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1. Introduction

In many psychological, biological, or medical trials, data are collected in terms
of a matched pairs design, e.g. when each subject is observed repeatedly under
two different treatments or time points. When the normality assumption of the
data (or of the differences of the paired observations) is violated, e.g. in case of
skewed distributions or even ordered categorical data, nonparametric ranking
procedures, which use ranks over all dependent and independent observations,
are preferred for making statistical inferences (Munzel, 1999b). Most of these
approaches, however, are restricted to testing problems and cannot be used for
the computation of confidence intervals for the treatment effects. In randomized
clinical trials, the construction of confidence intervals is consequently required by
regulatory authorities: “Estimates of treatment effects should be accompanied
by confidence intervals, whenever possible. . . ” (ICH, 1998, E 9 Guideline, ch.
5.5, p. 25). Particularly, different variances of the paired observations occur
in a natural way, e.g. when data are collected over time. The derivation of
nonparametric procedures, which allow the data to have different variances or
shapes even under the null hypothesis, is a challenge.

We consider n independent and identically distributed random vectors

Xk = (Xk,1, Xk,2)
T , k = 1, . . . , n, (1.1)

with marginal distributions Fi, i.e. Xk,i ∼ Fi, i = 1, 2; k = 1, . . . , n. To al-
low for continuous and discontinuous distributions in a unified way, Fi(x) =
1/2(F+

i (x) + F−

i (x)) denotes the normalized version of the distribution func-
tion (Akritas, Arnold and Brunner, 1997; Akritas and Brunner, 1997; Munzel,
1999a; Ruymgaart, 1980). Hereby, F+

i (x) = P (X1,i ≤ x) denotes the right-
continuous and F−

i (x) = P (X1,i < x) denotes the left-continuous version of the
distribution function, respectively. The general model (1.1) does not entail any
parameters by which a difference between the distributions could be described.
Therefore, the marginal distributions F1 and F2 are used to define a treatment
effect by

p =

∫
F1dF2 = P (X1,1 < X2,2) + 1/2P (X1,1 = X2,2), (1.2)

which is known as relative marginal effect (Brunner, Domhof and Langer, 2002;
Brunner and Puri, 1996; Konietschke et al., 2010, p. 38). Note that p is not
equivalent to the sign effect p̃ = P (X1,1 < X1,2)+1/2P (X1,1 = X1,2), i.e. to the
probability of the first observation being smaller than the second observation.
The relative marginal effect p uses more information from the data. In particular,
compared to the Wilcoxon-signed-rank test, inference methods for p do not
need the assumption of symmetric distributed differences (Munzel, 1999b). For
independent ordered categorical data, p is also known as ordinal effect size
measure (Ryu, 2009). If p > 1/2, the observations with distribution F2 tend to
be larger than those with distribution F1. In case of p = 1/2, the observations
in neither one of the two marginal samples tend to be smaller or larger than
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in the other sample. Thus, we characterize the case of “no treatment effect” as
p = 1/2. Clearly, if F1 = F2, then p = 1/2 is fulfilled. The other implication,
however, is not true in general. This can be seen by the counterexample that
p = 1/2 if X1,1 and X2,2 are both normally distributed with a common mean µ
and possibly heteroscedastic variances σ2

1 and σ2
2 , respectively. Therefore, testing

the null hypothesis H0 : p = 1/2 is known as the nonparametric Behrens-Fisher
problem (Brunner and Munzel, 2000).

Munzel (1999b) proposed a test procedure for H0 : p = 1/2 and a small
sample approximation in matched pairs. His test is widely used by practitioners
(Krone et al., 2008; Obenauer et al., 2002, among others). Simulation studies
show that the procedure tends to maintain the type-I error level quite accurately
when n ≥ 20. For smaller n < 20, however, the test tends to be very liberal or
conservative, depending on whether X1,1 and X1,2 are negatively or positively
correlated.

In this paper, we investigate the conditional studentized permutation distri-
bution of Munzel’s linear rank statistic to achieve a valid procedure for finite
sample sizes. Although the data may not be exchangeable in model (1.1), an ac-
curate and (asymptotically) valid level α permutation test for H0 : p = 1/2 can
be derived, if (i) the permutation distribution of the statistic is asymptotically
independent from the distribution of the data; (ii) the permutation distribution
has a limit; and (iii) if the distribution of the test statistic and the conditional
permutation distribution (asymptotically) coincide (Janssen and Pauls, 2003).
The conditions (i)-(iii) are also known as the invariance property of permutation
tests (Neubert and Brunner, 2007). Moreover, our proposed permutation test
has the additional advantage that it is even exact for finite sample sizes if the
pairs are exchangeable.

For independent observations, Janssen (1997), Janssen and Pauls (2003) and
Janssen (2005) investigate studentized permutation approaches for the paramet-
ric Behrens-Fisher problem, whereas Janssen (1999b) and Neubert and Brunner
(2007) also consider ranking approaches forH0 : p = 1/2. The theoretical results
obtained in these papers, however, are not valid in our model and the permuta-
tion scheme carried out for independent observations (i.e. to permute all data
X1,1, X1,2, . . . , Xn,1, Xn,2) needs to be changed. Following Janssen (1999a) and
Munzel and Brunner (2002), we permute the sample units Xk,1 and Xk,2 within
each matched pair Xk = (Xk,1, Xk,2)

T to protect the dependency structure of
the data. Based on the 2n possible permutations within the sample units, condi-
tional central limit theorems as well as test consistency results will be derived in
this paper. It will be shown that the items (i)-(iii) mentioned above are fulfilled.
In particular, the studentized permutation distribution under an arbitrary al-
ternative p 6= 1/2 will be investigated, which can be used for the computation
of approximate (1 − α)-confidence intervals for p.

Munzel and Brunner (2002) suggest an exact paired rank test for the null
hypothesis of exchangeability. However, this approach cannot be used for the
computation of confidence intervals, and particularly, it is not valid under the
assumption of heteroscedasticity.
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2. Munzel’s (1999b) unconditional procedure

To estimate the relative marginal effect size p defined in (1.2), let

F̂i(x) = n−1
n∑

k=1

1/2 (1{Xk,i ≤ x}+ 1{Xk,i < x}) , i = 1, 2,

denote the marginal empirical distribution functions. Here, F̂i(x) denotes the
normalized version of the empirical distribution function (Ruymgaart, 1980).

An estimator p̂ of p is then obtained by replacing F1, and F2 with F̂1, and F̂2,
respectively. The estimator

p̂ =

∫
F̂1dF̂2 = (2n)−1(R2· −R1·) + 1/2 (2.1)

can easily be calculated by using the (mid-)ranks Rk,2 and Rk,1 from Xk,2

and Xk,1 among all 2n observations, respectively. Here, Ri· = n−1
∑n

k=1 Rk,i

denotes their means within marginal sample i, i = 1, 2. Brunner, Puri and
Sun (1995), Akritas and Brunner (1997), Brunner and Puri (1996) and Mun-
zel (1999b) have shown that the linear rank statistic Tn = n1/2(p̂ − p) fol-
lows, asymptotically, as n → ∞, a normal distribution with expectation 0 and
variance σ2 = var(F2(X1,1) − F1(X1,2)). To estimate the unknown variance

σ2 consistently, let R
(i)
k,i denote the rank of Xk,i among all n observations in

marginal sample i and define the normed placements (Orban and Wolfe, 1982)

Zk = F̂1(Xk,2)−F̂2(Xk,1) = n−1(Rk,2−R
(2)
k,2−Rk,1+R

(1)
k,1). Finally, the unknown

variance σ2 can be consistently estimated by the empirical variance

σ̂2 = (n− 1)−1
n∑

k=1

(
Zk − Z·

)2
. (2.2)

Under the null hypothesis H0 : p = 1/2, the linear rank statistic

Mn = n1/2(p̂− 1/2)/σ̂ (2.3)

follows, asymptotically, as n → ∞, a standard normal distribution if σ2 >
0 holds. Thus, an asymptotic unconditional two-sided test is given by ϕn =
1{Mn ≤ −z1−α/2} + 1{Mn ≥ z1−α/2}, where z1−α/2 denotes the (1 − α/2)-
quantile from the standard normal distribution. A one-sided test for the null
hypothesis H0 : p ≤ 1/2 is given by ϕn,1 = 1{Mn ≥ z1−α}. Without loss of
generality we only consider two-sided testing problems throughout this paper.
Here we like to point out that the theoretical results in this paper, however,
are not restricted to one or two-sided testing problems. Asymptotic (1 − α)-
confidence intervals for p are given by

C =
[
p̂± z1−α/2(σ̂n

−1/2)
]
. (2.4)
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Munzel (1999b) suggests to approximate the distribution of Mn by a central t-
distribution with n− 1 degrees of freedom. For inferences, the quantiles z1−α/2

used above are replaced by the (1 − α/2)-quantile from the tn−1-distribution.
Simulation studies show, however, that the quality of the approximation depends
on the dependency structure in the data which is, of course, not a desirable
property of a procedure for matched pairs. Therefore, as a finite correction, the
studentized permutation distribution from Munzel’s linear rank statistic Mn

defined in (2.3) will be considered in the next section.

3. A studentized permutation test

Let τ1, . . . , τn denote n independent and identically distributed permutations on
the symmetric group S2,, i.e. on the set of permutations {(1, 2), (2, 1)}, and let
Xτ

k = (Xk,τk(1)
, Xk,τk(2)

)T denote the permuted pairs for k = 1, . . . , n. The data

Xk and the permuted data Xτ
k are collected in X = (X1, . . . , Xn)

T and in Xτ =
(Xτ

1 , . . . , X
τ
n)

T , respectively. Further let p̂ = p̂ (X) and σ̂2 = σ̂2(X) denote the
estimators of p and σ2 as defined in (2.1) and in (2.2). For convenience, let
p̂ τ = p̂ (Xτ ) and σ̂2

τ = σ̂2(Xτ ) denote the quantities p̂ and σ̂2 being computed
with the permuted variables.

It turns out, that the distribution of Tn(X) = n1/2(p̂ − 1/2) and the condi-
tional permutation distribution of T τ

n (Xτ ) = n1/2(p̂ τ − 1/2) differ under het-
eroscedasticity, and a valid level α test can not be achieved in this setup. There-
fore, we consider the distribution of the test statistic Mn(X) = n1/2(p̂− 1/2)/σ̂
defined in (2.3) and the conditional studentized permutation distribution of the
statistic

M τ
n = n1/2(p̂ τ − 1/2)/σ̂τ , (3.1)

i.e. of the studentized quantity T τ
n (Xτ ). In the next steps, we will investigate

the invariance property of the conditional distribution of M τ
n . The limiting dis-

tribution of M τ
n will be derived in the next theorem.

Theorem 1. Let M τ
n as given in (3.1) and denote by Φ the standard normal

distribution function. If σ2 > 0, then we have convergence under the null as well
as under the alternative

sup
x∈R

| P (M τ
n ≤ x | X)− Φ(x) |→ 0 in probability, as n → ∞. (3.2)

Theorem 1 states that the limiting standard normal distribution of M τ
n does

not depend on the distribution of the data, particularly, it is achieved for ar-
bitrary p, i.e. it even holds under the alternative p 6= 1/2. Let ϕτ

n = 1{Mn ≤
zτα/2}+1{Mn ≥ zτ1−α/2}, where z

τ
1−α/2 denotes the (1−α/2)-quantile from the

conditional studentized permutation distribution. Note that for notational con-
venience we only focus on this non-randomized version. However, the following
results also hold for a randomized version of the permutation test. In the next
theorem we will show that Munzel’s unconditional test ϕn and the conditional
permutation test ϕτ

n are asymptotically equivalent.
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Theorem 2.

(i) Under the null hypothesis H0 : p = 1/2, the studentized permutation test
ϕτ
n is asymptotically exact at α-level of significance, i.e. E(ϕτ

n) −→ α, and
asymptotically equivalent to ϕn, i.e.

E(|ϕτ
n − ϕn|) −→ 0 as n → ∞. (3.3)

(ii) The permutation test ϕτ
n is consistent, i.e. for any choice of p we have

convergence

E(ϕτ
n) −→ α1{p = 1/2}+ 1{p 6= 1/2} as n → ∞.

Theorem 1 and Theorem 2 show that the studentized permutation test ϕτ
n

fulfills the invariance property, thus, it is an appropriate level α test procedure
for H0 : p = 1/2. The numerical algorithm for the computation of the p-value
is as follows

1. Given the data X , compute Munzel’s statistic Mn as given in (2.3).
2. For each of the 2n possible permutations, compute the values M τ

n and save
them in A1, . . . , A2n .

3. Estimate the two-sided p-value by

p-value = min{2p1, 2− 2p1}, where p1 = 2−n
2n∑

ℓ=1

1{Mn ≤ Aℓ}.

In particular, Theorem 1 states that the distributions of the pivotal quantity
Mp

n = n1/2(p̂−p)/σ̂ and of the studentized permutation statistic M τ
n asymptot-

ically coincide. This means, approximate (1−α)- two-sided confidence intervals
for p can be obtained from

Cτ =
[
p̂− zτ1−α/2(σ̂n

−1/2); p̂− zτα/2(σ̂n
−1/2)

]
. (3.4)

Remark 1. For larger n > 10 the number of permutations increases rapidly
and the numerical computation of the p-value can be cumbersome. We recom-
mend to use random permutations of the data in those cases. Simulation studies
show that 10, 000 random permutations are sufficient for an adequate p-value
estimation.

Remark 2. It may occur that σ̂ or σ̂τ are 0. We recommend to replace them
by 1/n in those cases (Neubert and Brunner, 2007).

4. Simulations and data analysis

4.1. Monte-Carlo simulations

For testing the null hypothesis H0 : p = 1/2 formulated above, we consider the
unconditional Munzel test ϕn based on the tn−1-approximation of the statistic
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Mn in (2.3) and the conditional permutation test ϕτ
n as described above, respec-

tively. The simulation studies are performed to investigate their behaviour with
regard to (i) maintaining the pre-assigned type-I error level under the hypothe-
sis, (ii) the power of the statistics under alternatives, and (iii) maintaining the
pre-assigned coverage probability of the corresponding confidence intervals. The
observations Xk = (Xk,1, Xk,2)

T , k = 1, . . . , n, were generated using marginal
distributions Fi and varying correlations ρ ∈ (−1, 1). We hereby generate ex-
changeable matched pairs having a bivariate normal, exponential, log-normal,
or a contaminated normal distribution (where we have rounded to one decimal)
each with correlation ρ ∈ (−1, 1), as well as non-exchangeable data by sim-
ulating F1 = 0.7N(4, 1) + 0.3N(8, 1) and F2 = 0.3N(2.07, 2) + 0.7N(6.21, 2);
F1 = N(2.5745, 2) and F2 = χ2

3; F1 = N(0, 1) and F2 = N(0, 2); and F1 =
N(0, 1) and F2 = N(0, 4), each with correlation ρ, respectively. Routine calcu-
lations show that H0 : p = 1/2 is fulfilled in all of these considerations (Neu-
bert and Brunner, 2007). We only consider the small sample sizes n = 7 and
n = 10 throughout this paper. All simulations were conducted with the help of
R-computing environment, version 2.13.2 (R Development Core Team, 2010),
each with nsim = 10, 000 runs. The simulation results for normally, exponen-
tially, log-normally, and contaminated normally distributed matched pairs are
displayed in Figure 1.

It can be readily seen from Figure 1, that Munzel’s test does not control the
type-I error level constantly over the range of correlations ρ in the data in case
of small sample sizes. It is very liberal when the data are negatively correlated,
and vice versa quite conservative in case of positive correlated data. For very
small sample sizes (n = 7), the test never rejects the null hypothesis in case
of strongly positive correlations. This behaviour of the test does not depend

Type − I Error = 5% (n=7)

Correlation
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Type − I Error = 5% (n=10)
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Fig 1. Type-I error level (y-axis) simulation results (α = 5%) for Munzel’s test (dashed line)
and the studentized permutation test (solid line) for different exchangeable distributions with
varying correlations ρ (x-axis), each with n = 7 (left) and n = 10 (right).
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Type − I Error = 5% (n=7)
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Type − I Error = 5% (n=10)
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Fig 2. Type-I error level (y-axis) simulation results (α = 5%) for Munzel’s test (dashed line)
and the studentized permutation test (solid line) for different non-exchangeable distributions
with varying correlations ρ (x-axis), each with n = 7 (left) and n = 10 (right).

on the underlying distributions and is identical for all considered setups. The
studentized permutation test, however, is a (nearly) exact level α test in these
cases and it is not affected by the dependency structure. For n = 7, however,
only 27 = 128 permutations are possible and the simulation results indicate an
maximal estimated type-I error level of 5.6%. For n = 10, 1024 permutations
can be computed and the exactness of the procedure is apparent. We note that
a randomized version of the permutation test would be an exact level α test,
because the underlying distributions are exchangeable.

In the next step, type-I error simulations for the case of non-exchangeable
data under the null hypothesis H0 : p = 1/2 will be considered. The simulation
results are displayed in Figure 2. For non-exchangeable data, the studentized
permutation test exhibits a much better control of the pre-assigned type-I error
level than Munzel’s test. In case of very small sample sizes (n = 7) the procedure
gets slightly liberal. This can be explained by the fact that only 27 = 128 permu-
tations are possible. With an increasing sample size (n = 10), the procedure is
accurate and a valid testing procedure for the null hypothesis H0 : p = 1/2. The
powers of the two competing procedures were investigated for homoscedastic
bivariate normal distributions with correlation ρ ∈ (−1/2, 0, 1/2), varying ex-
pectations µ = (0, δ)T and moderate sample sizes n = 20 and n = 30. We have
chosen these sample sizes for a fair power comparison. The simulation results
are displayed in Figure 3.

It can be seen that both procedures have a comparable power, which is in
line with Theorem 2. The power simulations for non-exchangeable data did
not show any significant difference and are therefore not shown here. Finally,
we investigate the maintaining of the pre-assigned coverage probability of the
unconditional confidence interval C for p as given in (2.4) as well as of the
conditional confidence interval Cτ given in (3.4) for small sample sizes. Hereby,
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Power (alpha=5%)
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Fig 3. Power simulation results (α = 5%) for Munzel’s test (dashed line) and of the studen-
tized permutation test (solid line).

Table 1

95-% coverage probabilites (%)

n = 7 n = 10
p C Cτ C Cτ

0.50 94.44 94.61 94.16 94.80
0.55 94.17 94.93 94.11 94.74
0.60 93.70 94.84 94.34 94.90
0.65 93.51 94.84 93.69 94.57
0.70 93.07 93.84 93.55 94.30
0.75 92.58 93.29 92.43 93.63
0.80 92.03 93.41 91.09 93.50

we generate a bivariate normal distribution with correlation ρ = 0 and estimate
the coverage probabilities for varying true underlying treatment effects p. The
simulation results are displayed in Table 1.

It can be seen from Table 1 that the confidence intervals based on the studen-
tized permutation distribution Cτ tend to maintain the pre-assigned coverage
probability better than the unconditional version C. For large effects p ≥ 0.8
both types of confidence intervals tend to be liberal. This occurs, because the
distribution ofMn is very skewed in terms of high effects and small sample sizes.
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4.2. Analysis of the panic disorder longitudinal trial

We reconsider the panic disorder longitudinal trial which was performed to ob-
serve the effect of a specific physical exercise therapy for n = 15 patients (Munzel
and Brunner, 2002). The response variable is the patient rated global impression
(PGI) score being observed at baseline and after 4 weeks of treatment. The lower
the score, the better the clinical impression. The original data can be found in
the appendix from (Munzel and Brunner, 2002), who already evaluated this trial
with an exact paired rank test for the null hypothesis of exchangeability. This
approach, however, cannot be used for the computation of confidence intervals
for the treatment effect and is not robust against variance heterogeneity. Here,
we will analyze the data with the studentized permutation approach. Since the
data are observed on an ordinal scale, mean based approaches are inappropri-
ate for this study. Using Spearman’s rank correlation coefficient we estimate
the correlation and obtain r̂ = 0.61, thus, a positive statistical dependence. We
obtain an estimated treatment effect of p̂ = 0.29. This means, the PGI scores
tend to be smaller after 4 weeks of treatment. The null hypothesis H0 : p = 1/2
is significantly rejected at 5% level of significance (p-value=0.006). The 95%
confidence intervals for p is given by [0.16; 0.43]. Applying Munzel’s approach
yields the confidence interval [0.15; 0.43] and corresponding p-value = 0.007,
thus, comparable results for this study.
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Appendix A: Asymptotic results

For simplicity, we first rewrite the relative marginal effect p =
∫
F1dF2 by

p =
∫
HdF2−

∫
HdF1+1/2, whereH(x) = 1/2(F1(x)+F2(x)) denotes the mean

distribution function. It is easily seen that the null hypotheses H0 : p = 1/2

and H0 : p1 = p2 are equivalent, where pi =
∫
HdFi. Further let Ĥ(x) =

1/2(F̂1(x) + F̂2(x)) denote the mean empirical distribution function. Note that

p̂ as given in (2.1) can be equivalently written as p̂ =
∫
ĤdF̂2 −

∫
ĤdF̂1 + 1/2.

A.1. Proof of Theorem 1

We start by showing conditional convergence of the numerator

sup
x∈R

| P
(
Tn(X

τ ) ≤ x | X
)
− Φ(x/στ ) |→ 0 in probability, (A.1)

where σ2
τ = E([H(X1,1)−H(X1,2)]

2) holds.
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Note that we can write

p̂2 − p̂1 =
1

n

n∑

k=1

(
Ĥ(Xk,2)− Ĥ(Xk,1)

)
.

Since

Ĥ(t) = Ĥ(X, t)

=
1

n

n∑

k=1

1

2
(1{Xk,1 ≤ t}+ 1{Xk,1 < t}+ 1{Xk,2 ≤ t}+ 1{Xk,2 < t})

=
1

2n

n∑

k=1

(
1{Xk,τk(1)≤ t}+ 1{Xk,τk(1)<t}+ 1{Xk,τk(2)≤ t}+ 1{Xk,τk(2)<t}

)

= Ĥ(Xτ , t)

is not affected by the permutation we can rewrite

Tn(X
τ ) = n−1/2

n∑

k=1

(
Ĥ(Xk,τk(2))− Ĥ(Xk,τk(1))

)

D
= n−1/2

n∑

k=1

Wk

(
Ĥ(Xk,2)− Ĥ(Xk,1)

)
,

where (Wk)k is a sequence of independent and identically distributed Rademacher
variables with distribution 1

2 (δ1+δ−1) that are independent from the data. Here
D
= means that both expression are equal in distribution. Now, given the data X ,

Ek,n = n−1/2Wk(Ĥ(Xk,2)− Ĥ(Xk,1)), k = 1, . . . , n,

defines an array of row-wise independent random variables. It fulfills

E(Ek,n|X) = 0 and var(Ek,n|X) = n−1(Ĥ(Xk,2)− Ĥ(Xk,1))
2.

Hence we can expand the conditional variance of TW
n as

var(TW
n | X) =

1

n

n∑

k=1

(Ĥ(Xk,2)− Ĥ(Xk,1))
2

=
1

n

n∑

k=1

Ĥ2(Xk,2) +
1

n

n∑

k=1

Ĥ2(Xk,1)−
2

n

n∑

k=1

Ĥ(Xk,2)Ĥ(Xk,1)

= Vn,1 + Vn,2 − 2Vn,3.

In the following the limit behavior of Vn,1, Vn,2 and Vn,3 will be analyzed sepa-
rately. For Vn,1 we have

Vn,1 =
1

n

n∑

k=1

H2(Xk,2) +
1

n

n∑

k=1

(Ĥ(Xk,2)−H(Xk,2))
2

−
2

n

n∑

k=1

(Ĥ(Xk,2)−H(Xk,2))H(Xk,2).
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Here the first term converges in probability to E(H2(X1,2)) by the law of large
numbers and we will now show that the two others are negligible. To see this,
note that we have for the second term

1

n

n∑

k=1

(Ĥ(Xk,2)−H(Xk,2))
2 ≤ sup

x∈R

(Ĥ(x)−H(x))2

≤
1

4

[
sup
x∈R

| Ĥ+(x)−H+(x) | +sup
x∈R

| Ĥ−(x)−H−(x) |
]2

→ 0

in probability by the Glivenko-Cantelli-Theorem. In the same way we get con-
vergence in probability

2

n

n∑

k=1

(Ĥ(Xk,2)−H(Xk,2))H(Xk,2)

≤ sup
x∈R

| Ĥ(x)−H(x) |
2

n

n∑

k=1

H(Xk,2) → 0. (A.2)

Altogether this shows that Vn,1 converges in probability to E(H2(X1,2)).
With similar arguments the convergences Vn,2 → E(H2(X1,1)) and Vn,3 →
E(H(X1,2)H(X1,1)) can be proved. Hence the convergence in probability

var(TW
n | X) → σ2

τ (A.3)

holds as n → ∞. Since we also have

n∑

k=1

E(E2
k,n1{| Ek,n |≥ ǫ} | X) ≤ E(1{1 ≥ ǫn1/2}) −→ 0

for all ǫ > 0 the convergence (A.1) follows from Lindeberg’s central limit theo-
rem.

Hence by Slutzky’s Lemma it remains to check that σ̂2(Xτ ) converges in
probability to σ2

τ to complete the proof. Note first that for i = 1, 2,

F̂i,τ (t) = F̂i(X
τ , t) =

1

2n

n∑

k=1

(1{Xk,τk(i) ≤ t}+ 1{Xk,τk(i) < t})

=
1

2

(
F̂+
i,τ (t) + F̂−

i,τ (t)
)
.

Now fix i ∈ {1, 2}. Then, given the data X , the r.v.s Xk,τk(i), 1 ≤ k ≤ n, are

independent with distribution function Ĝ+
i,k(t) =

1
2 (1{Xk,1 ≤ t}+1{Xk,2 ≤ t}).

Thus the Extended Glivenko-Cantelli-Theorem, see e.g. (Shorack and Wellner,
1986, Theorem 1, p.106), shows (conditioned on X) convergence in probability

sup
t∈R

| F̂+
i,τ (t)−

1

n

n∑

k=1

Ĝ+
i,k(t) |→ 0
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for i = 1, 2. In the same way it follows that (again conditioned on X) supt∈R
|

F̂−

i,τ (t)−
1
n

∑n
k=1 Ĝ

−

i,k(t) |→ 0 in probability, so that an application of the trian-
gular inequality gives convergence in probability (conditioned on X) for i = 1, 2

sup
t∈R

| F̂i,τ (t)− Ĥ(t) |→ 0. (A.4)

Applying (A.4) on σ̂2(Xτ ) we obtain using similar arguments as used for the
convergence (A.2) above (again conditioned on X) that

n− 1

n
σ̂2(Xτ ) =

1

n

n∑

k=1

(
F̂1,τ (Xk,τk(2))− F̂2,τ (Xk,τk(1))

)2

−
( 1

n

n∑

k=1

(
F̂1,τ (Xk,τk(2))− F̂2,τ (Xk,τk(1))

))2

is asymptotically equivalent to

Zn =
1

n

n∑

k=1

(
Ĥ(Xk,τk(2))− Ĥ(Xk,τk(1))

)2

−
( 1

n

n∑

k=1

(
Ĥ(Xk,τk(2))− Ĥ(Xk,τk(1))

))2

D
=

1

n

n∑

k=1

(
Ĥ(Xk,i)− Ĥ(Xk,i)

)2

−
( 1

n

n∑

k=1

Wk

(
Ĥ(Xk,2)− Ĥ(Xk,1)

))2

+ oP (1),

where again Wk are independent and identically distributed Rademacher vari-
ables. By (A.3) the first summand of the last expression converges in probability
to σ2

τ . Hence the proof is completed if we show that the second summand con-
verges in probability to zero. But this follows from

E
( 1

n

n∑

k=1

Wk

(
Ĥ(Xk,2)− Ĥ(Xk,1)

)
| X

)
= 0

and the convergence

var
( 1

n

n∑

k=1

Wk

(
Ĥ(Xk,2)− Ĥ(Xk,1)

)
| X

)
=

1

n2

n∑

k=1

(
Ĥ(Xk,2)− Ĥ(Xk,1)

)2

≤
1

n
→ 0.

Altogether this proves σ̂2(Xτ ) → σ2
τ in probability and therefore the desired

result.
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A.2. Proof of Theorem 2

We remark that part (i) follows directly from Theorem 3 in Munzel (1999) to-
gether with the results from Theorem 1 above by applying Lemma 1 in Janssen
and Pauls (2003). Suppose now that p1 6= p2. Note first that in this situation
(3.2) implies that the data dependent critical values zτα/2 and zτ1−α/2 still con-
verge in probability to the corresponding quantiles from the standard normal
distribution, i.e. zτα/2 → uα/2 and zτ1−α/2 → u1−α/2. We can now expand

Tn = n1/2(p̂1 − p1)− n1/2(p̂2 − p2) + n1/2(p1 − p2).

Since Tn−n1/2(p1−p2) is stochastically bounded, see e.g. (Brunner and Munzel,
2000) it follows that

Tn → sign(p1 − p2) · ∞

as n → ∞. Moreover, σ̂2 converges in probability to var(F1(X1,2) − F2(X1,1))
which is positive by assumption. This proves (ii).
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