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Every introductory physics class
includes a discussion of standing
waves. We wanted to offer our stu-

dents an opportunity to earn bonus points by
demonstrating their knowledge of this materi-
al. The project we developed involves con-
structing a set of wind chimes in which each
hanging rod produces a clear tone, and the
combination of rods generates a chord. The
project is not concerned with exact pitches,
but rather with standing waves and nodes and
the correct relationship between the pitches in
the chord. Our students have enjoyed this pro-
ject while learning something from it, and we
thought that other physics teachers might
want to consider the idea for use with their
classes. This project can be done at many dif-
ferent levels, high school through college,
depending on the mathematical knowledge of
the class.

Although wind chimes are commonly
available and easily constructed, there is little
in the physics literature about their design.1,2

Discussions of the oscillation modes of free
rods are more common in engineering litera-
ture;3 “artistic” wind chimes appear to be con-
structed chiefly by trial and error.  

Getting Started
We suggest that you provide the following

instructions and information to students who
are interested in a wind-chime project. 

● The wind-chime rods are to produce a
chord—either “barbershop 7th,”  a C9th, or a
Cllth. (For helpful information, see the Oliver
note on page 209, or refer to an introductory
text on the physics of music.4)

● Leave choice of materials to the students,
but provide a table of Young’s moduli for
common materials5 and Eq. (6) from this
paper, with (kL)1 = 4.73044, so that they can
compute the expected frequencies.

● Provide a table showing the frequencies
of notes on the chromatic scale and the rela-
tionship between notes. (See Oliver note on

page 209.)
● Have available a computer with a micro-

phone and an A-to-D converter so students
can determine the actual frequencies of each
chime.

● Tell the students that the fundamental has
a node 22.4% of the length of the rod from the
end.

This node location differs slightly from
25% that would be expected for a simple sinu-
soidal amplitude such as those typically dis-
cussed in a course of this type; this is the first
hint to students that class discussion of waves
on strings may not contain the whole story.
This project introduces students to waves that
do not satisfy � f = �.

Upper-level students should be given the
opportunity to solve the fourth-order wave
equation, but this is not necessary for intro-
ductory students. Most commonly, problems
arise when students do not hang the rods at
their nodes or do not strike them at an anti-
node. Introductory students should be encour-
aged to hear the difference between rods hung
at nodes and rods not hung at nodes. 

Theory
Our introductory physics courses concen-

trate on waves that are described by solutions
to a second-order wave equation
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such as waves on strings or sound waves in
air. They do not generally consider other wave
equations. Here, the equation describing the
motion of a free rod is fourth order,3
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where A is the cross-sectional area of the rod,
E is Young’s modulus for the material, � is the
density of the material, and I is the moment of
the area.
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The solution of Eq. (2), which is given in
the Appendix, has the form y (x, t) = X (x)
e�i�t. The amplitude of standing waves on the
rod X (x) has the form

X (x) = A �cos (kx) + cosh (kx) +

� � x

[sin (kx) + sinh (kx)]�
(3)

where only the k’s satisfying

cos (kL) cosh (kL)  =  1              (4)
are allowed. Solutions are the crossing points
in Fig. 1.  Here we have actually plotted [cos
(kL) cosh (kL) – 1] /cosh (kL). The numerator
determines the zero crossing points. (The
denominator has been added to keep the plot-
ted quantity from getting too large.) 

Note that the 0 solution is not allowed
since it causes the coefficient of the third term
in Eq. (3) to be undefined. Solutions are plot-
ted in Fig. 2 for the first three modes of oscil-
lation. Notice that the nodal points for the
first, second, and third modes are at approxi-
mately 22.4%, 13%, and 9% of the rod length,
respectively, from one end.

Discussion
Construction of a set of wind chimes

requires a combination of thought, creativity,
and experimentation. Our students used cop-

cosh (kL) – cos (kL)
���
sin  (kL) – sinh (kL)

per, steel, and galvanized steel stock, both
solid rod and tubing. Most were hung at the
recommended location, but some were sus-
pended at the center and some at the end. The
latter rang poorly.  

Indeed, the rod not suspended exactly
from the node point damped out much more
quickly when rung. Moreover, several stu-
dents noted that it was important that the
hanging wire not contact the rod anywhere
other than the node point, and they came up
with some creative hanging mechanisms to
prevent this. A few students noted that the
rods should be hung so that they will be
struck only at the antinode in order to excite
the correct standing wave at the initial impact.
Thus, even without understanding the intrica-
cies of this particular system, the students
were able to experimentally explore several
features of standing waves.

Note that the standing waves shown in Fig.
2 do bear a resemblance to the sinusoidal
waves that we expect in the case of the sec-
ond-order wave equation, though some of the
nodes are shifted. There are some notable dif-
ferences. For example, the longest standing
wave has two nodes rather than one. A stand-
ing wave with one node at the center of the
rod and an antinode at each end would corre-
spond to a rotation of the entire rod, though
not a pure rotation. This case is not possible
with a free rod but only with a rod clamped at
its center.  

Determination of the actual frequencies in
this system is somewhat different from that
for waves in systems described by second-
order wave equations. Although most intro-
ductory physics texts discuss only second-
order wave equations, vibrating rods are
sometimes used as an example. Here, Eq. (2)
suggests that the standing waves are

Fig. 1.  Zeroes are the solutions to Eq. (4).

Fig. 2. Standing waves on a free rod as given by Eq. (3).

Zero k L        First Node

0 0.00
1 4.73004 0.224L
2 7.8532 0.1321L
3 10.995601 0.0944L

Table I.
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where (k L)m is one of the zero crossing points from Table
I. For hollow tubing, I/A = (r2

1 + r 2
2)/4, where r1and r2 are

the inner and outer radii, respectively. Thus, the frequency is
proportional to the inverse square of the length of the rod.
We have been able to test this by using a computer with a
microphone to examine the power spectra, such as Fig. 3, of
rods of different lengths suspended at the 22.4% point.
These test rods were constructed of galvanized steel electri-
cal conduit (OD 23.4 mm, ID 21.0 mm, E = 200 	 109Pa,
and � = 7800 kg/m3). The resulting fundamentals are given
in the following table where fpredicted is the theoretically pre-
dicted frequency, and factual is the experimentally measured
frequency.  

The spectrum changes dramatically when the rod is not
hung at a node. Figure 4 demonstrates the increased noise
present when a rod is supported at the end rather than at a
node.

Conclusion
Wind-chime construction can be an excellent student

project to explore standing waves. Metal rods and tubes
sound grand and ring well when hung exactly at the
nodes, whereas anything else leads to damping and exci-
tation of other modes, each of which is unpleasant to the
human ear. It is also possible to hear other modes being
excited when a properly hung rod is not struck at an
antinode (as in Fig. 3).

To correctly calculate frequencies, it is necessary to
recognize that this system is not described by a second-
order wave equation. This becomes another example of
how physics is done: study the simple case first, and then
add on levels of complexity. The math here is accessible
to students who have completed an undergraduate differ-
ential-equation course.

The educational merit of this project is great, but there
may be an even better reason for trying this project. It is
extremely satisfying to design and build a wind chime that
is equal or better in sound quality to the most expensive
commercial wind chimes. The students’ results sound
great!
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Length (cm)  fpredicted(Hz) factual (Hz)

22.0 2930 2775

24.1 2440 2340

25.8 2130 2040

28.0 1810 1730

29.3 1650 1580

32.9 1310 1280

35.9 1100 1080

38.0 983 975

42.0 805 804

59.9 396 390

Fig. 3.  Power spectra of two tubes hung at the 22.4% node point. For the
59.9-cm tube, the three peaks correspond to the first (396 Hz), second
(1091 Hz), and third (2139 Hz) harmonics.

Fig. 4.  (a) Power spectra of a 38.0-cm tube hung at the 22.4% node point.
(b) Power spectra of a 38.0-cm tube hung at the end. Note the increased
background noise level when the rod is not hung at a node point even
though the fundamental is still present. 
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While we often have to deal with incomplete informa-
tion, physicists prefer to know as much as possible about
every problem. In this case, we can motivate the form of
the fourth-order wave equation.
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where A is the cross-sectional area of the rod, E is Young’s
modulus for the material, � is the density of the material,
and I is the moment of the area; y is the displacement of
the center of the rod from equilibrium and x is the distance
along the rod.

In deriving the wave equation for a string, Eq. (1), we
begin with a segment under tensile stress. To produce a
restoring force, the segment must have a slope that is dif-
ferent at one end than at the other.6 The restoring force is
thus proportional to the curvature of the segment. So, once
the system is under tension, the second derivative with
respect to length is required to produce a restoring force.  

The situation is different for a free rod. There is no ten-
sile stress unless the rod is curved. (A free rod that is rotat-
ed as a rigid body experiences no restoring force.) For the
rod, curvature produces stress and two derivatives beyond
this are needed to produce a restoring force, as was the
case with string. The cases of string and rod are both
shown in Fig. 5. Young’s modulus, E, is defined as stress
per strain and has units of force per unit area. Here strain
is proportional to the curvature, �2y/�x2, at a point along
the rod. So, EA�2y/�x2 is proportional to stress times
cross-sectional area or force. Using the moment of area,
defined as I = � h2dA, where the integral is over the entire
cross section, allows elements farther from the neutral line
to have a greater contribution. Therefore, EI �2y/�x2 is
proportional to force and is properly weighted for contri-
butions of area elements farther from the “neutral” line at
a point x. For a cross section of the rod Adx, the net force
is the difference between the forces at x and x + dx. By
analogy with the string problem, this is the second deriv-
ative. Therefore, – EI�4y/�x4 is the net force per unit
length on the rod cross section located at x. Then, apply-
ing Newton’s second law to a piece of the rod yields  
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which is Eq. (2). In any physics calculation, it is always a
good idea to check the dimensions. Here, both EI �4y /�x4

and A� �2y/�t2 have units of N/m or force per unit length.
Equations that vary in space and time are typically

solved by the method of separation of variables. We
assume a solution of the form y (x,t) = X(x)e�i�t.
Substituting this into Eq. (2) results in a time-independent
equation for the amplitude of oscillation of points along
the length of the rod.  
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Once we have this equation, we can solve it using the
time-honored physics tradition of guessing a solution and
applying boundary conditions. It is quite easy to pick
unique functions that produce the same function when dif-
ferentiated four times: cos ( ), sin ( ), cosh ( ), and sinh ( ).
[Note that exp ( ) also works, but it is already a combina-

Appendix:  The Rest of the Story...

Advertisement

Student-constructed wind chimes.
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tion of two of the previous four functions.] A general solu-
tion that is a linear combination of these is

X(x) = A cos (kx) + B sin (kx) + C cosh (kx) + D sinh (kx)
(10)

The argument is kx in each case with k = 2�/� because
this describes the shape of the rod at a particular time and
the rod must select a single solution. Since the rod is free
at each end, we expect no bending and no shear at the
ends. (With no material beyond the end, there is nothing
to provide a restoring force so there is no second or third
derivative.)
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Applying these boundary conditions at the ends of the rod,
x = 0 and x = L, produces two equations for each end.
Applying the boundary conditions at x = 0,

–k2B + k2D = 0   (12)
–k3A + k3C = 0 (13)

It is clear that A = C and B = D. Applying the boundary
conditions at x = L,

–k2A cos (kL) –k2 B sin (kL) + k2C cosh (kL) + k2D sinh (kL) = 0
(14)

+k3A sin (kL) –k3 B cos (kL) + k3C cosh (kL) + k3D sinh (kL) = 0
(15)

Substituting for C and D, and solving for B,

B = A � � (16)
cosh (kL) – cos (kL)
���
sin  (kL) – sinh (kL)

Eliminating A and B, yields

[sin (kL) – sinh (kL)] [sin (kL) + sinh (kL)] =
– [cosh (kL) – cos (kL)]2 (17)

which can be simplified using trigonometric relations to

cos (kL) cosh (kL) = 1                     (18)

This is the condition, previously Eq. (4), that the k’s must
satisfy. With this information, the amplitude of standing
waves on the rod becomes

X (x) = A � cos (kx) + cosh (kx) + � �
x [sin (kx) + sinh (kx)]�

(19)
where only the k’s satisfying Eq. (4) are allowed.
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cosh (kL) – cos (kL)
���
sin  (kL) – sinh (kL)

Fig. 5.  (A) Forces on an
element of a stretched
string fixed at each end: 
T = tension. (B) Cross sec-
tion of rod showing calcu-
lation of moment of area.
Note that h is the perpen-
dicular to the neutral line,
which separates the
region where the material
is being compressed from
the region of material
being extended or
stretched. (C) Geometry of
the curved rod.


