally fall into two categories. The first consists of universal sentence
embeddings usually trained by unsupervised learning (Hill et al., 2016). This includes SkipThought
vectors (Kiros et al., 2015), ParagraphVector (Le & Mikolov, 2014), recursive auto-encoders (Socher
et al., 2011; 2013), Sequential Denoising Autoencoders (SDAE), FastSent (Hill et al., 2016), etc.

The other category consists of models trained specifically for a certain task. They are usually
combined with downstream applications and trained by supervised learning. One generally finds
that specifically trained sentence embeddings perform better than generic ones, although generic
ones can be used in a semi-supervised setting, exploiting large unlabeled corpora. Several models
have been proposed along this line, by using recurrent networks (Hochreiter & Schmidhuber, 1997;
Chung et al., 2014), recursive networks (Socher et al., 2013) and convolutional networks (Kalchbren-
ner et al., 2014; dos Santos & Gatti, 2014; Kim, 2014) as an intermediate step in creating sentence
representations to solve a wide variety of tasks including classification and ranking (Yin & Schütze,
2015; Palangi et al., 2016; Tan et al., 2016; Feng et al., 2015). A common approach in previous
methods consists in creating a simple vector representation by using the final hidden state of the
RNN or the max (or average) pooling from either RNNs hidden states or convolved n-grams. Ad-
ditional works have also been done in exploiting linguistic structures such as parse and dependence
trees to improve sentence representations (Ma et al., 2015; Mou et al., 2015b; Tai et al., 2015).

For some tasks people propose to use attention mechanism on top of the CNN or LSTM model to
introduce extra source of information to guide the extraction of sentence embedding (dos Santos
et al., 2016). However, for some other tasks like sentiment classification, this is not directly appli-
cable since there is no such extra information: the model is only given one single sentence as input.
In those cases, the most common way is to add a max pooling or averaging step across all time steps
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Figure 1: A sample model structure showing the sentence embedding model combined with a fully
connected and softmax layer for sentiment analysis (a). The sentence embedding M is computed as
multiple weighted sums of hidden states from a bidirectional LSTM (h1, ...,hn), where the summa-
tion weights (Ai1, ..., Ain) are computed in a way illustrated in (b). Blue colored shapes stand for
hidden representations, and red colored shapes stand for weights, annotations, or input/output.

(Lee & Dernoncourt, 2016), or just pick up the hidden representation at the last time step as the
encoded embedding (Margarit & Subramaniam, 2016).

A common approach in many of the aforementioned methods consists of creating a simple vector
representation by using the final hidden state of the RNN or the max (or average) pooling from
either RNNs hidden states or convolved n-grams. We hypothesize that carrying the semantics along
all time steps of a recurrent model is relatively hard and not necessary. We propose a self-attention
mechanism for these sequential models to replace the max pooling or averaging step. Different from
previous approaches, the proposed self-attention mechanism allows extracting different aspects of
the sentence into multiple vector representations. It is performed on top of an LSTM in our sentence
embedding model. This enables attention to be used in those cases when there are no extra inputs. In
addition, due to its direct access to hidden representations from previous time steps, it relieves some
long-term memorization burden from LSTM. As a side effect coming together with our proposed
self-attentive sentence embedding, interpreting the extracted embedding becomes very easy and
explicit.

Section 2 details on our proposed self-attentive sentence embedding model, as well as a regular-
ization term we proposed for this model, which is described in Section 2.2. We also provide a
visualization method for this sentence embedding in section 2.3. We then evaluate our model in
author profiling, sentiment classification and textual entailment tasks in Section 4.

2 APPROACH

2.1 MODEL

The proposed sentence embedding model consists of two parts. The first part is a bidirectional
LSTM, and the second part is the self-attention mechanism, which provides a set of summation
weight vectors for the LSTM hidden states. These set of summation weight vectors are dotted
with the LSTM hidden states, and the resulting weighted LSTM hidden states are considered as
an embedding for the sentence. It can be combined with, for example, a multilayer perceptron to
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be applied on a downstream application. Figure 1 shows an example when the proposed sentence
embedding model is applied to sentiment analysis, combined with a fully connected layer and a
softmax layer. Besides using a fully connected layer, we also proposes an approach that prunes
weight connections by utilizing the 2-D structure of matrix sentence embedding, which is detailed
in Appendix A. For this section, we will use Figure 1 to describe our model.

Suppose we have a sentence, which has n tokens, represented in a sequence of word embeddings.

S = (w1,w2, · · ·wn) (1)

Here wi is a vector standing for a d dimentional word embedding for the i-th word in the sentence.
S is thus a sequence represented as a 2-D matrix, which concatenates all the word embeddings
together. S should have the shape n-by-d.

Now each entry in the sequence S are independent with each other. To gain some dependency be-
tween adjacent words within a single sentence, we use a bidirectional LSTM to process the sentence:

−→
ht =

−−−−→
LSTM(wt,

−−→
ht−1) (2)

←−
ht =

←−−−−
LSTM(wt,

←−−
ht+1) (3)

And we concatenate each
−→
ht with

←−
ht to obtain a hidden state ht. Let the hidden unit number for each

unidirectional LSTM be u. For simplicity, we note all the n hts as H , who have the size n-by-2u.

H = (h1,h2, · · ·hn) (4)

Our aim is to encode a variable length sentence into a fixed size embedding. We achieve that by
choosing a linear combination of the n LSTM hidden vectors in H . Computing the linear combina-
tion requires the self-attention mechanism. The attention mechanism takes the whole LSTM hidden
states H as input, and outputs a vector of weights a:

a = softmax
(

ws2tanh
(

Ws1H
T
))

(5)

Here Ws1 is a weight matrix with a shape of da-by-2u. and ws2 is a vector of parameters with
size da, where da is a hyperparameter we can set arbitrarily. Since H is sized n-by-2u, the anno-

tation vector a will have a size n. the softmax()̇ ensures all the computed weights sum up to 1.
Then we sum up the LSTM hidden states H according to the weight provided by a to get a vector
representation m of the input sentence.

This vector representation usually focuses on a specific component of the sentence, like a special set
of related words or phrases. So it is expected to reflect an aspect, or component of the semantics in
a sentence. However, there can be multiple components in a sentence that together forms the overall
semantics of the whole sentence, especially for long sentences. (For example, two clauses linked
together by an ”and.”) Thus, to represent the overall semantics of the sentence, we need multiple m’s
that focus on different parts of the sentence. Thus we need to perform multiple hops of attention.
Say we want r different parts to be extracted from the sentence, with regard to this, we extend the
ws2 into a r-by-da matrix, note it as Ws2, and the resulting annotation vector a becomes annotation
matrix A. Formally,

A = softmax
(

Ws2tanh
(

Ws1H
T
))

(6)

Here the softmax()̇ is performed along the second dimension of its input. We can deem Equation
6 as a 2-layer MLP without bias, whose hidden unit numbers is da, and parameters are {Ws2,Ws1}.

The embedding vector m then becomes an r-by-2u embedding matrix M . We compute the r
weighted sums by multiplying the annotation matrix A and LSTM hidden states H , the resulting
matrix is the sentence embedding:

M = AH (7)

2.2 PENALIZATION TERM

The embedding matrix M can suffer from redundancy problems if the attention mechanism always
provides similar summation weights for all the r hops. Thus we need a penalization term to encour-
age the diversity of summation weight vectors across different hops of attention.
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The best way to evaluate the diversity is definitely the Kullback Leibler divergence between any 2
of the summation weight vectors. However, we found that not very stable in our case. We conjecture
it is because we are maximizing a set of KL divergence (instead of minimizing only one, which is
the usual case), we are optimizing the annotation matrix A to have a lot of sufficiently small or
even zero values at different softmax output units, and these vast amount of zeros is making the
training unstable. There is another feature that KL doesn’t provide but we want, which is, we want
each individual row to focus on a single aspect of semantics, so we want the probability mass in the
annotation softmax output to be more focused. but with KL penalty we cant encourage that.

We hereby introduce a new penalization term which overcomes the aforementioned shortcomings.
Compared to the KL divergence penalization, this term consumes only one third of the computation.
We use the dot product of A and its transpose, subtracted by an identity matrix, as a measure of
redundancy.

P =
∥

∥

(

AAT − I
)∥

∥

F

2
(8)

Here ‖•‖F stands for the Frobenius norm of a matrix. Similar to adding an L2 regularization term,
this penalization term P will be multiplied by a coefficient, and we minimize it together with the
original loss, which is dependent on the downstream application.

Let’s consider two different summation vectors ai and a
j in A. Because of the softmax, all entries

within any summation vector in A should sum up to 1. Thus they can be deemed as probability
masses in a discrete probability distribution. For any non-diagonal elements aij(i 6= j) in the AAT

matrix, it corresponds to a summation over elementwise product of two distributions:

0 < aij =

n
∑

k=1

aika
j
k < 1 (9)

where aik and ajk are the k-th element in the ai and a
j vectors, respectively. In the most extreme case,

where there is no overlap between the two probability distributions ai and a
j, the correspond aij will

be 0. Otherwise, it will have a positive value. On the other extreme end, if the two distributions are
identical and all concentrates on one single word, it will have a maximum value of 1. We subtract
an identity matrix from AAT so that forces the elements on the diagonal of AAT to approximate
1, which encourages each summation vector ai to focus on as few number of words as possible,
forcing each vector to be focused on a single aspect, and all other elements to 0, which punishes
redundancy between different summation vectors.

2.3 VISUALIZATION

The interpretation of the sentence embedding is quite straight forward because of the existence of
annotation matrix A. For each row in the sentence embedding matrix M , we have its corresponding
annotation vector ai. Each element in this vector corresponds to how much contribution the LSTM
hidden state of a token on that position contributes to. We can thus draw a heat map for each row of
the embedding matrix M This way of visualization gives hints on what is encoded in each part of
the embedding, adding an extra layer of interpretation. (See Figure 3a and 3b).

The second way of visualization can be achieved by summing up over all the annotation vectors,
and then normalizing the resulting weight vector to sum up to 1. Since it sums up all aspects of
semantics of a sentence, it yields a general view of what the embedding mostly focuses on. We can
figure out which words the embedding takes into account a lot, and which ones are skipped by the
embedding. See Figure 3c and 3d.

3 RELATED WORK

Various supervised and unsupervised sentence embedding models have been mentioned in Section
1. Different from those models, our proposed method uses a new self-attention mechanism that
allows it to extract different aspects of the sentence into multiple vector-representations. The matrix
structure together with the penalization term gives our model a greater capacity to disentangle the
latent information from the input sentence. We also do not use linguistic structures to guide our
sentence representation model. Additionally, using our method we can easily create visualizations
that can help in the interpretation of the learned representations.
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Some recent work have also proposed supervised methods that use intra/self-sentence attention. Ling
et al. (2015) proposed an attention based model for word embedding, which calculates an attention
weight for each word at each possible position in the context window. However this method cannot
be extended to sentence level embeddings since one cannot exhaustively enumerate all possible
sentences. Liu et al. (2016a) proposes a sentence level attention which has a similar motivation but
done differently. They utilize the mean pooling over LSTM states as the attention source, and use
that to re-weight the pooled vector representation of the sentence.

Apart from the previous 2 variants, we want to note that Li et al. (2016) proposed a same self
attention mechanism for question encoding in their factoid QA model, which is concurrent to our
work. The difference lies in that their encoding is still presented as a vector, but our attention
produces a matrix representation instead, with a specially designed penalty term. We applied the
model for sentiment anaysis and entailment, and their model is for factoid QA.

The LSTMN model (Cheng et al., 2016) also proposed a very successful intra-sentence level atten-
tion mechanism, which is later used by Parikh et al. (2016). We see our attention and theirs as having
different granularities. LSTMN produces an attention vector for each of its hidden states during the
recurrent iteration, which is sort of an ”online updating” attention. It’s more fine-grained, targeting
at discovering lexical correlations between a certain word and its previous words. On the contrary,
our attention mechanism is only performed once, focuses directly on the semantics that makes sense
for discriminating the targets. It is less focused on relations between words, but more on the seman-
tics of the whole sentence that each word contributes to. Computationally, our method also scales up
with the sentence length better, since it doesn’t require the LSTM to compute an annotation vector
over all of its previous words each time when the LSTMN computes its next step.

4 EXPERIMENTAL RESULTS

We first evaluate our sentence embedding model by applying it to 3 different datasets: the Age
dataset, the Yelp dataset, and the Stanford Natural Language Inference (SNLI) Corpus. These 3
datasets fall into 3 different tasks, corresponding to author profiling, sentiment analysis, and tex-
tual entailment, respectively. Then we also perform a set of exploratory experiments to validate
properties of various aspects for our sentence embedding model.

4.1 AUTHOR PROFILING

The Author Profiling dataset1 consists of Twitter tweets in English, Spanish, and Dutch. For some of
the tweets, it also provides an age and gender of the user when writing the tweet. The age range are
split into 5 classes: 18-24, 25-34, 35-49, 50-64, 65+. We use English tweets as input, and use those
tweets to predict the age range of the user. Since we are predicting the age of users, we refer to it
as Age dataset in the rest of our paper. We randomly selected 68485 tweets as training set, 4000 for
development set, and 4000 for test set. Performances are also chosen to be classification accuracy.

We compare our model with two baseline models: biLSTM and CNN. For the two baseline models.
The biLSTM model uses a bidirectional LSTM with 300 dimensions in each direction, and use max
pooling across all LSTM hidden states to get the sentence embedding vector, then use a 2-layer
ReLU output MLP with 3000 hidden states to output the classification result. The CNN model
uses the same scheme, but substituting biLSTM with 1 layer of 1-D convolutional network. During
training we use 0.5 dropout on the MLP and 0.0001 L2 regularization. We use stochastic gradient
descent as the optimizer, with a learning rate of 0.06, batch size 16. For biLSTM, we also clip the
norm of gradients to be between -0.5 and 0.5. We searched hyperparameters in a wide range and
find the aforementioned set of hyperparameters yields the highest accuracy.

For our model, we use the same settings as what we did in biLSTM. We also use a 2-layer ReLU
output MLP, but with 2000 hidden units. In addition, our self-attention MLP has a hidden layer with
350 units (the da in Section 2), we choose the matrix embedding to have 30 rows (the r), and a
coefficient of 1 for the penalization term.

1http://pan.webis.de/clef16/pan16-web/author-profiling.html
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Table 1: Performance Comparision of Different Models on Yelp and Age Dataset

Models Yelp Age

BiLSTM + Max Pooling + MLP 61.99% 77.40%
CNN + Max Pooling + MLP 62.05% 78.15%
Our Model 64.21% 80.45%

We train all the three models until convergence and select the corresponding test set performance
according to the best development set performance. Our results show that the model outperforms
both of the biLSTM and CNN baselines by a significant margin.

(a) 1 star reviews

(b) 5 star reviews

Figure 2: Heatmap of Yelp reviews with the two extreme score.

4.2 SENTIMENT ANALYSIS

We choose the Yelp dataset2 for sentiment analysis task. It consists of 2.7M yelp reviews, we take
the review as input and predict the number of stars the user who wrote that review assigned to the
corresponding business store. We randomly select 500K review-star pairs as training set, and 2000

2https://www.yelp.com/dataset challenge
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for development set, 2000 for test set. We tokenize the review texts by Stanford tokenizer. We use
100 dimensional word2vec as initialization for word embeddings, and tune the embedding during
training across all of our experiments. The target number of stars is an integer number in the range
of [1, 5], inclusive. We are treating the task as a classification task, i.e., classify a review text into
one of the 5 classes. We use classification accuracy as a measurement.

For the two baseline models, we use the same setting as what we used for Author Profiling dataset,
except that we are using a batch size of 32 instead. For our model, we are also using the same
setting, except that we choose the hidden unit numbers in the output MLP to be 3000 instead. We
also observe a significant performance gain comparining to the two baselines. (Table 1)

As an interpretation of the learned sentence embedding, we use the second way of visualization
described in Section 2.3 to plot heat maps for some of the reviews in the dataset. We randomly
select 5 examples of negative (1 star) and positive (5 stars) reviews from the test set, when the model
has a high confidence (> 0.8) in predicting the label. As shown in Figure 2, we find that the model
majorly learns to capture some key factors in the review that indicate strongly on the sentiment
behind the sentence. For most of the short reviews, the model manages to capture all the key factors
that contribute to an extreme score, but for longer reviews, the model is still not able to capture all
related factors. For example, in the 3rd review in Figure 2b), it seems that a lot of focus is spent on
one single factor, i.e., the ”so much fun”, and the model puts a little amount of attention on other
key points like ”highly recommend”, ”amazing food”, etc.

4.3 TEXTUAL ENTAILMENT

We use the biggest dataset in textual entailment, the SNLI corpus (Bowman et al., 2015) for our
evaluation on this task. SNLI is a collection of 570k human-written English sentence pairs manually
labeled for balanced classification with the labels entailment, contradiction, and neutral. The model
will be given a pair of sentences, called hypothesis and premise respectively, and asked to tell if the
semantics in the two sentences are contradicting with each other or not. It is also a classification
task, so we measure the performance by accuracy.

We process the hypothesis and premise independently, and then extract the relation between the two
sentence embeddings by using multiplicative interactions proposed in Memisevic (2013) (see Ap-
pendix B for details), and use a 2-layer ReLU output MLP with 4000 hidden units to map the hidden
representation into classification results. Parameters of biLSTM and attention MLP are shared across
hypothesis and premise. The biLSTM is 300 dimension in each direction, the attention MLP has
150 hidden units instead, and both sentence embeddings for hypothesis and premise have 30 rows
(the r). The penalization term coefficient is set to 0.3. We use 300 dimensional GloVe (Pennington
et al., 2014) word embedding to initialize word embeddings. We use AdaGrad as the optimizer,
with a learning rate of 0.01. We don’t use any extra regularization methods, like dropout or L2
normalization. Training converges after 4 epochs, which is relatively fast.

This task is a bit different from previous two tasks, in that it has 2 sentences as input. There are
a bunch of ways to add inter-sentence level attention, and those attentions bring a lot of benefits.
To make the comparison focused and fair, we only compare methods that fall into the sentence
encoding-based models. i.e., there is no information exchanged between the hypothesis and premise
before they are encoded into some distributed encoding.

Table 2: Test Set Performance Compared to other Sentence Encoding Based Methods in SNLI Datset

Model Test Accuracy

300D LSTM encoders (Bowman et al., 2016) 80.6%
600D (300+300) BiLSTM encoders (Liu et al., 2016b) 83.3%
300D Tree-based CNN encoders (Mou et al., 2015a) 82.1%
300D SPINN-PI encoders (Bowman et al., 2016) 83.2%
300D NTI-SLSTM-LSTM encoders (Munkhdalai & Yu, 2016a) 83.4%
1024D GRU encoders with SkipThoughts pre-training (Vendrov et al., 2015) 81.4%
300D NSE encoders (Munkhdalai & Yu, 2016b) 84.6%

Our method 84.4%
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We find that compared to other published approaches, our method shows a significant gain (≥ 1%)
to them, except for the 300D NSE encoders, which is the state-of-the-art in this category. However,
the 0.2% different is relatively small compared to the differences between other methods.

4.4 EXPLORATORY EXPERIMENTS

In this subsection we are going to do a set of exploratory experiments to study the relative effect of
each component in our model.

4.4.1 EFFECT OF PENALIZATION TERM

Since the purpose of introducing the penalization term P is majorly to discourage the redundancy
in the embedding, we first directly visualize the heat maps of each row when the model is presented
with a sentence. We compare two identical models with the same size as detailed in Section 4.1
trained separately on Age dataset, one with this penalization term (where the penalization coefficient
is set to 1.0) and the other with no penalty. We randomly select one tweet from the test set and
compare the two models by plotting a heat map for each hop of attention on that single tweet. Since
there are 30 hops of attention for each model, which makes plotting all of them quite redundant, we
only plot 6 of them. These 6 hops already reflect the situation in all of the 30 hops.

(a) (b)

(c) without penalization (d) with 1.0 penalization

Figure 3: Heat maps for 2 models trained on Age dataset. The left column is trained without the
penalization term, and the right column is trained with 1.0 penalization. (a) and (b) shows detailed
attentions taken by 6 out of 30 rows of the matrix embedding, while (c) and (d) shows the overall
attention by summing up all 30 attention weight vectors.

(a) Yelp without penalization (b) Yelp with penalization

Figure 4: Attention of sentence embedding on 3 different Yelp reviews. The left one is trained
without penalization, and the right one is trained with 1.0 penalization.
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Table 3: Performance comparision regarding the penalization term

Penalization coefficient Yelp Age

1.0 64.21% 80.45%
0.0 61.74% 79.27%

From the figure we can tell that the model trained without the penalization term have lots of redun-
dancies between different hops of attention (Figure 3a), resulting in putting lot of focus on the word
”it” (Figure 3c), which is not so relevant to the age of the author. However in the right column, the
model shows more variations between different hops, and as a result, the overall embedding focuses
on ”mail-replies spam” instead. (Figure 3d)

For the Yelp dataset, we also observe a similar phenomenon. To make the experiments more ex-
plorative, we choose to plot heat maps of overall attention heat maps for more samples, instead of
plotting detailed heat maps for a single sample again. Figure 4 shows overall focus of the sentence
embedding on three different reviews. We observe that with the penalization term, the model tends
to be more focused on important parts of the review. We think it is because that we are encouraging
it to be focused, in the diagonals of matrix AAT (Equation 8).

To validate if these differences result in performance difference, we evaluate four models trained
on Yelp and Age datasets, both with and without the penalization term. Results are shown in Table
3. Consistent with what expected, models trained with the penalization term outperforms their
counterpart trained without.

In SNLI dataset, although we observe that introducing the penalization term still contributes to en-
couraging the diversity of different rows in the matrix sentence embedding, and forcing the network
to be more focused on the sentences, the quantitative effect of this penalization term is not so obvious
on SNLI dataset. Both models yield similar test set accuracies.

4.4.2 EFFECT OF MULTIPLE VECTORS

Having multiple rows in the sentence embedding is expected to provide more abundant information
about the encoded content. It makes sence to evaluate how significant the improvement can be
brought by r. Taking the models we used for Age and SNLI dataset as an example, we vary r from
1 to 30 for each task, and train the resulting 10 models independently (Figure 5). Note that when
r = 1, the sentence embedding reduces to a normal vector form.

From this figure we can find that, without having multiple rows, the model performs on-par with
its competitiors which use other forms of vector sentence embeddings. But there is significant
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Figure 5: Effect of the number of rows (r) in matrix sentence embedding. The vertical axes indicates
test set accuracy and the horizontal axes indicates training epoches. Numbers in the legends stand
for the corresponding values of r. (a) is conducted in Age dataset and (b) is conducted in SNLI
dataset.
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difference between having only one vector for the sentence embedding and multiple vectors. The
models are also quite invariant with respect to r, since in the two figures a wide range of values
between 10 to 30 are all generating comparable curves.

5 CONCLUSION AND DISCUSSION

In this paper, we introduced a fixed size, matrix sentence embedding with a self-attention mecha-
nism. Because of this attention mechanism, there is a way to interpret the sentence embedding in
depth in our model. Experimental results over 3 different tasks show that the model outperforms
other sentence embedding models by a significant margin.

Introducing attention mechanism allows the final sentence embedding to directly access previous
LSTM hidden states via the attention summation. Thus the LSTM doesn’t need to carry every piece
of information towards its last hidden state. Instead, each LSTM hidden state is only expected to
provide shorter term context information around each word, while the higher level semantics, which
requires longer term dependency, can be picked up directly by the attention mechanism. This setting
reliefs the burden of LSTM to carry on long term dependencies. Our experiments also support that,
as we observed that our model has a bigger advantage when the contents are longer. Further more,
the notion of summing up elements in the attention mechanism is very primitive, it can be something
more complex than that, which will allow more operations on the hidden states of LSTM.

The model is able to encode any sequence with variable length into a fixed size representation,
without suffering from long-term dependency problems. This brings a lot of scalability to the model:
without any modification, it can be applied directly to longer contents like paragraphs, articles, etc.
Though this is beyond the focus of this paper, it remains an interesting direction to explore as a
future work.

As a downside of our proposed model, the current training method heavily relies on downstream
applications, thus we are not able to train it in an unsupervised way. The major obstacle towards
enabling unsupervised learning in this model is that during decoding, we don’t know as prior how
the different rows in the embedding should be divided and reorganized. Exploring all those possible
divisions by using a neural network could easily end up with overfitting. Although we can still do
unsupervised learning on the proposed model by using a sequential decoder on top of the sentence
embedding, it merits more to find some other structures as a decoder.
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APPENDIX

A PRUNED MLP FOR STRUCTURED MATRIX SENTENCE EMBEDDING

As a side effect of having multiple vectors to represent a sentence, the matrix sentence embedding
is usually several times larger than vector sentence embeddings. This results in needing more pa-
rameters in the subsequent fully connected layer, which connects every hidden units to every units
in the matrix sentence embedding. Actually in the example shown in Figure 1, this fully connected
layer takes around 90% percent of the parameters. See Table 4. In this appendix we are going to
introduce a weight pruning method which, by utilizing the 2D structure of matrix embedding, is able
to drastically reduce the number of parameters in the fully connected hidden layer.

Inheriting the notation used in the main paper, let the matrix embedding M has a shape of r by u,
and let the fully connected hidden layer has b units. The normal fully connected hidden layer will
require each hidden unit to be connected to every unit in the matrix embedding, as shown in Figure
1. This ends up with r × u× b parameters in total.

However there are 2-D structures in the matrix embedding, which we should make use of. Each
row (mi in Figure 1) in the matrix is computed from a weighted sum of LSTM hidden states, which
means they share some similarities

To reflect these similarity in the fully connected layer, we split the hidden states into r equally sized
groups, with each group having p units. The i-th group is only fully connected to the i-th row in
the matrix representation. All connections that connects the i-th group hidden units to other rows
of the matrix are pruned away. In this way, Simillarity between different rows of matrix embedding
are reflected as symmetry of connecting type in the hidden layer. As a result, the hidden layer can
be interperated as also having a 2-D structute, with the number (r) and size (p) of groups as its
two dimensions (The Mv in Figure 6). When the total number of hidden units are the same (i.e.,

M

m1 m2 mi

MhMv

u

q

p

r

r

u

Figure 6: Hidden layer with pruned weight connections. M is the matrix sentence embedding, Mv

and Mh are the structured hidden representation computed by pruned weights.

Table 4: Model Size Comparison Before and After Pruning

Hidden layer Softmax Other Parts Total Accuracy

Yelp, Original, b=3000 54M 15K 1.3M 55.3M 64.21%
Yelp, Pruned, p=150, q=10 2.7M 52.5K 1.3M 4.1M 63.86%

Age, Original, b=4000 72M 20K 1.3M 73.2M 80.45%
Age, Pruned, p=25, q=20 822K 63.75K 1.3M 2.1M 77.32%

SNLI, Original, b=4000 72M 12K 22.9M 95.0M 84.43%
SNLI, Pruned, p=300, q=10 5.6M 45K 22.9M 28.6M 83.16%
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r×p = b), this process prunes away (r−1)/r of weight values, which is a fairly large portion when
r is large.

On the other dimension, another form of similarity exists too. For each vector representation mi in
M , the j-th element mij is a weighted sum of an LSTM hidden unit at different time steps. And for
a certain j-th element in all vector representations, they are summed up from a same LSTM hidden
unit. We can also reflect this similarity into the symmetry of weight connections by using the same
pruning method we did above. Thus we will have another 2-D structured hidden states sized u-by-q,
noted as Mh in Figure 6.

Table 4 takes the model we use for yelp dataset as a concrete example, and compared the number of
parameters in each part of the model, both before and after pruning. We can see the above pruning
method drastically reduces the model size. Note that the p and q in this structure can be adjusted
freely as hyperparameters. Also, we can continue the corresponding pruning process on top of Mv

and Mh over and over again, and end up with having a stack of structured hidden layers, just like
stacking fully connected layers.

The subsequent softmax layer will be fully connected to both Mv and Mh, i.e., each unit in the
softmax layer is connected to all units in Mv and Mh. This is not a problem since the speed of
softmax is largely dependent of the number of softmax units, which is not changed.In addition, for
applications like sentiment analysis and textural entailment, the softmax layer is so tiny that only
contains several units.

Experimental results in the three datasets has shown that, this pruning mechanism lowers perfor-
mances a bit, but still allows all three models to perform comparable or better than other models
compared in the paper.

B DETAILED STRUCTURE OF THE MODEL FOR SNLI DATASET

In Section 2 we tested our matrix sentence embedding model for the textual entailment task on the
SNLI dataset. Different from the former two tasks, the textual entailment task consists of a pair
of sentences as input. We propose to use a set of multiplicative interactions to combine the two

... ......

w1 w2 w3 wnw4

Mh

... ... w1 w2 w3 wnw4

Mp

... ...

Fh Fp

Gated Encoder

Hypothesis Premise 

Fr

Figure 7: Model structure used for textual entailment task.
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matrix embeddings extracted for each sentence. The form of multiplicative interaction is inspired
by Factored Gated Autoencoder (Memisevic, 2013).

The overall structure of our model for SNLI is dipicted in Figure 7. For both hypothesis and premise,
we extract their embeddings (Mh and Mp in the figure) independently, with a same LSTM and
attention mechanism. The parameters of this part of model are shared (rectangles with dashed orange
line in the figure).

Comparing the two matrix embeddings corresponds to the green dashed rectangle part in the figure,
which computes a single matrix embedding (Fr) as the factor of semantic relation between the two
sentences. To represent the relation between Mh and Mp, Fr can be connected to Mh and Mp

through a three-way multiplicative interaction. In a three-way multiplicative interaction, the value
of anyone of Fr, Mh and Mp is a function of the product of the others. This type of connection is
originally introduced to extract relation between images (Memisevic, 2013). Since here we are just
computing the factor of relations (Fr) from Mh and Mp, it corresponds to the encoder part in the
Factored Gated Autoencoder in Memisevic (2013). We call it Gated Encoder in Figure 7.

First we multiply each row in the matrix embedding by a different weight matrix. Repeating it
over all rows, corresponds to a batched dot product between a 2-D matrix and a 3-D weight tensor.
Inheriting the name in (Memisevic, 2013), we call the resulting matrix as factor. Doing the batched
dot for both hypothesis embedding and premise embedding, we have Fh and Fp, respectively.

Fh = batcheddot(Mh,Wfh) (10)

Fp = batcheddot(Mp,Wfp) (11)

Here Wfh and Wfp are the two weight tensors for hypothesis embedding and premise embedding.

The factor of the relation (Fr) is just an element-wise product of Fh and Fp (the triangle in the
middle of Figure 7):

Fr = Fh ⊙ Fp (12)

Here ⊙ stands for element-wise product. After the Fr layer, we then use an MLP with softmax
output to classify the relation into different categlories.
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