
G. Antoniou et al. (Eds.): ESWC 2011, Part I, LNCS 6643, pp. 17–31, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

A Structured Semantic Query Interface for Reasoning-
Based Search and Retrieval 

Dimitrios A. Koutsomitropoulos1, Ricardo Borillo Domenech2,  
and Georgia D. Solomou1 

1 High Performance Information Systems Laboratory (HPCLab), 
Computer Engineering and Informatics Dpt., School of Engineering,  

University of Patras, Buidling B, 26500 Patras-Rio, Greece 
2 Servicio de Informática, Universitat Jaume I,  

Rectorado, 12071, Castellón, Spain 
kotsomit@hpclab.ceid.upatras.gr, 

borillo@uji.es, 
solomou@hpclab.ceid.upatras.gr 

Abstract. Information and knowledge retrieval are today some of the main 
assets of the Semantic Web. However, a notable immaturity still exists, as 
to what tools, methods and standards may be used to effectively achieve 
these goals. No matter what approach is actually followed, querying 
Semantic Web information often requires deep knowledge of the 
ontological syntax, the querying protocol and the knowledge base structure 
as well as a careful elaboration of the query itself, in order to extract the 
desired results. In this paper, we propose a structured semantic query 
interface that helps to construct and submit entailment-based queries in an 
intuitive way. It is designed so as to capture the meaning of the intended 
user query, regardless of the formalism actually being used, and to 
transparently formulate one in reasoner-compatible format. This interface 
has been deployed on top of the semantic search prototype of the DSpace 
digital repository system. 

Keywords: Semantic Web, queries, ontologies, entailment, guided input. 

1   Introduction 

The growing availability of semantic information in today’s Web makes ontology-
based querying mechanisms necessary. Europeana for example counts over 10M of 
semantic objects corresponding to heritage and collective memory resources [14]. 
And this currently forms only the tip of the iceberg: Vast amounts of Linked Data 
exist and continuously emerge out of DBpedia, social applications, open government 
data and other sources.  

However, querying the Semantic Web is not a straightforward task, especially in 
case of expressive ontology languages, like OWL and OWL 2 where inference holds 
a key part. In addition to the current lack of protocols and standards for efficiently 



18 D.A. Koutsomitropoulos, R. Borillo Domenech, and G.D. Solomou 

searching through ontological information, one has to cope with the added complexity 
Semantic Web queries inherently bear with: 

• A priori ontological knowledge: In order to formulate an expressive query and to 
bound results, the user needs to know in advance class names, properties and 
individuals that consist the ontology’s contents. Alternatively, suitable mechanisms 
are necessary to expose this information to the user. 

• Expert syntaxes, like Description Logics (DLs), SPARQL, Manchester Syntax, that 
are usually difficult to read and comprehend, let alone to compose from scratch for 
non-expert users.  

• Inherent complexity: The added-value of ontological, entailment-based querying 
does not surface unless a suitable query expression is as elaborate as possible. In 
order to surpass the level of relational queries, one needs to delve into complex 
combinations of classes, properties and restrictions, thus formulating expressive 
conjunctive queries, impossible to express or answer using relational techniques [9].  

Finally, NLP approaches are not always a sound solution: While they can produce 
meaningful results in a number of cases [8], there is virtually no guarantee that the 
intended user query will actually be captured. Parsing a free text sentence may or may 
not correspond to a successful query expression or to the one that the user would have 
meant to. 

Therefore in this paper we propose a structured querying mechanism and interface 
that helps to construct and submit entailment-based queries to web ontology 
documents. The main idea is to aid the user in breaking down his intended query 
expression into several atoms. These atoms are then combined to form allowed 
expressions in Manchester Syntax, as the closest to our purposes regarding user-
friendliness. At the same time, the interface tries to be as intuitive as possible by 
automatically disallowing (graying out) nonsensical combinations (for example, select 
a restriction without selecting a property first), offering dynamic auto-complete 
choices and classify them as per class (type) or relation, disclosing namespace 
prefixes when possible, marking the various fields with NL-like labels and presenting 
results based on their class or type.  

Based on this idea we have developed a prototype application as an add-on to the 
DSpace digital repository system, latest version (1.6.2 and 1.7.0)1. This work builds 
upon and evolves earlier efforts for creating a semantic search service for DSpace 
[10]. The novel semantic search interface is backed up by a new DSpace Semantic 
API that supports a pluggable design for reasoners as well as OWL 2.0 and the 
newest OWL API v.3. Most importantly, our Semantic API is designed along the 
same principles as its predecessor, i.e. to remain independent of the DSpace business 
logic and to be agnostic to the rest of the user interface or even the underlying 
ontology.  

In the following we first review current approaches for querying the Semantic Web 
and point out our decisions for the interface design (Section 2). Then we describe the 
design and architecture of the DSpace Semantic API, which the querying services are 

                                                           
1 http://www.dspace.org/ 



 A Structured Semantic Query Interface for Reasoning-Based Search and Retrieval 19 

based on (Section 3). Section 4 describes the user-perceived functionality of our 
interface and presents some indicative examples. Finally, section 5 and 6 summarize 
our conclusions and future work. 

Our prototype is openly available at: http://apollo.hpclab.ceid.upatras.gr:8000/ 
jspui16/semantic-search. Source code is maintained as a Google Code project2 where 
instructions and latest developments can be found. 

2   Background 

As long as there is not yet a standard query language specifically for OWL ontologies, 
a search mechanism that intends to utilize a formal query language has to choose 
among either a DL-based or a RDF-based approach. The former category is more 
closely related to rule languages and logics. The latter includes SQL-like languages, 
aiming at retrieving information from RDF documents. No matter what approach is 
actually followed, Semantic Web query effectiveness highly depends on the 
mechanisms employed to actually construct the query, as discussed in the previous 
section. 

2.1   Syntaxes for OWL Query Languages 

Some known languages for querying RDF data are SPARQL [15], SeRQL[1], 
RDQL[16] and more. But SPARQL is the one that has been recognized as the de 
facto standard for the Semantic Web. Because SPARQL has been mainly designed for 
querying RDF documents, its semantics are based on the notion of RDF graphs and 
thus it has no native understanding of OWL vocabulary. 

Even when a bridging axiomatization is offered (like for example with SPARQL-DL 
[18]), OWL-oriented queries in SPARQL can become extremely verbose, especially in 
case complex OWL expressions are involved. To this end, some SPARQL variants have 
been recently proposed, such as SPARQLAS3 and Terp [17], bearing a more OWL-
friendly profile: they both intend to facilitate those who are not familiar with SPARQL 
to write queries in this language, by allowing the mix with OWL syntactic idioms, like 
OWL functional syntax and OWL Manchester Syntax, respectively.  

Nevertheless, DL-based query languages, compared to the RDF-based ones, have 
more well-defined semantics w.r.t. OWL since they were designed exactly for 
querying OWL (and OWL 2) documents. For example nRQL [4], OWL-QL [3] and 
OWLlink’s ASK protocol [11] fall in this category.   

Provided that querying an ontology is often about finding individuals or instances, 
another simple yet powerful approach is to directly employ DL syntax to write these 
queries. For example, the query tab of Protégé 44 follows this practice. It uses the 
Manchester syntax [6], which is a “less logician like” and more user-friendly syntax 
for writing OWL class expressions. 

                                                           
2 http://code.google.com/p/dspace-semantic-search/ 
3 http://code.google.com/p/twouse/wiki/SPARQLAS 
4 http://protegewiki.stanford.edu/wiki/DLQueryTab 



20 D.A. Koutsomitropoulos, R. Borillo Domenech, and G.D. Solomou 

When a user poses a query, a parser maps the given expression into a concept 
expression (class). Consequently, all instances classified by the reasoner under this 
particular concept are retrieved. In this sense, Manchester syntax can be used as an 
entailment-based querying language for OWL documents and this is the approach we 
follow in our implementation. 

2.2   Query Formulation 

The existing approaches for performing search on the Semantic Web can be roughly 
divided in two categories [2]: those using structured query languages, like the ones 
described previously, and those expressing natural language or keyword-based 
queries. The first category includes systems that use a formal language for evaluating 
queries. The latter category is comprised of applications that accept either a whole 
phrase (expressed in natural language) or simple keywords as queries. The NL-based 
approaches usually require an additional reformulation step where posed queries are 
translated into class expressions or triples, depending on the target language. Such a 
system is PowerAqua [12], where a user query is translated from natural language 
into a structured format. Similarly, in keyword-based systems, keywords are matched 
to parts of an RDF graph or to ontology elements and then evaluated against the 
knowledge base. QUICK [20] belongs to this category and is based on the idea of 
assigning keywords to ontology concepts.  

The parsing and reformulation process that is necessary in NL-based and keyword 
based approaches restricts systems functionality, as it involves further query 
analyzing, and sometimes makes handling complex requests difficult or even 
impossible. On the other hand, the use of formal structured languages in query 
interfaces assumes that users have at least a basic understanding of the language’s 
syntax as well as of the underlying ontology’s structure. This requirement leads to 
more expert-user oriented applications, not suitable for common users who are not 
familiar with the logic-based Semantic Web.  

A way to bridge the gap between the complexity of the target query language and 
end users is to develop a guided input query interface. This is a practice followed 
along several years, by applications querying database systems, in order to facilitate 
the formulation of more complex SQL requests. For example, an advanced search 
facility in a digital library system, like DSpace, utilizes drop down menus with 
Boolean operators so as to help users in setting restrictions when searching the 
system’s database. When searching knowledge bases, though, where ontologies are 
involved, things become much more complicated.  

Several semantic search systems that guide users in structuring their requests have 
been proposed in the literature, but this is mostly about systems that use SPARQL and 
SPARQL-like languages. In addition, they are usually focused on graphical or visual 
techniques, like NITELIGHT [19] and Konduit [13]. To the best of our knowledge no 
other system using DL-based query languages exists, that follows the idea of 
controlled input forms for the structured formulation of semantic queries.  



 A Structured Semantic Query Interface for Reasoning-Based Search and Retrieval 21 

3   The DSpace Semantic API 

In this section we focus on the design and implementation of the semantic search 
service, which has been developed as an add-on to the new DSpace 1.7. We describe 
the main components of the Semantic API and then we point out its interaction with 
inference engines in order to support entailment-based queries. First however we 
briefly introduce the DSpace ontology model which acts as the underlying knowledge 
base for queries.  

3.1   The DSpace Ontology 

The first step in developing any semantic search service is to identify or construct the 
target knowledge base or ontology, which queries will actually be performed against. 
In our case, we construct the DSpace ontology on-the-fly, following a sophisticated 
procedure fully described in [9] and based on the interoperable system’s mechanisms 
for exporting resources’ metadata through OAI-PMH.  

DSpace metadata follow the Dublin Core (DC) specification by default, while it is 
possible to import and use other metadata schemata as well. In our particular 
implementation, we have also enhanced the system’s metadata schema with learning 
object (LOM) metadata, specifically tailored for its usage as an institutional 
repository (http://repository.upatras.gr/dspace/). The resulting ontology comprises of 
axioms and facts about repository items and is expressed in OWL 2 (Fig. 1).  

 

Fig. 1. An example instance of the DSpace ontology 



22 D.A. Koutsomitropoulos, R. Borillo Domenech, and G.D. Solomou 

3.2   Design and Architecture 

The semantic search service uses several APIs to perform search and inference 
against the ontology. The OWL API [5] is used as the basis for ontology 
manipulation and interaction with reasoners. Compared to our previous efforts [10] 
we have now migrated to the latest OWL API v. 3.1.0 to support proper handling of 
OWL 2 idioms as well as to better interface various reasoners. For the latter, we have 
also upgraded to FaCT++ v. 1.5.05 and added the ability to “hot-swap” between 
reasoners dynamically, adding support also for Pellet6.  

Figure 2 depicts the different components of the semantic search service in relation 
to the DSpace infrastructure. 

 

Fig. 2. The architecture of the semantic search service for DSpace 

All these components are part of the DSpace Semantic API. The DSpace Semantic 
API is defined at the same level as the DSpace API. This new API can be used in the 
rest of DSpace modules without problems, like the JSP user interface (JSPUI), 
XMLUI, REST API or LNI. In our implementation, the DSpace Semantic API 
interacts with the JSPUI module by means of a new user interface for querying 
DSpace digital objects using an ontology (see Section 4). 

The Semantic Unit is the core component and the mediator between all the facts 
and relations defined in the DSpace ontology and the inference engine (Fact++, Pellet 
or another OWL API-compliant reasoner). 
                                                           
5 http://code.google.com/p/factplusplus/ 
6 http://clarkparsia.com/pellet/ 



 A Structured Semantic Query Interface for Reasoning-Based Search and Retrieval 23 

3.3   The Semantic Unit 

When the implementation of the semantic layer began, a core piece with all the basic 
and necessary resources to execute semantic queries was created. This main unit was 
called Semantic Unit and was designed as a singleton class to be available to the 
entire system and initialized at system startup with the DSpace ontology and other 
default values. 

This unit is responsible for the following topics: 

• The OWL ontology manager. An OWLOntologyManager manages a set of 
ontologies. It is the main point for creating, loading and accessing ontologies. An 
OWLOntologyManager also manages the mapping between an ontology and its 
ontology document. 

• The OWL ontology itself. 
• The imports closure. This is just the union or aggregation of the imported ontology 

documents, referenced by the owl:imports directive. 
• The short form provider. In OWL, entities such as classes, properties and 

individuals are named using URIs. Since URIs can be long and not particularly 
readable, "short forms" of these URIs are often used for presentation in tools such 
as editors and end user applications. Some basic implementations of short form 
providers are: 

• SimpleShortFormProvider. Generates short forms directly from URIs. 
In general, if the fragment of a URI is available (the part of the URI following 
the #) then this will be used for the short form. 

• QnameShortFormProvider. Generates short forms that look like QNames. 
For example, owl:Thing, pizza:MarghertiaPizza. 

• The reasoner used. 

The Semantic Unit is also a registry for caching purposes. This allows to reuse the 
loaded ontologies and short form providers, avoiding reload and parsing of the whole 
ontology definition.  As a result, when a user loads a new ontology, this is loaded and 
stored only once by the Semantic Unit in an internal registry. When another user asks 
for the same ontology, no re-parsing is needed, and the ontology is served from the 
registry. 

This functionality is used around the system to perform some basic interactions. 
The Semantic Unit is used in the main module to issue queries with the values 
provided by the end user. Additionally, the Semantic Unit is also used in the 
construction of the search results page, when the user asks for a detailed view of a 
record and the system performs some inference against the ontology. Summarizing, 
the Semantic Unit will be used in every situation where the system needs to perform 
any operation against the loaded ontology. 

3.4   Pluggable Reasoner Design 

One of the design principles of the semantic search service was openness and support 
for different reasoners and ontologies. In this way, a proper design on source code is 
also needed. 



24 D.A. Koutsomitropoulos, R. Borillo Domenech, and G.D. Solomou 

To allow the Semantic API to load different reasoners dynamically, a little use of 
reflection and a general interface definition was used: 

public interface OWLReasonerFactory 
{ 
    public OWLReasoner getReasoner(OWLOntology 
ontology); 
} 

This is the main interface that is required to be implemented for every reasoner that 
we want to incorporate to our semantic search service. This is only a factory method 
implementation to create the proper instance of the reasoner. That was needed 
because different reasoners have their own API for creating instances. Once a 
reasoner instance is generated, no customization is needed because of the fact that all 
reasoners implement the OWLReasoner OWL API interface. 

This can be accomplished by using Java Reflection and by relying on system 
configuration to determine what the correct reasoner that needs to be loaded is: 

SupportedReasoner supportedReasoner =  
SupportedReasoner.PELLET; 
OWLReasonerFactory owlReasonerFactory =      
(OWLReasonerFactory) Class.forName( 

  supportedReasoner.toString()).newInstance(); 
OWLReasoner reasoner = 
owlReasonerFactory.getReasoner(ontology); 

All the supported reasoners are defined in a Java enumeration class: 

public enum SupportedReasoner 
{ 
FACTPLUSPLUS("gr.upatras.ceid.hpclab.reasoner.OWLReason
erFactoryFactPlusPlusImpl"), 
PELLET("gr.upatras.ceid.hpclab.reasoner.OWLReasonerPell
etImpl"); 
    private String classImpl; 
    SupportedReasoner(String value) 
    { 
        classImpl = value; 
    } 
 
    public String toString() 
    { 
        return classImpl; 
    } 
} 

Following these guidelines two initial implementations called OWLReasoner 
FactoryFactPlusPlusImpl for Fact++ and OWLReasonerPelletImpl for 
Pellet support have been added. 



 A Structured Semantic Query Interface for Reasoning-Based Search and Retrieval 25 

4   Functionality and Examples 

In this section we describe how our semantic search service interacts with users, 
guiding them smoothly in the construction of correct and accurate queries. First, a 
detailed description of the interface building components is given; then, we present 
how users can take advantage of this interface, by showing some indicative examples.  

4.1   The Interface 

When the semantic search interface is loaded, one can distinguish among three 
separate tabs: Search (default), Advanced topics and Options.  

 

Fig. 3. Search and Option tab of the semantic search interface 

The Search form contains all necessary elements for guiding users in building 
queries in Manchester syntax as intuitively as possible. Each component in this form 
corresponds to a certain building atom of the query expression. Their functionality is 
described in detail later in this section.  

 

Fig. 4. The building atoms of a query expression in Manchester syntax 

The Advanced topics tab is currently inactive and is reserved for future extensions 
of the system, like for example the support of other query syntaxes, such as SPARQL.   

The Options tab includes options that allow users to change the ontology against 
which they perform their search, as well as the underlying reasoner (currently, Pellet 



26 D.A. Koutsomitropoulos, R. Borillo Domenech, and G.D. Solomou 

or FaCT++). For altering the knowledge base, we only need to supply a valid URL of 
an OWL/OWL 2-compliant ontology. In addition, the user can switch between 
reasoners dynamically (Section 3.4). 

Next we describe the various elements of the Search tab, according to their number 
in Fig. 3. Based on Manchester syntax’s primitives for formulating an expression [7] 
and depending on the values entered by the user in each preceding field, subsequent 
fields are enabled or disabled accordingly. Figure 4 depicts the three main atoms of 
such a query expression. What is more, an auto-complete mechanism is enabled 
where necessary, for guiding users in supplementing information.  

1. Search for: It corresponds to the outmost left (first) atom of a Manchester 
syntax expression. This can be either a property name or a class name. An 
auto-complete mechanism is triggered as soon as a word starts being typed, 
suggesting names for classes and properties that exist in the loaded ontology. 
For users’ convenience, suggested values have been grouped under the title 
Types (for classes) and Relations (for properties) (left part of Fig. 5). The 
check box is used for declaring the negation of the class expression that starts 
being constructed. For simplicity, all prefixes are kept hidden from users and 
the system is responsible for adding them automatically, during the query 
generation process. The following two fields are not activated, unless a 
property name has been selected in this step.  

2. Restriction: This represents the middle atom of the expression. Provided that 
a property is entered in the previous field, a number-, value- or existential 
restriction should now be set. Hence, the ‘Restriction’ drop down menu 
becomes active, containing respective Manchester syntax keywords. 

3. Expression: This is a free-text field where the user can supply a single class 
name or expression (quantification), an individual (value restriction) or a 
number, optionally followed by a class (cardinality restriction). An auto-
complete facility is provided for class names. This forms the outmost right 
(last) atom of the query expression.  

4. Condition: From now on, the user can recursively construct more class 
expressions, combining them in conjuctions (and) or disjunctions (or). 
Consequently an appropriate Condition should be set for expressing the type 
of logical connection. 

5. Generated Query: This field gradually collects the various user selections 
and inputs, ultimately containing the final query expression. It is worth noting 
that this is an editable text box, meaning that expert users can always bypass 
the construction mechanism and use it directly for typing their query. 

6. Add term: Adds a completed expression to the Generated Query field. This 
also checks if the expression to be added is valid, and pops an error message 
otherwise.  

7. Search: When pressed, evaluates the query expression as it appears in the 
Generated Query field. It also clears all other fields, thus giving the user the 
opportunity to further refine his initial query.  

8. Clear query: Clears the form and makes it ready to accept new values. 

Once the query has been evaluated, obtained results appear right below the search 
form. They are organized in the form of a two-column table, as depicted in Fig. 5: 
Value contains the retrieved entities, whereas Type indicates at least one of the classes 
 



 A Structured Semantic Query Interface for Reasoning-Based Search and Retrieval 27 

  

Fig. 5. The auto-complete mechanism and the results table in the semantic search interface 

to which each entity belongs, thus providing users with a hint about their type. All 
retrieved entities are clickable and when selected, a separate page is loaded, 
containing the complete ontological information about the clicked entity. More details 
about this page and its elements can be found in [10]. 

4.2   Example Queries 

First we show how a relatively simple class expression can be built through the 
interface. In particular, we want to retrieve all DSpace entities that have a type of 
lom:LearningResourceType. This corresponds to the following expression:  

dcterms:type some lom:LearningResourceType  

The way it is constructed through the semantic search interface is shown in Fig. 6. 

 

Fig. 6. Formulating a simple query with the guidance of the semantic search interface 



28 D.A. Koutsomitropoulos, R. Borillo Domenech, and G.D. Solomou 

The second query refines the previous one, by asking for those items that also 
satisfy the requirement to be slides. This is expressed as follows:  

dcterms:type some lom:LearningResourceType and 
dcterms:type value lom:Slide 

To formulate this query in the semantic search interface, we construct the 
appropriate class expression representing our new requirement and attach this to the 
previous one, by checking the ‘and’ condition (Fig. 7). 

 

Fig. 7. Combining query expressions using the ‘and’ condition 

Finally, we construct a query for retrieving all DSpace items for which we have 
used more than one DSpace-specific types for their characterization (e.g., learning 
object and book, presentation and dataset, etc) (Fig. 8).  

 

dcterms:type min 2 dspace-ont:DspaceType 

 

Fig. 8. A more complex query that requires manual typing for the construction of its right atom 



 A Structured Semantic Query Interface for Reasoning-Based Search and Retrieval 29 

In this case the user has to manually input the right query atom where the class 
name should be accompanied by the required prefix. Note also that such a cardinality-
based query cannot be submitted with a traditional, keyword-based mechanism. The 
same holds for a whole set of other queries that are made possible only through 
inferencing (see [9] for more examples of such queries). 

5   Future Extensions 

Currently, the semantic search service is targeted towards guiding novice users in 
forming simple expressions. For example it is difficult – although not impossible – for 
someone not familiar with XSD facets to construct composite queries containing 
numeric or string ranges. The creation of nested queries requires particular attention 
as well, because the default priority in evaluating a nested expression involving 
Boolean operators can only be altered using parentheses. For example the expression: 

dspace-ont:author some dcterms:Agent and dspace-ont:Item 

evaluates differently than  

dspace-ont:author some(dcterms:Agent and dspace-ont:Item) 

Another possible improvement would be to display all class names in the results 
list. Since query results can belong to more than one class, it would be useful to see 
all these classes, instead of the most specific one, in the form of a tooltip.  

Additionally, more checks and guided options can be added to the user interface, 
based on what part of the final expression is being defined by the user. For example, 
the ‘Expression’ field can be controlled depending on what is the user’s choice in the 
‘Restriction’ field: ‘some’ and ‘only’ restrictions are always followed by class 
expressions; ‘value’ needs an individual or literal; and cardinality restrictions (‘min’, 
‘max’ and ‘exactly’) are followed by a number and a class expression. Currently, this 
is circumvented by the ability to give free-text input to the ‘Expression’ box, while 
auto-complete would work for class names.  

In any case, the actual functionality of the system is not hindered, given that the 
provided query box is editable; therefore someone who is familiar with ontologies and 
Manchester syntax has no difficulty in proceeding with complex requests.  

In addition, more reasoners (e.g. Hermit7) and querying approaches, like SPARQL, 
could be accommodated. Finally, for efficiency and scalability reasons it would be 
preferable to integrate a persistent semantic storage mechanism with our service. Thus 
we would be able to support dynamic ontology updates and incremental reasoning, 
although these techniques are currently well beyond the state of the art. 

6   Conclusions 

The Semantic Web has grown by the years an extensive technological infrastructure, 
as it is evident by the increasing number of tools, standards and technologies that 
build around it. Its success however will be determined by the added-value and 
                                                           
7 http://hermit-reasoner.com/ 



30 D.A. Koutsomitropoulos, R. Borillo Domenech, and G.D. Solomou 

tangible gains it brings to the end users. To this extend, not only an adequate number 
of linked and open information – that would form a “Web of Data” – need to be 
available, but also efficient and intuitive processes for ingesting this information 
should be developed. Querying Semantic Web data should not put aside their 
underlying logic layer either: instead, entailment-based query answering must be 
integrated and utilized into querying systems, thus bringing the Semantic Web to its 
full potential.  

In this paper we have presented a straightforward approach for querying 
ontological information by employing the idea of structuring queries through guided 
input. This necessity comes naturally out of the complexity that is almost inherent in 
logic-based queries. Besides, current research efforts seem to coincide in trying to 
alleviate this very problem, no matter what approach do they actually follow – be it 
text- or formal-based. To our knowledge, this is the first effort to use a DL-based 
query language that follows the idea of controlled input forms for the structured 
formulation of semantic queries.  

Our prototype has been built as an add-on to the DSpace digital repository system, 
though by design, the implementation is independent of the system’s business logic. 
In addition, it does not depend on any specific ontology, but can load and interact 
with any ontology document on the Web. Thus it can serve any ontology-based 
searching facility or easily integrate with other repository systems or libraries.  

Initial user feedback seems promising; however our next step is to make this tool 
widely available to the community, so as to initiate an extensive evaluation from both 
the developer and end user perspective. 

References 

1. Broekstra, J., Kampman, A.: SeRQL: An RDF Query and Transformation Language. In: 
3rd International Semantic Web Conference, Japan (2004) 

2. Fazzinga, B., Lukasiewicz, T.: Semantic Search on the Web. In: Semantic Web-
Interoperability, Usability, Applicability (SWJ), vol. 1, pp. 1–7. IOS Press, Amsterdam 
(2010) 

3. Fikes, R., Hayes, P., Horrocks, I.: OWL-QL - A Language for Deductive Query 
Answering on the Semantic Web. J. of Web Semantics 2(1), 19–29 (2004) 

4. Haarslev, V., Möller, R., Wessel, M.: Querying the Semantic Web with Racer + nRQL. In: 
International Workshop on Applications of Description Logics (ADL 2004), Germany 
(2004) 

5. Horridge, M., Bechhofer, S.: The OWL API: A Java API for Working with OWL 2 
Ontologies. In: 6th OWL Experiences and Directions Workshop, Chantilly, Virginia (2009) 

6. Horridge, M., Patel-Schneider, P.S.: Manchester Syntax for OWL 1.1. In: 4th OWL 
Experiences and Directions Workshop, Gaithersburg, Maryland (2008) 

7. Horridge, M., Patel-Schneider, P.S.: OWL 2 Web Ontology Language: Manchester 
Syntax. W3C Working Group Note (2009),  
http://www.w3.org/TR/owl2-manchester-syntax/ 

8. Kaufmann, E., Bernstein, A.: How Useful Are Natural Language Interfaces to the 
Semantic Web for Casual End-Users? In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., 
Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, 
G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 281–
294. Springer, Heidelberg (2007) 



 A Structured Semantic Query Interface for Reasoning-Based Search and Retrieval 31 

9. Koutsomitropoulos, D., Solomou, G., Alexopoulos, A., Papatheodorou, T.: Semantic 
Metadata Interoperability and Inference-Based Querying in Digital Repositories. J. of 
Information Technology Research 2(2), 37–53 (2009) 

10. Koutsomitropoulos, D., Solomou, G., Alexopoulos, A., Papatheodorou, T.: Digital 
Repositories and the Semantic Web: Semantic Search and Navigation for DSpace. In: 4th 
International Conference on Open Repositories, Atlanta (2009) 

11. Liebig, T., Luther, M., Noppens, O., Wessel, M.: OWLlink. In: Semantic Web-
Interoperability, Usability, Applicability, J. IOS Press, Amsterdam (to appear) 

12. Lopez, V., Motta, E., Uren, V.: PowerAqua: Fishing the Semantic Web. In: 3rd European 
Semantic Web Conference, Montenegro (2006) 

13. Möller, K., Ambrus, O., Dragan, L., Handschuh, S.: A Visual Interface for Building 
SPARQL Queries in Konduit. In: 7th International Semantic Web Conference, Germany 
(2008) 

14. Olensky, M.: Semantic interoperability in Europeana. An examination of CIDOC CRM in 
digital cultural heritage documentation. IEEE Technical Committee on Digital Libraries 
6(2) (2010), http://www.ieee-tcdl.org/Bulletin/current/Olensky/olensky.html 

15. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF. W3C 
Recommendation (2008), http://www.w3.org/TR/rdf-sparql-query/ 

16. Seaborne, A.: RDQL - a query language for RDF. W3C member submission (2004), 
http://www.w3.org/Submission/RDQL/ 

17. Sirin, E., Bulka, B., Smith, M.: Terp: Syntax for OWL-friendly SPARQL Queries. In: 7th 
OWL Experiences and Directions Workshop, San Francisco (2010) 

18. Sirin, E., Parsia, B.: SPARQL-DL: SPARQL Query for OWL-DL. In: 3rd OWL 
Experiences and Directions, Austria (2007) 

19. Smart, P.R., Russell, A., Braines, D., Kalfoglou, Y., Bao, J., Shadbolt, N.R.: A Visual 
Approach to Semantic Query Design Using a Web-Based Graphical Query Designer. In: 
Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 275–291. 
Springer, Heidelberg (2008) 

20. Zenz, G., Zhou, X., Minack, E., Siberski, W., Nejdl, W.: From Keywords to Semantic 
Queries - Incremental Query Construction on the Semantic Web. J. Web Semantics 7(3), 
166–176 (2009) 


	A Structured Semantic Query Interface for Reasoning-Based Search and Retrieval
	Introduction
	Background
	Syntaxes for OWL Query Languages
	Query Formulation

	The DSpace Semantic API
	The DSpace Ontology
	Design and Architecture
	The Semantic Unit
	Pluggable Reasoner Design

	Functionality and Examples
	The Interface
	Example Queries

	Future Extensions
	Conclusions
	References


