
he
d
y

nd
g

ra-
es
le-

gy
lar

un-
e
ion
-
in
st
es

sts,
ch
ther
ch
ow
er-
ces
ss
del
ge
on-

s

ge
r

A Study in Coverage-Driven Test Generation
Mike Benjamin,

STMicroelectronics
1000 Aztec West

Bristol, BS32 4SQ, UK

Mike.Benjamin@st.com

Daniel Geist, Alan Hartman,
Yaron Wolfsthal

IBM Science and Technology
Matam - Advanced Technology Center

31905, Haifa, Israel
{dannyg, yaronw,

alan_hartman}@vnet.ibm.com

Gerard Mas, Ralph Smeets

STMicroelectronics
5, chemin de la Dhuy,

38240, Meylan, France
{Gerard.Mas,

Ralph.Smeets}@st.com
1.  ABSTRACT
One possible solution to the verification crisis is
to bridge the gap between formal verification
and simulation by using hybrid techniques.
This paper presents a study of such a functional
verification methodology that uses coverage of
formal models to specify tests. This was applied
to a modern superscalar microprocessor and
the resulting tests were compared to tests gen-
erated using existing methods. The results
showed some 50% improvement in transition
coverage with less than a third the number of
test instructions, demonstrating that hybrid
techniques can significantly improve functional
verification.

1.1  Keywords
Functional verification, test generation, formal models,
transition coverage

2.  INTRODUCTION
There is now widespread acceptance in the EDA community
that the resources devoted to functional verification are
increasing disproportionately as designs become more com-
plex resulting in a “verification bottleneck”. Traditional tech-
niques based on simulation can only verify operation over a
small subset of the state space and it is often hard to generate
tests to hit interesting corner cases. A more recent approach
is model checking, but this does not scale well because of the
problem of state explosion. While the capabilities of formal
verification will improve over time the need for a more
immediate practical solution has resulted in increasing inter-
est in the possibility of combining formal methods with sim-
ulation based testing[3,4,5,7].

The work described in this paper had two objectives. T
first was to develop a verification methodology that bridge
the gap between formal verification and simulation in a wa
that would integrate into an existing design flow. The seco
was to make a quantitative comparison with our existin
simulation based verification techniques.

This paper starts by introducing coverage-driven test gene
tion. It then describes our methodology and introduc
GOTCHA, a prototype coverage-driven test generator imp
mented as an extension to the Murφ model checker. The sec-
ond part describes a study where we applied this technolo
to the verification of the decoder of a modern supersca
microprocessor.

Quantitative results were gathered by tracing the tests r
ning on an RTL level simulation of the microprocessor. W
were able to conclude that coverage-driven test generat
can significantly improve functional verification. In fact dur
ing the study we demonstrated some 50% improvement
transition coverage with less than a third the number of te
instructions. The methodology also has the twin advantag
of explicitly capturing verification knowledge and giving
quantifiable results.

3.  MODEL BASED VERIFICATION

3.1  Coverage-driven test generation

Coverage is a measure of the completeness of a set of te
applied to either a design or a model of the design. Ea
measurable action is called a coverage task, and toge
these form a coverage model. This may be quite simple su
as measuring which lines of code have been executed or h
many state bits have been toggled. The selection of a cov
age model is a pragmatic choice depending on the resour
available for test generation and simulation. The usefulne
of coverage depends on how well the chosen coverage mo
reflects the aims of the testing. State and transition covera
are very useful measures because of their close corresp
dence to the behaviour of a design.

We say that one coverage model is stronger than or implie
another coverage model if every test suite which achieves
100% coverage of one model also achieves 100% covera
of the other. In this hierarchy of coverage models it is clea
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for example that path coverage is stronger than transition
coverage which is in turn stronger than state coverage. How-
ever coverage models may also be incomparable, in the
sense that neither one is stronger than the other.

The coverage efficiency of two test suites may also be com-
pared. The most useful measure is probably the amount of
simulation resources required, for example the total length
of all the test cases.

Given a description of a design it is possible to reverse the
above process and use coverage as a means of specifying
tests. Each coverage task can be viewed as defining a set of
test cases which satisfy that task. In the case of transition
coverage there is a coverage task for each possible transition
which defines the set of tests that pass through that transi-
tion. The design description can be the actual implementa-
tion or a model such as a specification. In the context of
hardware design it is frequently interesting to choose certain
of the signals, latches, and flip-flops as characterizing the
state of an implementation, and ignoring the rest. These are
referred to as the coverage variables.

Using a finite state machine model of a design it is possible
to automate coverage-driven test generation. Acoverage-
driven test generator is a program which finds paths
through the finite state machine model of the design and its
goal is to find a path satisfying each task in the model.
These paths are called abstract tests. By contrast we define
the corresponding concrete test to be a sequence of instruc-
tions that will force the design along the path defined in the
abstract test. A test specification is an intermediate form
between abstract and concrete which can be used to drive a
test generator.

3.2  The methodology

The methodology is illustrated in figure 1.

Abstract tests are derived from a formal specification of t
design using the coverage model to identify tests that
interesting corner cases, normally a very difficult procedu
to perform manually. Previous researchers have used
actual design as the formal model[1] and required a ve
highly controlled simulation environment[2]. We wanted
more flexible solution that would integrate into our existin
design flow and produce tests that could be run on a vari
of platforms from simulations to silicon.

By knowing the correspondence between the micro-arc
tectural events at the boundary of the unit under test a
architectural events it is possible to translate abstract te
into architectural level test specifications. In general th
translation is a hard problem, however in practice it
greatly simplified by the architectural structure inherent
the partitioning of most designs and the freedom of the ve
fication engineer to model the environment in ways th
assist this process.

The expected results for tests are produced by an archi
tural simulator which is the golden reference for verifica
tion. This means that neither modelling errors, abstractio
nor over naive test translation can result in invalid tests, on
tests that fail to meet the intended coverage objective.

Information on the expected micro-architectural events
the unit under test can be extracted during coverage direc
test specification and used to measure how well the act
tests are meeting their intended coverage objectives. T
coverage results themselves are measured on the RTL of
design. This information can be used as feedback to gen
ate additional tests to replace those that do not satisfy th
original specification. It can also be used to identify erro
in the model. Thus for example if the actual design is hittin
states or transitions not covered by the model this sugge
the model is over constrained, while conversely a failure
reach all the specified conditions may indicate either
error in the model or a weakness in the translation proce

3.3  The GOTCHA tool

GOTCHA (Generatorof TestCases forHardwareArchitec-
tures) is a prototype coverage-driven test generator. It
based on the Murφ verification system[6] - an explicit state
model checker from Stanford University. While the resul
ing tool can still be used as a model checker it also incorp
rates language extensions and new algorithms to support
generation of abstract test specifications using a state
transition coverage model.

The Murφ definition language is a high level language fo
describing finite state machines with the use of abstract d
types, sequential code, function and procedure calls. This
extended to allow the modeler to designate coverage va
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Figure 1: The methodology



ual
al
the
n-
n-
ll
ign.

del

-

s

g

i-
ch

nt
ble

ral
n-
ables and characterize final states when modelling the unit
under test, and the resulting language is called the
GOTCHA Definition Language (GDL).

The GOTCHA compiler builds a C++ file containing both
the test generation algorithm and the embodiment of the
finite state machine. The finite state machine is explored via
a depth first search or a breadth first search from each of the
start states. On completion of the enumeration of the entire
reachable state space, a random coverage task is chosen
from amongst those that have not yet been covered or
proved to be uncoverable. A test is generated by construct-
ing an execution path to the coverage task (state or transi-
tion) then continuing on to a final state. There is also some
degree of randomization of the path chosen and the tool
incorporates two algorithms for test extension, the first is
extension by a random walk, and the second uses a breadth
first search of the state space to find “nearby” uncovered
tasks. A task is deemed uncoverable if no path which exer-
cises the task has an extension to any designated final state.

4.  THE STUDY

4.1  Motivation

The purpose of the study was twofold. Its first objective was
to develop a verification methodology that bridged the gap
between formal verification and simulation in a way that
would integrate into an existing design flow. The second
objective was to gather some quantitative evidence to sup-
port the idea that such a methodology would offer advan-
tages over our existing simulation based verification
techniques.

The study targeted the decoder of a 64-bit superscalar pro-
cessor designed by STMicroelectronics[2], however the
methodology should be applicable to most designs. The
choice of the decoder made it possible to investigate the
problems of modelling and test specification while simplify-
ing other tasks, in particular the translation from abstract to
concrete tests.

4.2  Model development

The modeling of the internal logic of the decoder was done
by a manual - but quite mechanical - translation of the
VHDL into GDL. The intention of the model was to capture
the functional implementation of the decoder control logic
(Figure 2). This contains a number of identifiable, but not
necessarily independent mechanisms, that can cause the
types of hazards that result in implementation errors. For
example limited branch prediction that can result in pipe
stalls and certain instructions which are expanded into mul-
tiple micro-instructions which may only be accepted as the
first of a pair of superscalar instructions.

The model of the environment of the decoder has the d
role of ensuring a good mapping from micro-architectur
events to architectural events and also constraining
behaviour of the unit under test. If the model is under co
strained then it may specify unimplementable tests. Co
versely if it is over-restrictive it may be unable to reach a
the states or transitions that are reachable in the real des

Some abstractions were used that simplified the mo
while still giving good results. These included:

• Temporal abstractions: In general we were more con-
cerned with the order of events than their precise tim
ing.

• Data abstraction: Rather than modelling the entire
instruction set it was possible to simply define classe
of instructions.

• Partitioning : It is possible to simplify the model by
separating functions. For example a model describin
the decoder without a bubble squasher.

The most difficult thing to model was the surrounding env
ronment, and specifically the timing of external events su
as interrupts, feedback, or memory accesses.

The methodology does not require that the environme
model be totally accurate or complete hence it was possi
to make a number of simplifications. In particular:

• External events were not required as other architectu
events could cover the same conditions in a more co
trollable fashion.

Decode
Single

Instruction

Decode
Single

Instruction
Flow
Logic

Instruction
Queue
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Squasher

Output
Latches

Decoded
Instructions

To Dispatcher

(Std. Cell Gates)(Std. Cell Gates) (Std. Cell Gates)

(Mainly Latches)

(Mainly Latches)

(Mainly Latches)

Instruction 1 Information Instruction 0 Information

Instruction
Bytes

Instruction
Bytes I-ptr, valid

bit & trap info.
I-ptr, valid
bit & trap info.

From Aligner

Figure 2: The Decoder



ted
t of
for

the
nd
nal
of
est
ge

gy
ge.
it is
er
al
cts.

la-
vi-
ld
le
a

e
er
re
f

ed
ed

mpt
om
al
rds
nts
to
ve
his
ns
rn
was
ith
e

ets,
ar
ca-
ra-
• The timing of feedback loops was measured for arbi-
trary architectural tests and typical values chosen for
the model.

• The timing of memory accesses was made largely
deterministic by using hot caches, where the processor
caches are pre-loaded with the test program and data.

4.3  Test generation

Test specifications were generated using the model as input
to the GOTCHA tool. Both state and transition coverage
models were used to generate two different test suites. The
coverage variables were chosen to cover all the internal con-
trol state relevant to the control mechanisms.

The abstract test suites produced by GOTCHA were trans-
lated by a straightforward substitution algorithm to produce
test specifications for input to an existing test generator.
Each test specification was run repeatedly through the test
generator till a valid concrete test was obtained. If the model
permitted the specification of architecturally invalid tests
this could show up at this stage and be used to correct the
model. We observed this with an early GOTCHA model that
permitted multiple leaps without changing the jump
address, behaviour which is architecturally invalid. Any test
generator will produce useful tests provided it correctly

implements the test specification, however a sophistica
test generator can provide additional biasing independen
the test specification, for example biasing the data values
the instructions.

These tests, and a control test suite were simulated on
complete processor design using a VHDL simulator a
trace information was gathered and compared to the origi
trace specifications. In the specification the behaviour
the unit under test defines the coverage objective. In the t
simulation the behaviour is used to measure the covera
achieved. This is the basis for making the methodolo
quantitative and providing feedback to enhance covera
The test results are measured on the actual design, and
possible to observe not only the behaviour of the unit und
test, but also the full architectural and micro-architectur
state, making it possible to observe unpredicted side effe

Trace comparison between the specification and the simu
tion at the interface between the unit under test and its en
ronment was used to identify errors in the model, and cou
equally well be used to localise design errors. In princip
this could also provide feedback to correct timing errors in
test and hence improve coverage.

In order to provide a reference point for evaluating th
results we took the tests used to verify the decod
implementation prior to tape-out. The specifications we
developed by a verification engineer with the aim o
identifying likely errors in the design. These were then us
to generate a family of concrete tests using an advanc
model based test generator called Genesys[1]. In an atte
to improve this process several tests were generated fr
each test specification giving a shotgun effect. Addition
tests were generated by biasing the generator towa
significant classes of instructions. Coverage measureme
were then used to write new families of test-cases
improve testing on parts of the design that did not achie
100% of reachable statement or toggle coverage. T
process resulted in 93 different test specificatio
specifically aimed at exercising the decoder which in tu
produced a database consisting of 321 concrete tests. It
this database which we used to provide comparisons w
the results produced by GOTCHA. The flow of th
experiment is illustrated in figure 3.

4.4  Results

Tables 1,2 and 3 compares the size of the various test s
and it is clear that the GOTCHA test suites consume f
fewer resources than the decoder’s implementation verifi
tion test suite. Human resources were not readily compa
ble given the experimental nature of the study.

State Coverage

Decoder Implementation

Conventional
Coverage                                                    Transition Coverage

       Engineer 1

  Engineer 2

Simulator

Coverage Prototype Coverage Scripts

Figure 3: The flow of the experiment
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Several coverage measures were applied to the tests. All test
suites achieved complete coverage of the decoder according
to line and branch coverage metrics. These are thus too
weak to differentiate between the test suites. Conversely
none of the test sets performed well using multiple sub-
condition coverage. This is mainly because many of the
coverage tasks are in reality unreachable. Other coverage
models were required to differentiate quantitatively between
the test suites. Table 2 gives the coverage of pairs of input
instructions and also the state and transition coverage
measurements considering only the coverage variables used
by GOTCHA in generating the tests.

While the headline percentage for instruction pair covera
is highest for the decoder implementation verification tes
an investigation revealed that this was because th
included several functionally equivalent cases where t
second instruction was never accepted by the decoder.
GOTCHA transition coverage tests avoided this redundanc

The cumulative coverage graphs (figures 4 and 5) show t
the GOTCHA test cases required fewer instructions
achieve a given level of state or transition coverage and t
coverage continued to improve while the implementatio
verification tests saturated. This was especially true in t
case of transition coverage, which was the strongest cov
age metric used to compare the tests.

We also observed an interesting rise in the coverage gen
ated by tests 100-105 in the implementation verification te
suite. These were random tests generated from a specifi
tion that defined interesting groups of instructions rath
than specific scenarios. They were intended to try and co
cases not predicted by the verification engineer. It is al
apparent that the strategies used in writing the deco
implementation verification tests failed to improve the co
erage after a certain point. Prior to measuring the state a
transition coverage there was no meaningful quantitat
information on the relative quality of these tests.

Test Suite Tests Simulated
Instructions

Abstract
Instructions

IVP 321 269941 200000

State 30 17645 360

Transition 139 85278 1560

Table 1: Tests size

Test suite States Coverage

IVP 40 74%

State 45 83%

Transition 47 87%

All tasks 54 100%

Table 2: State coverage results

Test suite Transitions Coverage

IVP 159 54%

Transition 236 80%

All tasks 295 100%

Table 3: Transition coverage results

Test suite Inst. Pairs Coverage

IVP 49 40.5%

State 33 27%

Transition 45 37%

All tasks 121 100%

Table 4: Instruction pair coverage results
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Figure 4: State Coverage
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As illustrated in figure 6 the GOTCHA tests did not reach
100% state coverage. The failure of the tests to fully imple-
ment the specification is attributed to abstractions in the
model and the naive test generation process. The model of
the environment gave feedback at the first legitimate time
period. In the actual design this feedback could be occur on
a later clock cycle. This explains the difference between
tasks covered by the simulation of concrete tests and tasks
covered in the abstract tests generated by GOTCHA. These
limitations could largely be overcome by introducing feed-
back into the methodology.

5.  CONCLUSIONS

The results in the previous section show that coverage-
driven test generation can improve functional verification.
During the study we demonstrated some 50% improvement
in transition coverage with less than a third the number of
test instructions. In addition the methodology has the twin
advantages of explicitly capturing verification knowledge
within a model and giving quantifiable results.

Combining formal methods, functional simulation, and cov-
erage offers definite advantages over simple testing or
model checking:

• The use of a model makes it possible to automatically
identify corner cases and specify corresponding tests.
• We can freely apply simplifications and abstractions
because the formal model is only used to identify test
cases, not predict the test results.
• The test simulations can detect unexpected errors and
side effects because they compare architectural, and
potentially also micro-architectural state, for the entire
design.

An important lesson of the study was the potential benefits
to be gained by using feedback from simulations to guide
the test generation process. This can compensate for exces-
sive abstraction in the formal model and a naive translation

process from abstract test specifications to concrete te
Feedback is also an essential part of the iterative proces
refining a model.

Using quantitative coverage models provides an object
basis for evaluating test sets. Without this information it
difficult to develop an effective verification plan, or con
versely to set objective standards for key design decisio
such as tape-out. While existing coverage tools can prov
quite powerful metrics such as multiple sub-condition co
erage these are of limited use given their inability to disti
guish between reachable and unreachable coverage task

The choice of coverage model is still subjective. Weak co
erage models such as line coverage can make it imposs
to distinguish between good and poor test sets. State
transition coverage would seem to be especially suitable
the basis for coverage models because of their close co
spondence to the functionality of the design. In gener
even if one does not achieve 100% on an aggressive cov
age metric it will push the resulting tests towards givin
good coverage on weaker metrics.
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Figure 6: Abstract Versus Concrete Coverage
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