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Abstract

A new test is proposed for the hypothesis that two (or more) observed
point patterns are realizations of the same spatial point process model. To this
end, the point patterns are divided into disjoint quadrats, on each of which
an estimate of Ripley’s K-function is calculated. The two groups of empirical
K-functions are compared by a permutation test using a studentized test statis-
tic. The proposed test performs convincingly in terms of empirical level and
power in a simulation study, even for point patterns where the K-function es-
timates on neighboring subsamples are not strictly exchangeable. It also shows
improved behavior compared to a test suggested by Diggle et al. (1991, 2000)
for the comparison of groups of independently replicated point patterns. In an
application to two point patterns from pathology that represent capillary posi-
tions in sections of healthy and tumorous tissue, our studentized permutation
test indicates statistical significance, although the patterns cannot be clearly
distinguished by eye.

Key words: Nonparametric test, K-function, quadrat, spatial point process,
subsampling.

1 Introduction

Many fields of science deal with data that are point patterns, like maps of disease
incidents, ore deposits, trees or galaxies, or locations of pores or cells in sections
through material or tissue. Statistical analysis of these patterns aims at characterizing
the spatial arrangement of the points. An example situation is given in Figure 1 which
shows midpoints of capillary profiles on sections of healthy and cancerous prostate
tissue. The two patterns have about the same number of points but they differ slightly
in the mutual positions of the points.

Spatial arrangement can be captured and summarized using Ripley’s (1976) K-
function K(r), which is proportional to the mean number of further points within
distance r to a typical point of the process. The K-function is one of the main tools
in the analysis of spatial point processes, in particular for hypothesis testing. The
majority of tests proposed in the literature so far focus on the question whether or
not an observed point pattern is a realization of a specified null model (e.g. Besag
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Figure 1: Capillary profiles marked as dots in sections of prostate tissue. The size of the fields of
view is 1860 µm × 1500 µm. Left: healthy tissue, 212 points, right: cancerous tissue, 204 points.
Data from Mattfeldt et al. (2006, 2007), by courtesy of T. Mattfeldt.

and Diggle (1977); Diggle (1979); Ripley (1979); Ho and Chiu (2006)), whereas tests
for nonparametric hypotheses appear to be less common. This may be explained by
the fact that observed data most often consist of a single point pattern, while groups
of independent replicated samples form a rare exception. For the latter case, Diggle
and coworkers (Diggle et al., 1991, 2000) have proposed bootstrap Monte Carlo tests
for the comparison of empirical K-functions between groups.

To the best of our knowledge, a nonparametric test that permits a direct com-
parison of two single point patterns is not available in the literature. In the present
paper, we develop a test of equality of K-functions estimated from two (or more) point
patterns. Instead of independently collected samples, we use estimated K-functions
based on subsamples of the point patterns on disjoint quadrats. Such subsampling
has earlier been used by Loh and Stein (2004) to assess the variance of K-function
estimates.

The bootstrap Monte Carlo tests of Diggle et al. seem to be good candidates for
comparing subsamples of single patterns. However, a simulation study presented in
this paper reveals that they may behave pronouncedly liberal (anti-conservative) if
the samples are small in terms of the number of point patterns per group. In most
cases, the number of disjoint quadrats obtained from a single point pattern will be
quite limited, because they need to contain enough points to yield reasonably stable
estimates of the K-function. We therefore propose a permutation test based on a
studentized test statistic, since permutation tests by construction meet the nominal
level of significance when comparing independent, identically distributed replicates,
even when the group size is small.

The article is organized as follows. Section 2 introduces spatial point processes
and the K-function. A brief overview of statistical tests for point processes is given
in Section 3. The performance of Diggle et al.’s Monte Carlo test is examined in
Section 4. In Section 5, the studentized permutation test is presented and its behavior
in the case of independent replicated samples is studied by simulation. Section 6
explains the use of this test to compare subsamples of point patterns. We investigate
the effect of size and number of quadrats on the empirical level and power. Practical
recommendations are given in Section 7 alongside with an application to the data
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shown in Figure 1. In Section 8, we review open questions, indicate directions for
future research and suggest possible extensions. Some aspects of Diggle et al.’s test
under heteroscedasticity are discussed in an Appendix.

2 Spatial Point Processes and the K-Function

A spatial point process X is a random variable taking values in the set of all locally
finite point patterns, i.e. countable subsets x = {x1, x2, . . . } ⊂ R

d such that every
bounded set B ⊂ R

d contains only finitely many points. In the following, we use the
notation X(B) for the number of points in a set B ⊂ R

d, and we will concentrate on
planar point processes.

The vast majority of theoretical results and statistical methods is confined to sta-
tionary point processes, i.e. point processes with translation invariant distribution.
Stationary point processes have a constant intensity (mean number of points per
unit area) which will be denoted by λ. The most basic model is the Poisson point
process, also known as the complete spatial randomness (CSR) model. A station-
ary Poisson point process X with intensity λ is characterized by the property that
X(B) is Poisson distributed with mean λA(B), where A(B) denotes the area of B.
The restrictions of a Poisson point process to pairwise disjoint sets B1, B2, . . . are
independent.

The K-function of a stationary point process is defined as the mean number
of other points within distance r to a typical point of the process, divided by the
intensity λ of the process (Ripley, 1976, 1977). Under CSR, K(r) equals the area of
a circle of radius r. Clustering, that is, attraction between points within distance r
is reflected by a higher value of K(r) > πr2, while lower values indicate dispersion or
repulsion between points. One has to be aware that different point process models do
not necessarily have different K-functions, in particular, the K-function is invariant
under independent thinning of the point process, see e.g. Baddeley et al. (2000).

In order to estimate K(r) from a given point pattern on a bounded region B ⊂ R
2,

one would average the number of other points v within a distance r around every
point u in B and divide by the estimated intensity. In most cases, only points inside
the window B are registered. This means that observation of other points inside
the circular disk of radius r around u is censored whenever the point u lies within
distance r to the boundary of B. To compensate for the unobservable part, usual
estimators for K(r) therefore include a Horvitz-Thompson correction term w(u, v;B)
and are of the form

K̂(r) =
1

λ̂2A(B)

∑ 6=

u,v∈X∩B

1(‖u− v‖ ≤ r)w(u, v;B). (1)

Note that λ̂A(B) = X(B) is the number of points in B. Most common are

• the translational edge correction wt(u, v;B) = A(B)/A(Bu ∩Bv), where Bu

stands for the set B shifted by the vector u, and

• Ripley’s isotropic edge correction wi(u, v;B), which is the reciprocal of the
fraction of the perimeter of the circle centred at u and passing through v which
lies inside the sampling window (Ripley, 1976).
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Since λ̂2K̂(r) is an unbiased estimator for λ2K(r), see Ohser and Stoyan (1981),

division by the estimated squared intensity λ̂2 introduces a bias, but it also reduces
the estimation variance, as discussed in detail by Stoyan and Stoyan (2000).

The variance of the estimator K̂(r) depends on the point process model itself as
well as on the argument r and size and shape of the sampling window B. Typically,
the variance is higher for cluster point processes than for regular models with the
same intensity. According to asymptotic results of Ripley (1984, 1988) for a Poisson
point process of intensity λ, it can be approximated by

var K̂(r) ≈ 2πr2

λ2A(B)

(
1 + c1

U(B)

A(B)
r + c2

U(B)

A(B)
λr3

)
(2)

for small r, where U(B) stands for the perimeter of B. The constants c1 and c2 depend
on the type of edge correction used, Ripley (1988) gives c1 = 0.305 and c2 = 0.0415
in the case of isotropic edge correction, and similar values for the other correction
methods. Conditional on the number X(B) = n of points in the observation window,
the estimation variance is approximately

var
(
K̂(r)

∣∣X(B) = n
)
≈ 2πr2A(B)

n2

(
1 + c1

U(B)

A(B)
r + c2n

U(B)

A(B)2
r3
)

(3)

In all cases, var K̂(r) is roughly proportional to r2 if r is small. Thus, the variance

of K̂(r)/r is approximately independent of r.

3 State of the Art

The majority of the statistical tests for spatial point processes that have been pro-
posed so far are based on Ripley’s K-function (Ripley, 1976) or the closely related
L-function (Besag, 1977), see e.g. Ho and Chiu (2009) and Yamada and Rogerson
(2003). Various tests are compared in Ripley (1979), Diggle (1979), Gignoux et al.
(1999).

The statistical analysis of summary functions such as the K-function is hampered
by the fact that their estimates are functional data. It would of course be possible
to inspect K(r) for some fixed argument r, but this rises the problem of choosing
an appropriate r. The best choice of r in terms of power depends heavily on the
alternative to the null model. As estimation variance increases with r, the signal
to noise ratio concomitantly worsens. Virtually all authors therefore recommend to
compare the estimated second order functions as a whole, that is by establishing some
distance between the functional data, mostly the supremum distance

d∞(f1, f2; r0) = sup
r≤r0

|f1(r)− f2(r)| (4)

or the L2-distance

d2(f1, f2; r0) =

∫

r≤r0

(
f1(r)− f2(r)

)2
dr, (5)

where f1 and f2 typically are the empirical and theoretical (or simulated) K- or
L-function, respectively.
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Only little is known about the distribution of these distance statistics. Some
asymptotic formulae have been derived e.g. by Heinrich (1988), but these are of
limited use in the case of relatively small point patterns. The majority of other
results are based on simulation studies.

The power of goodness of fit tests based on the distances d∞ or d2 of K- or L-
functions depends on the upper limit r0. Ripley (1979) recommends to set r0 =
1.25/

√
λ, a choice that has proven to yield powerful tests, see e.g. Diggle (1979). Ho

and Chiu (2006) show that the power can be further improved by choosing adapted
estimators for the intensity as suggested by Stoyan and Stoyan (2000). Another pos-
sibility to increase the power against specific alternatives is to use weighted distances
instead of the plain integrals in (4) or (5), see Ho and Chiu (2009).

All the above mentioned studies concentrate on model tests against a null model
that can be simulated, typically the Poisson model. To our knowledge, the first
model free test was proposed by Diggle et al. (1991) who suggest to use bootstrap
methods to determine the distribution of the test statistic in the situation of data
sets consisting of several independently sampled point patterns. The same principle
was then applied by Baddeley et al. (1993) in the analysis of independent replicates
of three dimensional point patterns. Diggle et al. (2000) present a newer version of
these bootstrap or Monte Carlo tests, which has influenced other authors later, e.g.
Schladitz et al. (2003). These tests are studied in detail in the following section.

4 Diggle et al.’s Monte Carlo Test for Comparing

Independent Samples of K-Functions

4.1 Diggle et al.’s Test Procedure

Diggle et al. (1991, 2000) suggest to test the difference between group means of
independent replicates of empirical K-functions by a bootstrap test. They gener-
ate bootstrap samples (K̂∗

ij) from the original sample (K̂ij)i=1,...,g, j=1,...,mi
as follows:

First, residual functions R̂ij(r) are calculated from the empirical K-functions K̂ij(r)
that were estimated from the jth point pattern in the ith group:

R̂ij(r) := n
1/2
ij (K̂ij(r)− K̄i(r)), (6)

where nij stands for the number of points in the pattern and K̄i(r) for the group

mean. Subsequently, a random random sample (R̂∗
ij) from the set of residual functions

is rescaled and combined with the overall mean K̄:

K̂∗
ij(r) = K̄(r) + n

−1/2
ij R̂∗

ij(r). (7)

The choice of the weight n
1/2
ij is motivated by the assumption that the variance of

K̂ij(r) is inversely proportional to nij, for which authors refer to Cressie (1993, p.
642). Under this assumption, the residuals (6) are approximately exchangeable, and
the distribution of K̂∗

ij approximates the distribution of K̂ij under the null hypothesis.
In order to determine a bootstrap p-value, the observed value of a test statistic is

ranked among the corresponding bootstrap values of the test statistic. Diggle et al.
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(1991) use the statistic

D =

g∑

i=1

∫ r0

0

(√
K̄i(r)−

√
K̄(r)

)2
dr, (8)

and advise to draw the bootstrap residuals R∗
ij with replacement from all R̂ij. This

design is changed later (Diggle et al., 2000) in favor of sampling without replacement,
i.e. performing a (random) bootstrap permutation test, with the test statistic

D =

g∑

i=1

ni

∫ r0

0

1

r2
(
K̄i(r)− K̄(r)

)2
dr, (9)

that was chosen in analogy to classical ANOVA. The square root transformation in
the first case resp. dividing by r2 in the second case serves to achieve roughly constant
variance over the integration interval. The group and overall means are obtained by
inverse weighting with the variance, as usual in heteroscedastic ANOVA. With the
above assumption on the variance,

K̄i(r) =
1

ni

mi∑

j=1

nijK̂ij(r) and K̄(r) =
1

n

g∑

i=1

niK̄i(r),where ni =

mi∑

j=1

nij and n =

g∑

i=1

ni.

In the following subsection, a simulation study of the statistical properties of the
proposed bootstrap test is presented.

4.2 A simulation study of Diggle et al.’s test

We determined the empirical level of the Monte Carlo test in the version of Diggle
et al. (2000) by simulation for the case of Poisson point processes. The parameters
were chosen to mimic the subsampling situation we are finally interested in, namely
relatively small observation windows containing about 20 to 30 points and small sam-
ple sizes mi around ten. 10 000 replications of an experiment with two independent
samples of m1 = m2 = 9 point patterns each were generated. We considered three
versions of the null hypothesis “the two underlying point processes have the same
K-function”, namely

a) the homoscedastic case: both samples were generated from a Poisson point
process with intensity λ = 100 on a 0.5× 0.5 square window,

b) same window, different intensities: the first sample was from a Poisson point
process with intensity λ = 100, while the intensity was λ = 200 in the second
sample, both on the same 0.5× 0.5 square window,

c) same intensity, different windows: both samples were from the same Poisson
point process with λ = 100, but on a unit square window in the second sample.

With an expected number of 25 points per window in the homoscedastic setting, the
study is comparable to the simulations by Diggle et al. (2000) who considered tests
of two samples of m1 = m2 = 10 patterns from Markov point processes with intensity
30 on the unit square. Due to limited computing time their study comprised only
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20 to 50 replicates of the test. They report empirical Kolmogorov-Smirnov distances
to uniformity of the observed p-value distribution with values between 0.09 and 0.48
(i.e. the maximal difference between observed and theoretical distribution function).
However many of the observed distances are not significant due to the small study
size, and it is not known if the discrepancies to uniformity occur at the important
small p-values.

In our simulation study, the K-function was estimated using Ripley’s isotropic
edge correction, see Section 2. The integral in (9) was approximated by a sum on
discrete values of r, with an upper limit r0 = 0.2. Unfortunately, the test appears
to be very liberal (anti-conservative) when group sizes are as small as in the present
simulation study, in particular in the heteroscedastic situations b) and c), see Table 1.

Table 1: Observed rejection rates in Diggle et al.’s test, applied to two groups of 9 realizations each
of a Poisson point process, for the homoscedastic case a) and the heteroscedastic cases b) and c),
see text. Observed rejection rates are based on 10 000 replications.

Nominal significance level α 0.01 0.05 0.10
a) same intensity and window 0.025 0.072 0.121
b) different intensities 0.038 0.100 0.156
c) different windows 0.036 0.096 0.159

The empirical level of the test approaches the nominal level if larger sample sizes
are used, but not if the point patterns contain more points. Table 2 lists the empirical
level for tests with small group size m1 = m2 = 9 and large windows (100 points on
average) as well as for test with group size m1 = m2 = 18 and small windows (25
points on average).

Table 2: Observed rejection rates in Diggle et al.’s test, in the homoscedastic case of Poisson point
processes with intensity λ = 100. Large windows: two groups of 9 replicates each on the unit square,
large samples: two groups of 18 replicates each on square windows with side length 0.5.

Nominal significance level α 0.01 0.05 0.10
large window 0.029 0.079 0.130
large samples 0.014 0.060 0.110

The simulation study indicates that this way of bootstrapping by permutation of
empirical residuals may fail to reproduce the distribution of the test statistic closely
enough when sample sizes are small. This seems to be a general problem with boot-
strap based on small samples, in particular when non pivotal statistics are used.
Already Schenker (1985) reports that confidence intervals for the variance of the nor-
mal distribution tend to be too narrow when they are based on samples of size 50 or
less. In the case of Diggle et al.’s test, the distribution of the statistic D obtained
from permutations of a given small sample of residuals tends to be less variable than
the distribution of the same statistic based on independent small samples. Estimated
residuals are negatively correlated and have a smaller variance than true residuals.
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As a result, the variance between groups, and thus the distance statistic D, is likely
to be smaller in the bootstrapped sample than in the original sample.

The even more pronounced nonuniformity of p-values in the heteroscedastic cases
b) and c) is presumably due to an unlucky choice of the weights for the residuals,
as detailed in the Appendix. The choice was motivated by the assumption that
the variance of K̂ is inversely proportional to the number of points in the pattern.
However, for a binomial point process on a fixed window with n points one can show
that the variance of K̂(r) is rather roughly proportional to n−2 (or n(n− 1)), see the
end of Section 2.

It should be noted that the bootstrapped K-functions can become negative, and
that the mean of the bootstrapped K-functions differs from K̄,

K̄∗(r) =
1

n

g∑

i=1

mi∑

j=1

nij

(
K̄(r) + n

−1/2
ij R̂∗

ij(r)
)

= K̄(r) +
1

n

g∑

i=1

mi∑

j=1

√
nijn∗

ij(K̂
∗
ij(r)− K̄∗

i (r)),

where K̄∗
i is the mean of the group K∗

ij originally belonged to. The difference between
K̄ and K̄∗ vanishes if the residuals are weighted with the number nij of points instead

of the square root n
1/2
ij .

5 A Studentized Permutation Test

5.1 Test Procedure

Nonuniformity of p-values under the null hypothesis as observed with Diggle et al.’s
Monte Carlo test is apparently a general problem of bootstrap tests based on small
samples. As an alternative to bootstrapping, we construct a “pure” permutation
test in the sense of Fisher (1935, 1966, section 21) and Pitman (1937). Such tests
have uniformly distributed rejection rates by construction even when sample sizes are
small, as long as the samples are exchangeable.

In order to achieve robustness of the test towards heteroscedasticity, we suggest
to use a statistic related to the Behrens-Fisher-Welch t-statistic, or alternatively the
corresponding F -statistic, which have proven very robust in permutation tests for
a large range of distributions (Janssen and Pauls, 2005). This is generalized to the
functional data case by considering the L2-norm of the t-statistic, i.e. the integral
over the squared studentized differences between the group means:

T =
∑

1≤i<j≤g

∫ r0

0

(
K̄i(r)− K̄j(r)

)2
1
mi
s2i (r) +

1
mj

s2j(r)
dr, (10)

with

K̄i(r) =
1

mi

mi∑

j=1

K̂ij(r) and s2i (r) =
1

mi − 1

mi∑

j=1

(K̂ij(r)− K̄i(r))
2.
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Note that this statistic is in fact very similar to the statistic used in Diggle et al.’s
Monte Carlo test. For g = 2 groups, (9) reduces to

D =
1

2

∫ r0

0

(
K̄1(r)− K̄2(r)

)2

r2/n1 + r2/n2

dr.

Under the assumption made by Diggle et al. (1991, 2000) that the variance of K̂ij(r)
is asymptotically proportional to r2/nij, the denominator in T could be considered
as an estimator for the denominator in D, up to a scale factor.

As we will see later, tests using the statistic T are still sensitive to pronounced het-
eroscedasticity. In these cases, where quadrats are known to be of markedly different
size, or point patterns have very different intensity, we propose to use the following
statistic instead:

U =
∑

1≤i<j≤g

∫ r0

0

(
K̄i(r)− K̄j(r)

)2

r2aij
dr, aij =

1

r0

∫ r0

0

(
1
mi
s2i (r) +

1
mj

s2j(r)
)/

r2dr

(11)

This statistic is motivated by the fact that the variance of K̂(r) is roughly propor-
tional to r2, see Equation (2). Being based on the estimates K̂(r) for all r in the
interval, the variance estimator used in U is more stable than the individual denom-
inators in the statistic T . According to the recommendations that Hall and Wilson
(1991) give for bootstrap tests, U should therefore be preferred to T .

5.2 Empirical Level of the Studentized Permutation Test

We investigated the empirical level of the studentized permutation test by simulation
of Poisson point processes. Table 3 summarizes the results for tests comparing two
groups of 9 patterns each, based on the statistic T given by (10) and U , given by
(11), respectively. The same scenarios for the homoscedastic and the heteroscedastic
case were used as in Section 4.2.

Table 3: Observed rejection rates in 10 000 replications of the studentized permutation test using
test statistic T or U , applied to two groups of 9 realizations each of a Poisson point process. a) Both
point processes with intensity λ = 100 on a 0.5 × 0.5 square, b) same window, different intensity
(λ1 = 100, λ2 = 200), and c) same intensity (λ = 100), different windows (squares with side lengths
0.5 and 1.0, resp.).

Nominal significance level α 0.01 0.05 0.10
Test statistic T U T U T U
a) same intensity and window 0.011 0.010 0.050 0.048 0.098 0.099
b) different intensity 0.018 0.013 0.070 0.058 0.131 0.110
c) different windows 0.021 0.015 0.074 0.062 0.133 0.113

As expected, both studentized permutation tests adhere to the nominal rejec-
tion rate if the extended null hypothesis, i.e. exchangeability of the estimated K-
functions, is met, that is in the homoscedastic situation a). The rejection rates in
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the heteroscedastic cases b) and c) are somewhat larger than the nominal rejection
rate. However compared to Diggle et al.’s test, both tests show improved confor-
mity with the nominal level of significance, with U being clearly more robust towards
heteroscedasticity than T .

5.3 Power of the Test

The power of the test has been exemplarily studied by testing regular and clustered
point patterns against realizations of a Poisson point process. The point patterns were
obtained by simulating from Matérn’s (1960) hard core and cluster point processes
with parameters that lead to different degrees of regularity or clustering. Both types
of point processes are derived from a parent Poisson point process. The Matérn hard
core model used here is obtained by dependent thinning. To this end, the points
are first marked with independent, identically distributed “arrival times”, and all
points that have a higher mark than any neighbors within the hardcore distance h
are removed. The Matérn cluster point process consists of independent clusters of
daughter points around each parent. The numbers of daughter points per cluster
are Poisson distributed with mean µ, and the points are positioned independently
uniformly random in a circular disk of radius r around the corresponding parent
point. The parent points do not belong to the resulting point process. Example
realizations of both models on a unit square are shown in Figure 2.

a) hardcore-2 b) hardcore-1 c) Poisson d) cluster-1 e) cluster-2 f) cluster-3

Figure 2: Sets of three independent realizations of Matérn hard core (a and b), Poisson (c) and
Matérn cluster point processes (d, e, f), with intensity λ = 100 on a unit square. Model parameters:
hard core radius a) h = 0.05, b) h = 0.02; mean number µ of points per cluster and cluster radius r

d) µ = 1, r = 0.1, e) µ = 4, r = 0.1, f) µ = 4, r = 0.05. The short names for the models given below
the patterns are used later in the text.

For the cluster models used here, the K-functions lie entirely above the K-function
of the Poisson point process, while the K functions of the hard core models lie entirely
below, see Figure 3.

Figure 4 depicts the results for tests with significance level α = 0.05, applied on
groups of m1 = m2 = 9 patterns on square windows of edge length 0.5, that is with 25
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Figure 3: K-functions of Matérn cluster, Poisson and Matérn hard core point processes as shown
in Figure 2.

points per pattern on average. Already with these small data sets and point pattern
windows, the strongly clustered and strongly regular models are discriminated from
CSR with probability 1 for virtually any choice of the upper limit r0. However, the
power of testing the weakly clustered or regular models (cluster-1 and hardcore-1)
against CSR depends strongly on the parameter r0.

Interestingly, tests based on the statistic T and tests based on U are virtually
equally powerful except in the comparison of the hardcore-1 model against CSR,
where T outperforms U . Apparently, increased robustness of U is paid for with a
slight loss in power when testing regular point patterns. This may be explained
with the fact that, for hardcore models, low values of var(K̂(r)/r) coincide with large
differences K(r)−πr2 to the K-function under CSR, namely for small r. Therefore the
integrand contributing to the statistic T , Equation (10), becomes disproportionately
large for small r as compared to the corresponding integrand in U , Equation (11).

6 Comparing Two Point Patterns by Subsampling

6.1 Test Procedure

In the previous section, we introduced tests that allows to compare groups of empirical
K-functions obtained on independently sampled replicates of two (or more) stationary
point processes. These tests can also be used for the null hypothesis that two single
observed patterns are realizations from stationary point processes with the same K-
function. This is accomplished by subdividing the two observation windows into
disjoint quadrats (which need not be quadratic) and applying the permutation test
to the artificial sample of K-functions estimated from the subpatterns. Under the
null hypothesis, the empirical K-functions are identically distributed if the quadrats
are congruent, and they still have the same mean, if the quadrats differ in size or
shape, or if the patterns are independently thinned.

The test procedure requires large enough point patterns in order to be able to
estimate K on quadrats obtained by subdividing the original observation windows.
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Figure 4: Power when testing the five non Poisson models against CSR, as a function of the upper
limit r0. Test at significance level α = 5% based on m1 = m2 = 9 patterns on a square of side
length 0.5. Solid lines: tests based on the statistic T , dashed lines: tests based on U .

On the basis of the simulation experiments described below, we recommend to only
include estimates that were obtained on quadrats with at least nmin = 10 points. The
whole test procedure to compare two patterns observed on windows B1 and B2 can
be summarized as follows:

1. For each window Bi, i = 1, 2, generate a set {Bij}, j = 1, . . . ,mi, of pairwise
disjoint quadrats, of at least roughly the same size and shape.

2. Calculate the empirical K-functions K̂ij on the Bij. Only include quadrats Bij

with at least nmin points, thus possibly decreasing the initial sample sizes mi.

3. Apply the studentized permutation test, using one of the statistics T or U given
by (10) and (11), respectively.

Subdivision of the initial observation windows, the first step of the test, bears some
freedom of choice — should the number mi of quadrats be small or rather the size
of the quadrats? We explore the effect of choosing different scenarios, including the
upper integration bound r0 in the test statistics, by a simulation study in the next
subsection.

It has to be noted that subpatterns observed on disjoint windows are not inde-
pendent in general, with the important exception of the Poisson point process. This
could be problematic, since dependence between the K̂ij, more precisely violation of
the exchangeability assumption, may distort the empirical level of any permutation
test. However, most of the popular point process models have mixing properties,
meaning that the dependence between subpatterns decreases as the distance between
the quadrats increases. In fact, asymptotic tests for point processes, such as Hein-
rich (1991) and Guan (2008), rely on this property. The asymptotic independence
of subpatterns on distant windows naturally carries over to asymptotic independence
of any derived random variable, such as the empirical K-function. In the simulation
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study described below, the observed point patterns were exhaustively partitioned
into quadrats, that is, some of the quadrats were adjacent. Although this constitutes
a worst case situation, the deviation from the nominal significance level was small
even for the strongly clustered or strongly regular point processes where patterns on
adjacent windows cannot be considered independent.

6.2 Empirical Level and Power of the Test

In this section, we present the results of a simulation study of the empirical rejection
rate of the above described tests, both under the null hypothesis and under various
alternatives. For this purpose, independent realizations of the models depicted in Fig-
ure 2 were generated on square observation windows of various sizes with edge lengths
ranging from 1.5 to 3.0, corresponding to mean number of points between 225 and
900. The windows were partitioned into 3× 3, 4× 4, 5× 5 and 6× 6 square quadrats,
though with minimal edge length 0.5 corresponding to 25 points on average. Thus it
is possible to study both the effect of window size and sample size. For the upper limit
r0 in the test statistics T and U , we chose the values r0 = 0.05, 0.10, . . . , 0.30. The in-
tegrals were approximated by sums on discrete values of r with r = 0, 0.001, 0.002, . . . .
Each simulation experiment was repeated 10 000 times. In the settings with 3 × 3
quadrats, that is with initial sample size m1 = m2 = 9, all possible

(
18
9

)/
2 = 24310

levels of the test statistic under permutation were generated. For larger sample size,
we calculated p-values using 4000 random permutations.

Empirical level under the null hypothesis Figure 5 shows the observed rejec-
tion rates under the non Poisson null hypotheses, that is for the Matérn cluster and
Matérn hard core models, for the significance levels α = 0.01, α = 0.05 and α = 0.1,
and two sampling windows of side length 1.5 divided into 3 × 3 quadrats. For the
Poisson model, the empirical level of the test corresponds to the nominal level, since
the estimated K-functions on different quadrats are exchangeable, and deviations
would be purely random. To give an impression of the magnitude of such random
deviations, a central 90% interval is also indicated in the graphs.

While the test behaves slightly liberal for the strongly clustered models (cluster-2
and cluster-3), it behaves conservative with the regular models, at least for larger
values of r0. These findings may be ascribed to the correlation structure of the
models. For the cluster models, the empirical K-functions on neighboring quadrats
are positively correlated, which entails that the within-subsampling-group variance is
smaller than under independent sampling or under resampling by permutation. Since
this variance appears in the denominators of the test statistics T and U , the result for
the original samples tends to be larger than the results for the permutation samples,
hence small p-values are observed more frequently than under full exchangeability.
Conversely, negative correlation of empirical K-functions on neighboring quadrats in
hard core models leads to smaller values of the test statistic in the original sample as
compared to the permutated samples, and thus to conservative behavior of the test.

The moderate deviation from the nominal level of significance becomes smaller
as the window size increases, see Figure 6, which is due to a better mixing, i.e.,
decreasing dependence of the subpatterns. By contrast, increasing the number of

13



0.05 0.10 0.15 0.20 0.25 0.30

0.
00

6
0.

00
8

0.
01

0
0.

01
2

0.
01

4
0.

01
6

r0

re
je

ct
io

n 
ra

te

cluster1
cluster2
cluster3

hardcore1
hardcore2

α = 0.01

0.05 0.10 0.15 0.20 0.25 0.30

0.
04

0
0.

04
5

0.
05

0
0.

05
5

0.
06

0
0.

06
5

0.
07

0

r0

re
je

ct
io

n 
ra

te

cluster1
cluster2
cluster3

hardcore1
hardcore2

α = 0.05

0.05 0.10 0.15 0.20 0.25 0.30

0.
09

0.
10

0.
11

0.
12

0.
13

r0

re
je

ct
io

n 
ra

te

cluster1
cluster2
cluster3

hardcore1
hardcore2

α = 0.10

Figure 5: Empirical rejection rate of the test under the null hypothesis as a function of the upper
limit r0, for nominal significance levels α = 0.01, α = 0.05 and α = 0.10. Results for the five non
Poisson models, using 3 × 3 quadrats of side length 0.5 with an average of 25 points per quadrat.
Dashed lines: tests using U , solid lines: tests using T , grey area: central 90% interval of observed
frequencies around the true significance level under uniformity of p-values.

quadrats does not improve the empirical level of the test, as evident from the second
row in Figure 6.

Power of the test We investigated the power of the test against CSR for the
clustered and hardcore models as before by simulation. The results for the test
based on subsampled quadrats were virtually indistinguishable from the results for
independent realizations on windows of the same size as the quadrats. For windows
or quadrats of edge length 0.5 and sample size 9, they can be found in Section 5.2
and are therefore not listed here.

When the observed point patterns are larger than just about 200 points, one
might ask the question whether it is better to increase the sample size in terms of
the number of quadrats, or rather to increase the size of the quadrats. In order to
find an answer, the simulations were extended to different quadrat size and number.
The results shown in Figure 7 indicate that tests based on few large quadrats reach a
(slightly) higher power than tests based on many small quadrats, at least for clustered
point processes and in the investigated range of 3× 3 up to 6× 6 quadrats.

At the first glance, this finding may seem counterintuitive. In traditional statistics,
one would not pool or average data before carrying out a t-test, because the decrease
in degrees of freedom would implicate a decrease in power. The seemingly paradoxical
behavior of the studentized permutation tests may be explained by the fact that the
estimation variance of the within group means K̄i(r), i = 1, 2, becomes smaller if
few large quadrats are used rather than many small ones - as one can see from the
approximations (2) or (3), the variance of K̂(r) becomes larger if the ratio window
perimeter to area is large.

7 Practical Application

The two point patterns shown in Figure 1 represent the positions of capillary pro-
files on sections of healthy and tumorous prostate tissue, respectively. They were

14



0.05 0.10 0.15 0.20 0.25 0.30

0.
00

6
0.

00
8

0.
01

0
0.

01
2

0.
01

4
0.

01
6

r0

re
je

ct
io

n 
ra

te

cluster1
cluster2
cluster3

hardcore1
hardcore2

size: 0.5× 0.5

0.05 0.10 0.15 0.20 0.25 0.30

0.
00

6
0.

00
8

0.
01

0
0.

01
2

0.
01

4
0.

01
6

r0

re
je

ct
io

n 
ra

te

cluster1
cluster2
cluster3

hardcore1
hardcore2

size: 0.7× 0.7

0.05 0.10 0.15 0.20 0.25 0.30

0.
00

6
0.

00
8

0.
01

0
0.

01
2

0.
01

4
0.

01
6

r0

re
je

ct
io

n 
ra

te

cluster1
cluster2
cluster3

hardcore1
hardcore2

size: 1.0× 1.0

0.05 0.10 0.15 0.20 0.25 0.30

0.
00

6
0.

00
8

0.
01

0
0.

01
2

0.
01

4
0.

01
6

r0

re
je

ct
io

n 
ra

te

cluster1
cluster2
cluster3

hardcore1
hardcore2

4× 4 quadrats

0.05 0.10 0.15 0.20 0.25 0.30

0.
00

6
0.

00
8

0.
01

0
0.

01
2

0.
01

4
0.

01
6

r0

re
je

ct
io

n 
ra

te

cluster1
cluster2
cluster3

hardcore1
hardcore2

5× 5 quadrats

0.05 0.10 0.15 0.20 0.25 0.30

0.
00

6
0.

00
8

0.
01

0
0.

01
2

0.
01

4
0.

01
6

r0

re
je

ct
io

n 
ra

te

cluster1
cluster2
cluster3

hardcore1
hardcore2

6× 6 quadrats

Figure 6: Effect of quadrat size (upper row) and number (lower row) on the empirical level of
the test. Results based on 10 000 replications, in the upper row for 3 × 3 quadrats, in the lower
row for quadrat size 0.5 × 0.5. In all cases, the intensity of the point processes studied is λ = 100.
Remaining legend as in Figure 5.

taken from larger studies by Mattfeldt et al. (2006, 2007), who concluded that capil-
lary profile patterns are more clustered in healthy tissue than in tumorous tissue by
comparing two groups of 12 independently sampled patterns. The first study used
the empirical pair correlation functions g(r), which is related to the K-function by
g(r) = dK(r)/dr/(2πr). In the second study, a point process model (the Strauss
hard core model) was fit to the data that allows for various degrees of interactions,
and fitted parameters were compared.

We could confirm the findings of Mattfeldt et al. (2006, 2007) by testing the
difference between the empirical K-functions of the two point patterns. According to
the simulation study in Section 6, the studentized permutation test is slightly more
powerful and also closer to the nominal level of significance if only few quadrates are
used. We therefore divided the two patterns into 3× 3 quadrates. In both cases, one
of the quadrates contained less than 15 points, which was considered not sufficient
to estimate the K-function. These two subpatterns were therefore discarded, and
two groups of eight point patterns remained. The estimated K-function for the two
patterns, as shown in the left part of Figure 8 below, indicates clustering in the pattern
from healthy tissue for values of r up between 70 µm and 140 µm, where K̂(r) exceeds

the CSR-K-function K(r) = πr2, while for values of r exceeding r = 230 µm, K̂(r) lies
below the πr2. The point pattern from tumorous tissue shows the opposite behavior.
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Figure 7: Power of the test using statistic T and fixed r0 = 0.15, of the models cluster-1 and
hardcore-1 against CSR, as a function of the total number of points in the sample. Different ways to
partition the observation window were used. Solid lines: 3 quadrats of increasing size (side length
0.5,0.7 and 1.0). Dashed lines: increasing number of quadrats (3× 3, 4× 4, 5× 5, 6× 6).

The right part of Figure 8 illustrates the variability of the individual estimates K̂(r)

by means of the pointwise minimum and maximum of K̂(r)− πr2 in the groups.
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Figure 8: Estimated K-functions for the two point patterns. Left panel: mean values of K̂(r)

estimated on quadrates with at least 15 points. Right panel: mean values of K̂(r) − πr2, strong
lines: mean values, thin lines: range (pointwise minimum and maximum) of the individual estimates
on the quadrats.

The tests based on the statistics T and U were carried out using integration
bounds r0 between r0 = 50 µm and r0 = 300 µm. As it can be seen from Figure 9, the
test based on U always yielded smaller p-values, i.e. higher significance, than the test
based on T . In both cases, the first minimum, namely p = 0.013 for the test using
T and p = 0.009 for the test using U , was attained for 140 ≤ r0 ≤ 144 µm. Note
that Ripley (1979) and Diggle (1979) recommend to use r0 = 1.25/

√
λ with similar

statistics used for testing the CSR assumption, which amounts to r0 ≈ 145 µm in the
present case. While the test based on T gave less significant results for higher values
of r0, the test based on U reached p = 0.007 for r0 ≥ 299 µm.
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Figure 9: Resulting p-values of the tests using statistic T (solid line) and U (dashed line), as a
function of the upper integration bound r0.

For very small values of r0, the test result is not statistically significant. Appar-
ently, the two point patterns behave similar at short distances seen from a typical,
i.e. randomly chosen, point. This corresponds to an observation reported by Mat-
tfeldt et al. (2007), who found almost the same hard-core distance of about 25 µm in
healthy and tumorous tissue. They explain their finding by the fact that the profile
midpoints cannot come closer than the capillary diameter which is the same in both
cases.

8 Conclusions

We have suggested a permutation test of equality of the K-functions in two groups of
independently sampled point patterns, and used this test to distinguish between two
single point patterns by subsampling quadrats. The permutation test requires that
estimated K-functions on disjoint quadrats which belong to the same pattern are ap-
proximately exchangeable. A similar assumption is underlying the bootstrap method
proposed by Loh and Stein (2004) to assess the variance of K-function estimates. The
authors state that the estimates obtained on disjoint quadrats are approximately in-
dependent. The degree to which this is true depends on mixing properties of the
point process — under the Complete Spatial Randomness (CSR) model, restrictions
to disjoint quadrats are always independent. But even in cases where the null model
is far from CSR, our simulation results showed that the empirical level of the tests
was in good accordance with the theoretical significance level. One could criticize the
lack of a formal method to check underlying mixing assumptions, however this also
affects asymptotic tests for point processes such as Heinrich (1991) or Guan (2008)
that rely heavily on mixing. Our test can always be made more robust towards
long range dependence by leaving “guard zones” between the quadrats, which would
however require correspondingly larger point patterns.

Our proposed test statistics use integral distances between the estimates of K(r)
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over a certain interval (0, r0]. The power of the test depends on the upper integra-
tion bound r0. In the simulation study, this became particularly apparent for the
test of slightly regular or slightly clustered point patterns against CSR, where the
maximum power was reached for values r0 less than the recommended r0 = 1.25/

√
λ

for regular point patterns, and for values larger than r0 = 1.25/
√
λ for clustered

point patterns. One possibility to improve the power of the tests consists in using
a hierarchical procedure with a decision rule for r0 based on a different diagnostic
than the K-function, for example the Clark-Evans index (Clark and Evans, 1954)
that allows to detect clustering or regularity. An alternative is to try to improve
the test statistic by weighting the integrands depending on r. This was studied in
detail by Ho and Chiu (2009) for simulation tests against the CSR hypothesis based
on estimated L-functions, L(r) =

√
K(r)/π. They found that the optimal choice

of weights depends on the range of interaction in the alternative model, that is, no
general recommendation can be given.

The test principle can be generalized in many ways. Analogous permutation
tests can be based on other point process characteristics such as the nearest-neighbor
distance distribution F (r), the empty space function G(r) or the J-function (van
Lieshout and Baddeley, 1996). By using tailor-made K-functions for inhomogeneous
point processes, a similar test can be set up to distinguish between different types of
inhomogeneity, as will be presented in a forthcoming paper by Baddeley, Hahn and
Jensen (2011).
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Appendix: Diggle et al.’s Test Under Heteroscedasticity

In a simulation study not shown here, we modified the test by Diggle et al. to
be based on plain, i.e. non reweighted, residuals. That simplification resulted in
improved behavior under heteroscedasticity. This finding suggests that reweighting of
the residuals is one reason for the markedly increased deviation from uniformity of the
p-values — recall that the heteroscedastic situations (different window size or different
intensity) always implied big differences in the number of points, thus also very
different weights. Apparently the distribution of the reweighted residuals does not
reflect the true distribution of residuals, thus contributing to the poor performance
of the test under heteroscedasticity.

As Equation (3) shows, the variance of the K-function estimator and thus also
the variance of the residuals is rather inversely proportional to the squared number n
of points than to n. Under this assumption, the bootstrapped test statistic based on
residuals that are reweighted with n−1/2 has a smaller mean than the corresponding
statistic using the “proper weights” n−1, unless if n is constant, that is if all point
patterns contain the same number of points. It makes therefore no wonder that the
rejection rate under the null hypothesis is higher when Diggle’s weights are used.

For a proof of this assertion we would need to know the covariance structure of the
empirical K-function, since the test statistic is built on integral distances. The idea
can however be conveyed in a simpler situation, corresponding to evaluating K(r) at
only one r and using the theoretical mean for calculating the residuals. These “true”
residuals are represented by independent random variables X1, . . . , Xm1

, Xm1+1, . . . , Xm1+m2

with zero mean. For sake of simplicity, we set m1 = m2 = m in the following. Con-
sider the test statistic

D = m
2∑

i=1

(Mi − M̄)2 =
m

2
(M1 −M2)

2, M1 =
1

m

m∑

i=1

Xi, M2 =
1

m

2m∑

i=m+1

Xi.

Its mean is

ED =
1

2m

2m∑

i=1

VarXi.

The bootstrap method proposed by Diggle et al. (1991) consists in random permuta-
tion of weighted residuals wiXi, i = 1, . . . , 2m that are reweighted after having been
permuted. From the permutation π : {1, . . . , 2m} → {1, . . . , 2m} of the index set we
obtain a bootstrapped statistic

D∗(π) =
m

2
(M∗

1 −M∗
2 )

2, M∗
1 =

1

m

m∑

i=1

1

wi

Xπ(i)wπ(i), M∗
2 =

1

m

2m∑

i=m+1

1

wi

Xπ(i)wπ(i)

with mean

ED∗(π) =
1

2m

2m∑

i=1

w2
π(i)

w2
i

VarXπ(i).

The weights chosen by Diggle et al. were meant to be proportional to VarX
−1/2
i ,

but since Var K̂(r) is rather inversely proportional to the squared number of points
than to the number of points, as supposed by the authors, the weights are in fact
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approximately proportional to VarX
−1/4
i . Assuming that wi = cVarX

−1/4
i for some

c, we get

ED∗(π) =
1

2m

2m∑

i=1

(
VarXπ(i)

)−1/2

(
VarXi

)−1/2
VarXπ(i)

=
1

2m

2m∑

i=1

√
VarXπ(i) VarXi

≤ 1

2m

2m∑

i=1

VarXπ(i) +VarXi

2
= ED,

the inequality being strict iff VarXπ(i) 6= VarXi for some i ∈ {1 . . . 2m}.
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