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Abstract

A family of problems for which the solu-
tion is a fixed size set is studied, using fit-
ness functions with varying degrees of epistasis.
An empirical comparison between a traditional
crossover operator with a binary representation
and a penalty function, and the representation-
independent Random Assorting Recombination
Operator (RAR) is performed. RAR is found
to perform marginally better in all cases. Since
RAR is a parameterised operator, a study of the
effect of varying its parameter, which can control
any trade-off between respect and assortment, is
also presented.

1 Introduction

Throughout the short history of genetic algorithms there has
been a creative tension between two quite distinct schools
of thought on the subjects of representations and operators.
The fundamental disagreement concerns the relative merits
of simple, low cardinality representations used with stand-
ard recombination operators—typically“n-point” and more
recently uniform crossover�—and more complex, problem-
specific recombination operators applied to more diverse
representations. The “traditional” (“binary is best”) view
derives primarily from the observations about implicit� par-
allelism and schema processing by Holland (1975), who
used a simple counting argument to suggest that low car-
dinality representations should be more powerful. While
it is probably fair to say that this has been the dominant
view amongst workers in genetic algorithms (as opposed
to Schwefel’sEvolutionstrategieschool) there have always
been approaches based on non-standard, high-cardinality
representations together with “custom” genetic operators.
While these approaches have arguably had less theoret-
ical under-pinning, it is far from experimentally established
that they are inferior. Davis (1991), for example, has argued

�See, for example, Syswerda (1989) for a description of these
�née intrinsic

forcefully that on “real-world” problems he invariably gains
superior results with “natural” representations and custom
operators, while Goldberg (1990c) has defended the use of
binary representations and traditional operators for prob-
lems in real parameter optimisation with the development
of his “theory of virtual alphabets”. (It should be stressed
that there are dozens, if not hundreds of papers which dis-
cuss and form part of this debate, and there is no attempt
here to undertake the Stachanovite task of cataloguing or
reviewing them all.)

In addition to the countless empirical studies which per-
tain to the debate, there have been a few attempts to
re-examine and generalise schema analysis and the no-
tion of implicit parallelism, notably those by Goldberg
& Lingle (1985), Wright (1990), Antonisse (1989), Rad-
cliffe (1990, 1991), Vose (1991), Vose & Liepins (1991)
and Eshelman & Schaffer (1992). In particular, Antonisse
argued for a re-interpretation of schemata under which the
counting argument actually suggests that higher cardinality
representations willexhibit greater implicit parallelism than
their lower cardinality counterparts, while Radcliffe has de-
veloped a comprehensive generalisation of schema analysis
called forma analysis. The latter stresses the key rôle of
the fitness variance of schemata (and their generalisation,
formae) in determining the ability of the genetic algorithm
to exploit performance correlations in the search space and
provides a framework for constructing problem-specific
versions of various “universal”, representation-independent
operators (Radcliffe, 1993).

Forma analysis has been applied, at a theoretical level, to
problems for which the solution is a set of fixed size (Rad-
cliffe, 1992). This paper presents a simple empirical com-
parison between the performance of the specialised repres-
entation and recombination operator suggested by forma
analysis and that of a traditional binary representation with
a conventional crossover operator, over a range of prob-
lems ranging from simple non-epistatic problems through
to harder problems with parameterised degrees of epistasis.
The constraint of fixed set size will be seen to necessitate
the use of some mechanism to restrict (or encourage) the
set to be of fixed size, and for this reason a penalty function
has been used with the traditional operator for this study.



2 Approaches to Set Recombination

2.1 Statement of problem

The problems which will be considered in this paper all
consist of searches for a particular subsetS� of sizen from
a larger universal setE of sizeN (N � n), and in each
case the search space will be considered to be the set of all
subsets ofE of the given fixed sizen. In particular, the
universal set,E , will always be considered to be the set of
integers modulo 120

E
�

�Z���
�

�f�� �� � � �� ���g (1)

and the subset sought will in each case be of size 60 and
contain the lowest 60 numbers, so that the optimumS� will
be

S
� � Z�� � f�� �� � � �� ��g � Z���� (2)

Various fitness (utility) functions will be used to control the
degree of epistasis in the problem.

2.2 Traditional approaches

Regardless of any detailed aspects of the fitness function
used, this problem immediately poses a problem if a tradi-
tional linear string representation is to be used. The size
of the given search space—the set of all subsets of sizen
drawn fromE—is�

N

n

�
�

�
N �

n��N � n��
� (3)

which in the present case, withn � 	� andN � �
� is
approximately����. The most na¨ıve approach might be to
use a string of lengthn, each of whose characters could
take on any of theN values inE . This, however, would
given enormous scope for repetition of elements and would
enlarge the search space to sizenN , some����� with the
suggested values.

This approach would almost certainly, after a moment’s
thought, be replaced by a binary string of lengthN , with
one element corresponding to each member of the universal
set, a one indicating inclusion of the element in the subset,
and a zero indicating its exclusion. If the number of ones in
the string were kept fixed atn, this would be a faithful rep-
resentation, with exactly one binary string corresponding to
each element of the search space. Unfortunately this is not
guaranteed with standard crossover operators. In practice,
one of two standard approaches would probably be adop-
ted. The more common would be to add a (negative) penalty
(Richardsonet al., 1989) to the fitness function to reduce
the performance of solutions which contain too many or too
few elements (and thus fall outside the true search space,
into an embedding space). While technically the size of
the search space available using this approach would rise to

N (some���� with the given values), in practice the hope
would be that the penalty function would restrict the search
to solutions of sizes close ton. There is then a trade-off
between exploring illegal solutions in the embedding space

and a possible gain in navigability of the underlying search
space. This forms the “traditional” approach which is ex-
amined in this paper, trenchant criticism from, for example,
Michalewicz & Janikow (1991) notwithstanding.

The alternative “traditional” approach would be to employ
a post-recombinative repair function using some form of
directed mutation to produce a child with the correct number
of elements (cf. Harpet al.,1989). This approach will not
be considered directly in this paper, but the careful reader
will be able to see that the approach of forma analysis taken
here can be interpreted as being related to this technique.

2.3 Forma analysis

The non-traditional approach considered here is to use
the random assorting recombinationoperator (RAR) de-
veloped and justified in the general context by Rad-
cliffe (1993) and specialised for application to set problems
in Radcliffe (1992). Aforma is an equivalence class of
some equivalence relation defined over the search space (or
equivalently a partition of the search space). The approach
motivated byforma analysisis to choose equivalence rela-
tions which induce formae that the experimenter believes
group together solutions having similar fitness. Such equi-
valence classes (formae) will not only obey the schema the-
orem (p. 102 of Holland, 1975, with suitable changes to the
disruption coefficients) but will tend to result in relatively
accurate fitness estimators.

The formae (generalised schemata) which motivate the ap-
proach taken in this paper specify subsets of elements which
their members must include, and elements which they must
exclude. For example, a particular forma for sets of size 3
chosen fromZ� might consist of those sets which include�
and exclude� and�

��� �� �
�
f�� 
� g� f��
��g�f����g

�
� (4)

where is a (redundant) “don’t care” character.

Radcliffe has characterised recombination operators ac-
cording to two key criteria with respect to a given set of
formae, calledrespectandassortment.A recombination
operator is said torespecta given set of formae if children
generated by the operator are always members of all those
formae to which both parents belong. In the present context,
respect can readily be seen to amount to the requirement that
all those elements common to the two parents be present
in all children that a recombination operator can produce.
Thus given parentsf�� 
� g and f�� �� �g respect allows
only solutions chosen from

�
�
f�� 
� g� f�����g

�
�
�
f�� �� 
g� f�� �� �g� f�� 
�g�f��
��g

�
(5)

which is called theirsimilarity set. (Informally, one can
think of respect as requiring that if both parents have blue
eyes and curly hair, all children produced by recombination
must share these properties.)

In contrast, assortment requires that a recombination op-
erator be capable of generating a child in the intersection



of two formae�� and �� provided that one parent is in
the first forma, the other is in the second, and that the in-
tersection is non-empty. Using the same example for the
present case, the first parentf�� 
� g is a member of the
forma 
  , and the second,f�� �� �g, is a member
of � , so assortment requires that a recombination
operator be capable of generating a child in the (non-empty)
intersection


  � � � �
  � (6)

(Informally, assortment requires that if one parent has blue
eyes, and the other has curly hair, then it must be possible for
recombination to produce a blue-eyed, curly-haired child,
provided that these characteristics are compatible.)

Observe, however, that in the current example no member
of the similarity set (equation 6) is included in the forma
�
  , so that no recombination operator can achieve

both respect and assortment for these formae. Formae
which cannot be respected and assorted simultaneously are
termednon-separable.The occurrence of non-separable
formae is not restricted to set problems, but is in fact quite
wide-spread. For example, the natural formae for the trav-
elling salesrep problem and neural network topology op-
timisation are all non-separable. It is therefore important to
find a sensible approach for such problems.

2.4 Respect vs. assortment

Respect restricts the range of children which a recombin-
ation operator may produce so that features� common to
the two parents are guaranteed to be transmitted to their
children. It is a weaker form of a stricter notion ofgene
transmission,which requires that each of a child’s alleles is
inherited from at least one of its parents.� This seems like
such a natural property, encompassing some of the need to
exploit information already gathered, that it may be hard
to see a reason for ever using non-respectful recombination
operators.

Similarly, however, assortment merely requires that when
the parents contain all the genetic material required to con-
struct a given child, that the recombination be powerful
enough to construct the relevant child. Again, it may be
hard to see how non-assorting recombination operators can
be used usefully.

One way to address this apparentimpasseis to build a
parameterised operator which allows controlled sacrifice
of respect in pursuit of assortment. Therandom assorting
recombinationoperator proposed by Radcliffe (1993, 1992)
achieves exactly this.

�expressed as membership of particular formae
�It is important to emphasizethat only recombination is subject

to this restriction: mutation is included explicitly to violate respect.
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RAR  ( { 0, 2, 4 } , { 0, 1, 5 } )  = { 1, 2, 4 }3

Figure 1: An example of how RAR can produce a child in
the required intersection. Bars denote excluded elements.

2.5 Random assorting recombination

Therandom assorting recombinationoperator takes a para-
meterw and is denoted RARw. In its simplest conception
this is parameter is an integer, and the operation of the
operator may be described as follows:

Given a positive integer parameterw, and two parentsA
andB, each of sizen,

1. Placew copies of each element common to the two
parents in a bagG, together withw copies of “barred
elements”, which are present in neither parent. Thus if
their only common element is�, and they commonly
exclude only�, and ifw � �, then three copies of�
and�� would be placed in the bag.

2. Place one copy of each element in only one of the par-
ents, together with one copy of its barred counterpart.

3. Repeatedly draw from the bag, in a random order,
barred and normal elements. Normal elements are
included in the child, whereas barred elements are ex-
cluded, in both cases subject to the primacy of earlier
decisions (i.e. an element previously included cannot
later be excluded, and vice-versa), and a requirement
that elements not be included which would cause vi-
olation of the fixed set size.

4. This process continues until either the child is fully
specified, or the bag is empty. Should the bag empty
before the child is fully specified, remaining elements
and barred elements are assigned at random subject to
the constraints listed above.

An example of the operation of RAR� is given in figure 1.
It is easy to see that

� For all positive values ofw � �, RARw assorts the
set formae, because it is possible to construct any child
which includes only elements available in its parents.

� Lower values ofw lead to more assortment, in the
sense that it becomes more probable that arbitrary mix-
tures of the parents genes will be generated.



� Higher values ofw lead to less violation of respect
and less assortment. Ifw were notionally set to�, it
is clear that there would be full respect. In this case
RAR� actually reduces to a simpler operator called
random respectful recombination,(R�) which includes
all elements common to the two parents, excludes all
those which neither contains, and randomly chooses
the remaining elements. Clearly R� does not assort
the set formae, since these are non-separable.

It should be stressed that the description above is explanat-
ory only, and that more efficient implementations than that
described are possible. Moreover, since in practicew is
just the probability of selecting elements common to the
two parents relative to those unique to one parent, there is
no difficulty about allowingw to take on any positive value,
i.e. the restriction to integers is unnecessary.

For a description of the operation of RAR in the general
context, and a more detailed motivation for it, the reader is
referred to Radcliffe (1993).

3 Test Problems

3.1 Non-epistatic problem

The simplest problem which will be considered is com-
pletely non-epistatic, and simply awards one point to a
solution for each element which it contains which is also in
the optimumS�. (In all cases the universal set isZN with
N � �
�, and the optimum sought isZn, with n � 	�.)
Thus this fitness function, which will be described formally
as

�� � P�ZN � �� Z (7)

(whereP denotes “the set of all subsets of”) is given by

���A� � jA � Znj� (8)

The penalty function which will be applied when using the
binary representation simply deducts one for every surplus
or missing element, and is given by

P � P�ZN � �� Z (9)

with
P �A�

�

��
��jAj � n

��� (10)

Clearly�� represents a completely non-epistatic problem,
and is in some ways analogous to the common “one-max”
problem (or “counting ones” problem, e.g. Vose & Lie-
pins (1991)).

3.2 Epistatic problems

Probably the most widely discussed epistatic problems in
the literature on genetic algorithms are the deceptive prob-
lems introduced by Goldberg (1990a, 1990b), together
with the epistatic members of De Jong’s test suite (De-
Jong, 1975). None of these can be applied directly since
they are all defined with respect to arbitrary binary strings,

0 1 2 3 4 5
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0 1 2 3 4 5
0
1
2
3
4
5

0 1 2 3 4 5
0
1
2
3
4
5

Figure 2: The left figure shows the credit assigned for
gettingk elements of a sub-range of length 5 correct for a
non-epistatic problem. The central and right figures show
two possible arrangements in the epistatic case. Notice that
getting all elements correct always results in the maximum
score.

though it would be possible to build analogues of various
deceptive problems. This, however, is not the aim here:
rather the intention is to perform a simple investigation of
the effect of epistasis on the performance of the operat-
ors under consideration. Instead, therefore, a novel set of
functions of sets with varying degrees of random epistasis
will be introduced and explored. The basic idea will be
to introduce a grouping of the elements into equal-length
sub-ranges, such as 0–4, 5–9 and so forth. The credit
assigned for gettingk of these elements correct in the non-
epistatic case would bek, as shown in figure 2. In the
epistatic version, the credit for gettingk elements correct
will be shuffled randomly with respect to the non-epistatic
case, subject only to the constraint that getting all elements
correct will always result in a maximum score (figure 2).
Clearly the longer the sub-blocks considered, the more epi-
stasis will be allowed, and in general the fitness function
�k �k � ��, will be defined on the basis of subranges of
lengthk, this definition coinciding with the earlier one for
��. Note that the random shuffling isindependentlychosen
for each sub-range of lengthk.

4 The Experimental Framework

All experiments were conducted using the Reproductive
Plan Language (RPL) Interpreter described in Russo (1991)
and Jones (1992). Serial experiments used a non-
generational reproductive plan with a population size of
100, a mutation rate (definitely exchanging a member of
the set with a non-member after crossover in the case of the
set representation, and definitely flipping a bit in the case of
the binary representation) of 0.01, recombination with prob-
ability 1.0, binary tournament selection with parameter 0.6
(no replacement), certain replacement of worst individual,
RAR with various weights, and uniform crossover with
parameter half. In all cases the all solutions in initial pop-
ulation are of the correct size (60), i.e. when the penalty
function is used, the penalty is zero for all members of the
initial population.

It is important to understand the reasons for choosing uni-
form crossover as the “traditional” operator to compare
against. Eshelmanet al. (1989) have analysed crossover
operators and shown that the differences betweenn-point



crossover and uniform crossover may be fully described
by considering two factors, which they term “positional”
and “distributional” bias. Uniform crossover has no po-
sitional bias because the probability of any set of alleles
being transferred from a parent to its child is independent
of their location on the genome (i.e. it is a function of the
number of genes considered only). In contrast, the probab-
ility that a group of alleles will be transmitteden masseby
n-point crossover operators is strongly dependent on their
location on the genome. The epistatic functions introduced
in this paper have strong positional dependence whichn-
point crossover could exploit, but such exploitation is not
of interest in this paper, for similar functions which did
not group together the sub-ranges considered could equally
easily be constructed. Similarly, a variant of RAR which
had positional bias could easily be constructed if exploita-
tion of the such dependence of the epistatic functions were
desired.

An operator is said to exhibitdistributionalbiasif the prob-
ability distribution for the quantity of material taken from
one parent is non-uniform. One-point crossover has no
distributional bias (assuming that the cross point is chosen
uniformly) while the distribution for uniform crossover is
binomial. Spears & DeJong (1991) have provided evidence
that biasing the operators to take more genetic material from
one parent than the other tends to improve their perform-
ance, but again this is not the purpose of this study.

Thus uniform crossover has been chosen for this study be-
cause its positional and distributionalcharacteristics are the
same as those of RAR.

5 Experimental Results

Two sets of experiments were performed using the non-
epistatic evaluation function��and five epistatic variations.
The degree of epistasis was increased by increasing the
length of the blocks whose values were randomly permuted
through the values 2, 3, 4, 6, and 10. It should be noted
that the degree of epistasis for even the first of these values
is quite high, and it is unclear whether typical “real-world”
problems would be likely to exhibit the degree of epistasis
represented by the harder problems studied here (though
one might expect other sorts of difficulties to arise in real-
world situations).

Graphs of all results are shown in figures 3 and 4. All results
are averaged over twenty runs on the different instances of
randomly-generated epistatic functions, and show the best
solution in the population at the given generation. The error
bars indicate standard deviations. In the case of the results
with uniform crossover, the fitness includes the penalty, but
in all cases the best solution in the final population was of
the correct size (60).

For the first set of experiments (figure 3) the performance
of RAR� with the ‘natural’ weight of
 is compared with
uniform crossover with a penalty function. Although in
most cases the standard deviations overlap, in every case

from the non-epistatic to the most epistatic fitness function,
RAR marginally out-performs uniform crossover with the
penalty function, in terms of the quality of its solutions and
usually in its speed also.

The second set of experiments compares the performance
of RARw for weightsw � , w � 
, w � �, w � ���,
w � ��
� andw � � (� R�). Again the graphs include
the performance of uniform crossover for reference, but
this time standard deviations are not shown because of the
density of informationon the graphs. The followinggeneral
observations can be made:

� The lower values ofw generally achieve the best ul-
timate performance, but they are relatively slow to
achieve this.

� Conversely, the higher values ofw (especially as rep-
resented by R� � RAR�) tend to perform better
earlier in the runs.

This is much as would be expected: the higher weights
lead to more respect and thus greater exploitation at the
expense of less thorough exploration of the space. For the
problems studied the ultimate benefits of the lower weights
and greater exploration can take as much as an order of
magnitude longer to be achieved than the fast gains from
respect.

6 Conclusions

It should be emphasized that the experiments performed are
far from exhaustive or definitive. A simple penalty func-
tion was used with uniform crossover, and the epistatic test
functions used for set optimisation are contrived and all of a
single class. Nevertheless, the following conclusions may
fairly be drawn. First, the RAR operator, in its simplest
form, clearly works fairly effectively for the fixed-size set
problems studied. Since previous work published on forma
analysis has been largely theoretical, this in itself is signi-
ficant. Obviously it would be desirable to study a wider
range of set problems, particularly “real-world” examples.

Secondly, although the gains are not dramatic, RAR� out-
performs uniform crossover with a simple penalty function
on a family of problems in which the solution is a fixed-size
set, using fitness functions which vary from highly-epistatic
to non-epistatic. This therefore provides some evidence that
forma analysis is capable of leading to effective genetic
search in problem domains not well suited to conventional
binary representations. Since RAR is a universal operator,
in the sense that it can be used in any domain provided only
that appropriate formae have been defined over the search
space, this is potentially significant. Preliminary work in
other problem domains such as the TSP and a radar sensing
problem, not yet published, have also been encouraging and
detailed studies will appear.

Thirdly, it has been established that the weight parameter
w which RARw uses can indeed be tailored to control the
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trade-off between respect (cf. exploitation) and assortment
(cf. exploration) in problems for which these are incompat-
ible.
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