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Abstract. mRNA molecules are folded in the cells and therefore many of their
substrings may actually be inaccessible to protein and microRNA binding. The
need to apply an accessability criterion to the task of genome-wide mRNA motif
discovery raises the challenge of overcoming the core O(n3) factor imposed by
the time complexity of the currently best known algorithms for RNA secondary
structure prediction [24, 25, 43].

We speed up the dynamic programming algorithms that are standard for RNA
folding prediction. Our new approach significantly reduces the computations
without sacrificing the optimality of the results, yielding an expected time com-
plexity of O(n2ψ(n)), where ψ(n) is shown to be constant on average under
standard polymer folding models. Benchmark analysis confirms that in practice
the runtime ratio between the previous approach and the new algorithm indeed
grows linearly with increasing sequence size.

The fast new RNA folding algorithm is utilized for genome-wide discovery
of accessible cis-regulatory motifs in data sets of ribosomal densities and decay
rates of S. cerevisiae genes and to the mining of exposed binding sites of tissue-
specific microRNAs in A. Thaliana.

Further details, including additional figures and proofs to all lemmas,
can be found at: http://www.cs.tau.ac.il/∼michaluz/
QuadraticRNAFold.pdf

1 Introduction

The brief “lives” of messenger RNAs (mRNAs) begin with transcription and ultimately
end in degradation. During their “lives”, mRNAs are translated into proteins. This
whole process is regulated in a highly organized fashion to ensure that specific genes are
expressed at the appropriate times and levels in response to various genetic and environ-
mental stimuli [11, 35]. It is well-known that mRNA decay and translation are affected
by cis-regulatory motifs within mRNAs. These motifs serve as binding sites for trans-
regulatory proteins and microRNAs1. Several cis-regulatory RNA motifs were previ-
ously discovered experimentally, such as AREs (AU-Rich Elements) [28, 40], which
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1 microRNAs are single-stranded RNA molecules, typically 20-25 nucleotides long, that bind to

a target mRNA and induce quick mRNA degradation or inhibit protein translation [21, 31].
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are mRNA destabilizing elements involved in mRNA decay, and TOPs [13, 36], which
control the translation of ribosomal proteins and elongation factors.

Recently, new and interesting data has become available which measures, on a
genome-wide scale, the ribosomal densities of mRNAs which reflect translation rates
[3], and additional data that measures mRNA decay rates [37]. The results of these mea-
surements, if incorporated with genome-wide mRNA sequences, may reveal a wealth
of novel cis-regulatory elements underlying both processes. However, since RNA el-
ements are characterized by both primary sequence and higher order structural con-
straints, the identification of RNA elements is more complicated than identification of
DNA elements. During the last decade, many computational efforts have been made to
develop tools for the identification of RNA elements that are common to a group of
functionally or evolutionarily related genes. Some of these methods rely on a first step
that involves multiple alignment [2] and require that the sequences be highly similar
to begin with, while other methods can detect locally conserved RNA sequence and
structure elements in a subset of unaligned sequences [16, 26]. However, the complex-
ity of these methods makes their application impractical for handling the large number
of sequences involved in eukaryotic genome-wide analysis. Nevertheless, it turns out
that most of the RNA regulatory motifs discovered so far are simple stem and loop
structures with a consensus motif residing in the loop area (e.g. IRES) [13, 36].

Further note that the focus on local 2D structural conservation ignores the global
consideration of whether or not the primary sequence sites are indeed accessible to
protein binding. In order to allow the binding between the target cis-regulatory motif
and the trans-regulatory proteins or microRNAs, the base pairs in the motif must be free
of any other chemical bond. This is due to the fact that the chemical recognition is based
on an interaction between amino acids residing in the protein and the corresponding
nucleotides in the cis-regulatory motif residing in the mRNA [6], or on base pairing
between the microRNA sequence and the motif nucleotides.

The above requirement for chemical availability of motifs to protein binding calls
for the formalization of an accessability criterion:

Definition 1 (“accessible” substring). Let S be a sequence and s a region i.e. sub-
string in S. We say that s is accessible iff the following two conditions apply:

1. There exists a 2D structure of S with predicted free energy G1 in which none of the
nucleotides of s is engaged in base pairing.

2. G1 −G0 ≤ δ, where δ is a user defined threshold parameter, and G0 is the optimal
folding free energy of the full string S.

In this paper we suggest a novel approach to the genome-wide discovery of RNA cis-
regulatory motifs. In our framework, motifs are scored according to their statistical
significance when applying the above accessibility criterion. In order to accommodate
this, the input mRNA sequences are first filtered according to Definition 1. This is done
in order to reduce the noise created by motifs which are not exposed to trans-regulatory
binding (see Figure 1).

“Accessible site” criteria have been previously employed both in the context of mi-
croRNA target prediction [27] and in antisense oligonucleotide hybridization
predictions [4, 15, 23, 30]. Neverthless, in the antisense prediction application only a
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Fig. 1. Applying the accessibility criterion to
genome-wide motif discovery in mRNA ri-
bosomal density data. The motif X may be
predicted to differentiate between the set of
mRNAs with high density (left) and the set
with low density (right) since its occurrences
in mRNAs 1,4,5 and 6 are inaccessible.

j+1i jkk+1 j’

V(i,j)

V(i,k) W(k+1,j) W(j+1,j’)

Fig. 2. The competition between candidate
V (i, k) and candidate V (i, j) for the minimal
W (i, j′). Candidate V (i, k) has an advantage
over candidate V (i, j) in the additional poten-
tial cost for segment sj+1 . . . sj′ since it has
a wider left-scope for combining this segment
in a structure with W (k + 1, j). Therefore, if
V (i, k) + W (k + 1, j) ≤ V (i, j) then by tri-
angle inequality V (i, k) + W (k + 1, j′) ≤
V (i, j) + W (j + 1, j′).

single target, the mRNA corresponding to the gene which is targeted for “knock out”,
needs to be scanned for accessible sites. For this task, the current RNA folding pre-
diction tools are sufficient. However, such tools could not be practically scaled up to
serve whole genome motif discovery, where thousands of mRNAs need to be mined
for accessible sites, without raising severe efficiency problems: the complexity of RNA
structure prediction allowing multiple loops but no pseudoknots is O(n3) to begin with,
where n is the size of an RNA sequence (typically ∼ 2000). This complexity is further
increased to O(n3 · m) by the need to exhaustively run a sliding window across the
input sequences, where m = O(n) is the number of different starting positions of ac-
cessible regions that need to be considered in each gene. Note that the sliding window
computational challenge is not addressed by Robins et al. [27], where the computation
is simplified by the fact that only a single optimal folding is computed per gene. Thus,
the task of mining accessible sites for genome-wide motif discovery creates a heavy
O(n3 · g · m) bottleneck in terms of computational complexity, where g is the number
of genes in the genome under study (typically in the thousands).

The practical considerations raised by such a complexity are exemplified as follows:
suppose the genome under study contains 6000 mRNA sequences, of size ∼ 2000 nu-
cleotides each, in which we need to consider all potential sites obtained by sliding a
window of size k << 2000. Given that the folding prediction computation for each
sequence takes about twenty seconds2: the total time needed for the computation of all
relevant accessible sites in this case would be 6000 · 2000 · 20 seconds ≈ 7.61 years!
Further note that even if we confine our search to ∼ 300 windows in the UTR regions,
the time needed still sums up to more than a year. This example demonstrates the need
for efficient folding algorithms, especially when dealing with whole-genome scale data.

2 The average folding time for this estimation was measured using the RNAFOLD program in
Vienna package 1.4 on a 2G Hrz PC with 1G RAM and the average was taken over 100
random sequences of size 2000nt each.
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Could the classical O(n3) algorithms for RNA secondary structure prediction [25, 43],
which have been heavily used by the bioinformatics community in the last two decades,
still be substantially sped up? Furthermore, could such a speed up be implemented via
a practical, low-constant algorithm?

These important challenges are addressed in the rest of this paper, where we describe
a new dynamic programming algorithm that exploits the combination of two properties
to speed up RNA secondary structure prediction: one is the observed triangle inequality
property of the matrices commonly used in RNA secondary structure prediction (Sec-
tion 2.2), and the other is the polymer-zeta behavior of RNA folding with respect to
increased sequence size (Section 2.4). These observations are utilized here via a simple
candidate list algorithm, called Algorithm CANDIDATEFOLD (Section 2.3), which sig-
nificantly reduces the computations without sacrificing the optimality of the results (no
heuristics are used). The expected time complexity of Algorithm CANDIDATEFOLD is
O(n2ψ(n)) instead of the previously known O(n3), where ψ(n) is shown to converge
to a constant under models previously described for RNA folding and re-validated by
our simulations (see Section 2.5). Furthermore, due to the simplicity of Algorithm CAN-
DIDATEFOLD, it is indeed much faster than the classical algorithm in practice, as sup-
ported by experimental performance results in Section 3. Clearly, this new algorithm for
speeding up RNA folding prediction is applicable to a wide range of additional biolog-
ical applications, especially to those that require a substantial amount of RNA folding
computations.

Based on the efficient new RNA folding algorithm CANDIDATEFOLD, we conducted
a study which examines the contribution of the “accessible site” criterion to the discov-
ery of RNA motifs that would otherwise be obscured by noise. The new approach was
applied to quantitative data sets of ribosomal densities and decay rates of almost all
(i.e. ∼ 6000) S. cerevisiae genes. By applying our approach, some biologically inter-
esting and statistically significant motifs were discovered (Section 5). For example, the
p-value of the motif AGCKTTA in the decay rates data was 5 ·10−7. This p-value was
due to the fact that the average half-life (i.e. log(2)/decay rate) of 24 genes that were
found to contain this motif in an accessible substring was 26 days, while the half-life
of the background population was 15 days. Relaxing the accessibility criterion lowered
the significance of the motif by raising its p-value to 0.008.

We also employed the “accessible target” criterion to analyze microRNAs regulating
tissue specific processes in A. Thaliana. Interesting tissue specific microRNAs were
discovered (see Fig. 4).

2 The Accessible Site Prediction Engine

2.1 Preliminaries of RNA Folding Prediction Via Minimum Energy

RNA is typically produced as a single stranded molecule which then folds intra-
molecularly to form a number of short base-paired stems. This base-paired structure is
called the secondary structure of the RNA. Base pairs almost always occur in a nested
fashion in RNA secondary structure. Informally, this means that if we draw arcs over
an RNA sequence connecting base pairs, none of the arcs cross each other. When non-
nested base pairs occur, they are called psuedoknots. Most of the dynamic programming
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algorithms which are standard for RNA structure prediction do not deal with pseudo-
knots. This is done mostly in order to simplify the problem and is justified by the fact
that short pseudoknots do not contribute much to the overall energy and long pseudo-
knots are kinetically difficult to form [20]. Therefore, in this paper we assume that no
two arcs cross, however multiple loops are indeed allowed.

Under the above assumptions, a model was proposed in Tinoco et al. [32] to cal-
culate the stability (in terms of free energy) of a folded RNA molecule by adding in-
dependent contributions from base pair stacking and loop-destabilizing terms from the
secondary structure. This model has proven to be a good approximation of the forces
governing RNA structure formation, thus allowing fair predictions of real structures by
determining the most stable structures in the model of a given sequence. Based on this
model, algorithms for computing the most stable structures have been proposed (Nussi-
nov and Jacobson, 1980 [25]; Zuker and Steigler, 1981 [43]), and various tools for
RNA secondary structure prediction were developed. The tools commonly used today
are MFOLD [42], Vienna Package [14] and FOLDRNA [41].

The thermodynamic parameters used by our accessible site prediction engine are
experimentally derived and are identical to those used by the RNA folding tools listed
above, where the following four recursions are combined to model RNA secondary
structure folding. Note that the recursions depend on the nature of the energy rules
for loops, where eh(i, j) is the energy of the hairpin loop closed by the base pair i, j,
es(i, j) is the energy of the stacked pair i, j and i + 1, j − 1 and ebi(i, j, i′, j′) is
the energy of a bulge or an interior loop closed by i, j with i′, j′ accessible from i, j.
Also note the boundary conditions W (i, j) = V (i, j) = +∞ if j − i < 4. More
detailed recursions, based on the ones given here, take into consideration exterior base
stacking [43]. These are not elaborated here for the sake of simplicity of presentation,
however the same reasoning applies to this extension as well. The recursion equations
are explicated below:

W (i, j) = min{V (i, j), W (i+1, j), W (i, j−1), min
i≤k<j

{W (i, k)+W (k+1, j)} (1)

Eq. 1 computes the optimal folding of substring si, . . . , sj , which is the value of the
entry in row i and column j of the main, upper-triangular DP table W . The computa-
tion of this table involves the matrix V whose entries are computed via the following
equations.

V (i, j) = min{eh(i, j), es(i, j) + V (i + 1, j − 1), V BI(i, j), V M(i, j)} (2)

Eq. 2 computes the optimal folding energy of a substring si . . . sj in which si base pairs
with sj .

V BI(i, j) = min
i<i′<j′<j

{ebi(i, j, i′, j′) + V (i, j)} (3)

Eq. 3 computes the score of an optimal folding of substring si, . . . , sj given that there
is an internal loop formed at indices (i, i′, j′, j).

V M(i, j) = min
i≤k<j−1

{W (i + 1, k) + W (k + 1, j − 1)} + a (4)

where a is a constant multi-branch penalty.
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Time Analysis of the Classical RNA Folding Prediction Engine. The above recur-
sions are implemented by maintaining four tables of size O(n2) each. Eq. 1 is clearly
O(n3). Given the values computed for Eq. 1, the values for Eq. 4 can be computed in
O(n2) time and space via direct look-up of the minima values previously computed for
Eq. 1. Eq. 2 is also O(n2).

Eq. 3 for the computation of internal loop size energies is naively O(n4). Practi-
cally, it is standard to assume that RNA interior loop size is bounded by a constant (15
nt in room temperature and up to 30 nt in extreme heat). The program RNAFOLD in
Vienna package [14] as well as the MFOLD program [42] use constant gap size in both
directions to reduce the complexity of Eq. 3 to O(n2). Lygnso et. al. [22] show how
to reduce the complexity of this equation to O(n3) without binding the gap size. On
the theoretical front, Waterman and Smith showed how to compute internal loops in
O(n3), assuming that the loop penalty is a function of its size [34]. Eppstein, Galil and
Giancarlo [7, 9] considered loop destabilizing functions satisfying certain convexity or
concavity conditions, and developed an O(n2 log2 n) algorithm for this case. This was
later improved to O(n2 log n) [1], and finally to O(n2α(n)) (where α is the inverse of
Ackerman’s function) for logarithmically growing destabilizing functions [19].

Conclusion 1. The O(n3) bottleneck to RNA Folding Prediction complexity is based on
the computation of the minimization term mini≤k<j{W (i, k)+W (k+1, j)} in Eq. 1.

Note that the O(n3) bound applies to both the worst case and the expected case time
complexities of the classical RNA folding algorithm, since Eq. 1 is called O(n2) times
and each call involves the computation of the minimum over O(n) elements on average.

2.2 Triangle Inequality in the Context of Dynamic Programming

In this section we formalize the triangle inequality property in the context of dynamic
programming tables and show that the main matrix W , which is the final output of the
RNA folding recursions given in the previous section, obeys this property. Let M be a
n×n matrix in which each entry M(i, j) (i ≤ j) is computed by the following formula:

M(i, j) = min
i<k≤j

{M(i, k) + M(k + 1, j)}

The well-known inverse quadrangle inequality property [10] is defined as follows.

Definition 2. A matrix M obeys the inverse quadrangle inequality condition iff

∀ i < i′ < j < j′ M(i, j′) ≤ M(i, j) + M(i′, j′) − M(j′, j)

Both the quadrangle and the inverse quadrangle inequalities have previously been used
to speed up dynamic programming [5, 10]. However, both the quadrangle inequality and
the inverse quadrangle inequality are strong constraints on the input behavior, and do not
apply to the matrix computed for RNA folding (see Eqs. 1- 4 above). However, a special
weaker case of the inverse quadrangle inequality, the triangle inequality property, which
is much more common in practice in various applications, will be used in this paper to
speed up RNA folding prediction.
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Definition 3. A matrix M obeys the triangle inequality property iff

∀ i < j < j′ M(i, j′) ≤ M(i, j) + M(j + 1, j′).

2.3 A Simple 1D Candidate List Approach to the Construction of W

Let S = s1 . . . sn denote a given RNA sequence. The next two definitions describe
specific folding concepts that will be used in the description of the new algorithm.

Definition 4 (Structure). A structure over a sequence si . . . sj is a folding in which
si base pairs with sj .

Definition 5 (Partition Point). A partition point in a given folding of S = s1 . . . sn is
an index k, such that there is no structure over si . . . sj in this folding, where 1 ≤ i ≤ k
and k < j ≤ n.

In this section we describe an alternative approach to the computation of W , which
prunes Eq. 1. Similarly to the standard algorithm, the new algorithm computes the val-
ues of W row by row, in bottom-up order (decreasing row index). For each row i of W ,
the entry W (i, j) is computed in left-to-right order (increasing column index). How-
ever, the suggested new algorithm, called CANDIDATEFOLD, differs from the original
one in the application of Eq. 1 to the computation of W (i, j). In a given row i, instead
of considering O(n) possible partition points for each column j in Eq. 1, the new al-
gorithm only considers a list of candidate partition points, which are maintained in the
form of a simple candidate list. In the following sections we show that the expected
maximal size of this candidate list for an n-sized sequence, denoted ψ(n), is constant.

In order to clearly define the properties that make a potential partition point a quali-
fied candidate, we first need to simplify Eq. 1. Note that, if the main diagonal W (r, r)
was set to zero, then the two terms W (i + 1, j) and W (i, j − 1) in Eq. 1 could be
embedded into the minimization term as special cases. W (i + 1, j) would then be ob-
tained as a special case k = i to yield the sum W (i, i) + W (i + 1, j) which is exactly
W (i + 1, j); similarly, W (i, j − 1) would be obtained as the special case k = j − 1
to yield the sum W (i, j − 1) + W (j, j) which is exactly W (i, j − 1). However, the
problem is that setting W (r, r) = 0 would contradict the boundary conditions set by
Zuker and Stiegler [43], which assume that W (r, r) = ∞.

Therefore, we add two auxiliary matrices, denoted W ′ and V ′, computed via the
recursions as given below, where Eq. 7 replaces the previous Eq. 1. Note that the matrix
W ′ is added in order to get around the above boundary condition problem, while matrix
V ′ serves to simplify the presentation of the algorithm which is described in the next
section.

W (i, j) = W ′(i, j) ∀j ≥ i + 4 (5)

V ′(i, j) = V (i, j) ∀j ≥ i + 4 (6)

W ′(i, j) = min{V ′(i, j), min
i≤k<j

{W ′(i, k) + W ′(k + 1, j)}} (7)

The matrices W ′ and V ′ are initialized as follows. W ′(i, j) = V ′(i, j) = +∞ if
0 < j − i < 4, and W ′(i, i) = V ′(i, i) = 0. In this formulation, the matrix W ′

preserves the minimum energy values of W everywhere except in the main diagonal
entries. The correctness of this re-formulation is asserted via the following claim.
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Claim. The values of W (i, j) and V (i, j), as computed via Eqs. 2-7, are identical to
those obtained when using Eqs. 1-4.

The next claim is immediate from Definition 2 and Eq. 7.

Claim. The matrix W ′, as computed by Eq. 7, obeys the triangle inequality.

The above claim is used in the next lemma to show that any sum which yields the
minimum of Eq. 7 can be reformulated as a corresponding, equal-scoring sum, in which
the left term is a structure (see Definition 4).

Lemma 1. Consider Eq. 7. For every entry W ′(i, j), if there exists an index k, i≤k<j,
such that W ′(i, j) = W ′(i, k)+W ′(k+1, j), then W ′(i, k′) = V ′(i, k′) for some index
k′ ≤ k.

According to Lemma 1, Eq. 7 can be reformulated as follows.

W ′(i, j) = min{V ′(i, j), min
i≤k<j

{V ′(i, k) + W ′(k + 1, j)}} (8)

Naively, after the transformation to Eq. 8, there are still n candidate partition points
which compete for the optimal score in the minimization term. However, the next theo-
rem exposes a dominance relationship between these candidates (see Figure 2).

Theorem 1. If V ′(i, j) ≥ V ′(i, k) + W ′(k + 1, j) for some i < k < j. Then,

∀ j′ > j V ′(i, j) + W ′(j + 1, j′) ≥ V ′(i, k) + W ′(k + 1, j′).

Theorem 1 exposes redundancies in the O(n) computation of Eq. 8, which could be
avoided by maintaining a list of only those candidates that are not dominated by others.

Definition 6 (candidate). A column index j is a candidate in a row i ≤ j iff V ′(i, j)
<W ′(i, k) + W ′(k + 1, j) ∀ i ≤ k < j.

The above definition can be applied to speed up the computation of W ′(i, j), as fol-
lows: rather than considering all possible n partition point indices for the computation
of Eq. 7, one could query the list that contains only partition points that satisfy the can-
didacy criterion according to Definition 6. This is formalized in the following equation,

W ′(i, j) = min{V ′(i, j), min
∀k∈candidate list

{V ′(i, k) + W ′(k + 1, j)} (9)

Eq. 9 is implemented via a candidate list that is empty at the start of each row and
is extended throughout the left-to-right computation of row i by appending only those
partition points which are candidates by Definition 6. Each partition point is consid-
ered for candidacy once per row, when its column is reached. The psuedo-code for the
algorithm for computing Eq. 7, denoted Algorithm CANDIDATEFOLD, is given below.

Algorithm CANDIDATEFOLD:
0 for each row i := n to 1 do
1 candidate list ← NULL
2 for each column j := i to n do
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3 W ′(i, j) ← min∀k∈candidate list{V ′(i, k) + W ′(k + 1, j) }
4 if (V ′(i, j) < W ′(i, j)) then
5 W ′(i, j) ← V ′(i, j)
6 Append j to the candidate list

Expected Case Time Analysis of the Improved RNA Folding Prediction Engine.
Let ψ(n) denote the expected maximal size of the candidate list in a sequence of size n.
Algorithm CANDIDATEFOLD computes each entry in the n2-sized energy-matrix W ′.
Each such calculation requires the computation of Eq. 9, where the major work is that
of computing the minimum among O(ψ(n)) candidates. All other recursions remain
unchanged. Therefore, the overall average time complexity is O(n2 · ψ(n)) if the stan-
dard bound on interior loop size is followed, or otherwise O(n2 · max{ψ(n),α(n)}),
where α(n) is the inverse ackerman function.

In the next sections we analyze the expected growth of the candidate list size with
respect to increasing sequence size and assert the surprising fact that ψ(n) converges
to a constant. This leads to the conclusion that Algorithm CANDIDATEFOLD improves
the standard O(n3) classical algorithm (analyzed in section 2.1) by a linear factor on
average.

2.4 The Polymer-Zeta Property of RNA Folding

The polymer-zeta property is defined as follows.

Definition 7. Let P (i, j) denote the probability of a structure over the substring
si . . . sj under a given set Λ of folding rules, where j − i = m. We say that Λ fol-
lows the polymer-zeta property if P (i, j) = b/mc for some constants b, c > 0.

Previous work shows that RNA, which folds like other polymers, obeys the polymer-
zeta property, namely, the probability that a structure is formed over the subsequence
between two positions distant m monomers apart is P (m) = b/mc where b = 1 and
c > 1 [17, 18]. This fact is explained by modeling the 2D folding of a polymer chain
as a self-avoiding random walk (SAW) in a 2D lattice [33]. In this model the spacial
position of every nucleotide in the original polymer corresponds to a random step in
the lattice, where edges of the lattice represent possible transition directions. Since this
model of polymer folding also ignores pseudoknots, the walk is called “self avoiding”,
i.e. an assumption is followed that the walk does not intersect the prefix of the chain. The
query of interest here is the probability that the mth step in the self avoiding random
walk occupies the same vertex in the lattice as the origin. The theoretical exponent
for the two dimensional SAW model is known to be c = 1.5 [8]. This is supported in
practice by simulations for collapsing polymers of sequence size up to 3200, as reported
in [17]. These simulations exhibited an exponent of 1.375 at low temperatures and 1.571
in higher temperatures.

Our dynamic programming algorithm follows the thermodynamic rules defined by
Mathews et al. [24], which were derived experimentally to model RNA folding. We
ran our own simulations in order to assert that this model indeed follows the previously
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analyzed single structure formation probabilities in polymer folding, which were found
to obey the polymer-zeta property. We used 50, 000 mRNA sequences with an average
length of 1992 nucleotides from the NCBI databases and found that the probability that
the optimal folding forms a structure over si . . . sj , where m = j − i, is estimated to
be 2.11 · m−1.47. The degree exponent c was estimated in our study to be ∼ 1.47 by
applying standard statistical procedures (approximating the MLE parameter followed
by running “Kolmogorov-Smirnov” and “chi-square” goodness-of-fit tests, using the R
statistical analysis package, http://www.r-project.org).

2.5 Bounds on ψ(n)

We next analyze ψ(n) based on our findings. The following observation is immediate
from Lemma 1.

Observation 1. A new candidate j is added to the candidate list, in step 6 of Algorithm
CANDIDATEFOLD, iff the optimal predicted folding of substring si . . . sj forms a sin-
gle structure from index i to index j. The only exception to this case is the boundary
condition candidate i, which is always added as a “virtual” structure to the list.

Given that the probability for a new candidate situated m bases away from the start of
the sequence is b · m−c, the expected number of candidates in a sequence of length n
is ψ(n) = b

∑n
i=1 i−c. This summation could assume one of three values, according to

the estimated c:

1. For values c ≥ 1 this series is a partial sum of the Riemann Zeta function defined
as

∑∞
i=1 i−c.

(a) If c > 1, this series is known to converge and thus, ψ(n) = O(1).
(b) if c = 1, we get a partial sum of the first n elements of the Harmonic series,

which is known to be less or equal to 1 + ln(n) and thus ψ(n) = O(log n).
2. if c < 1, we use the power means inequality to obtain the bound ψ(n) = O(n1−c

(log n)c).

Theorem 2. Applying Algorithm CANDIDATEFOLD to the folding of a polymer chain
of size n that obeys the polymer-zeta property with c > 1, requires an average of O(n2)
operations.

Recall that our simulations estimate c to be 1.47, which implies that ψ(n) ∼ 2.11 ·
2.74 ≈ 5.7, which is a constant. Therefore, applying Algorithm CANDIDATEFOLD to
the folding of an RNA sequence of size n takes O(n2) time on average.

3 The Performance of the New RNA Folding Engine

To demonstrate the power of algorithm CANDIDATEFOLD in practice we ran it against
a naive version of our folding program, which predicts the minimum free energy struc-
ture using the classical algorithm of Zuker and Stiegler [43]. The data set included
150,000 sequences: 300 sequences for every possible size in the range 500-1000.
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(a) Random mRNA subsequences (b) Simulated RNA sequences

Fig. 3. The average measured run-time ratio of naive/CANDIDATEFOLD as a function of increas-
ing sequence size

Figure 3 demonstrates that the average run time ratio (computed by dividing the run
times of the classical algorithm with ours) is linear in the sequence length n, re-
confirming our time complexity analysis. In Figure 3(a), the analysis was done for 100
sequences for each possible size in the range 500-1000, which were extracted as ran-
domly chosen subsequences from 50,000 complete mRNA sequences taken from NCBI
databases. The analysis shown in Figure 3(b) was done for 100 sequences of each size
in the same range, which were generated using a Markov-model imitating software.
This sequence-simulation program takes a set of sequences to imitate and a Markovian
order as input, and generates an output of random sequences according to a Markov-
model of the desired order. The input consisted of 50,000 complete mRNA sequences
downloaded from the NCBI database and the Markovian order parameter was set to 6.
The same results emerged when using the remaining 50,000 mRNA sequences as input
for a zero order Markovian model simulator.

4 Methods for Mining Accessible Cis and Trans Regulatory Motifs

Our method for discovering novel cis-regulatory motifs incorporates large scale decay
rate and ribosomal density measurements, combined with the information from mRNA
sequences of the genome under study. It can be formulated as follows. Given a set of
mRNAs G = S1 . . . Sg, a parameter k denoting motif window size (could be slightly
longer than the motif residing in the window), and a pre-defined energy threshold δ, we
apply the following simple two-stage approach:

Stage 1: Process the sequence set G to extract all “accessible” windows by running a
sliding window of size k across the mRNA sequence and testing each window for com-
pliance with Definition 1. For each shifted window this testing is conducted by masking
the nucleotides inside the window in order to prevent their engagement in base pairing.
Then, the minimal energy for folding the whole sequence with the masked window is
computed and compared to the minimal folding energy of the original, unmasked se-
quence. The folding energies were computed via algorithm CANDIDATEFOLD.
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Stage 2: This stage takes as input the accessible substrings, extracted in the first stage,
and seeks regulatory motifs residing in the data. Two statistical techniques are applied
here, depending on whether the sought motif is cis or trans regulatory:

Cis-regulatory motifs: Enumerate all motifs up to a given size k over the IUPAC al-
phabet [38]. For each motif use the new data created in stage 1 instead of the original
genomic sequences, to compute a t-score [12] reflecting the functionality of that motif.
If the p-value associated with the computed t-score is small enough, report the motif.
This stage can be efficiently executed by using a variation of the algorithm of Sagot
et al. [29] combined with the statistical computation of the t-score [38] and adapted to
handle the new “accessible window” data.

Trans-Regulatory Signals (microRNAs). The search for microRNAs is similar to that of
motif discovery, except for the following difference: instead of considering accessible
mRNA motifs, we considered accessible sites that were predicted to hybridize well with
the subject microRNAs, as described in [39].

5 A Biological Study of Accessible Regulatory RNA Elements

We conducted a study in order to test our novel approach, which applies the “acces-
sibility” criterion to RNA motif discovery. Using various data sets, significant motifs
were discovered, including some cis-regulatory degradation and translation motifs and
tissue-specific microRNAs.

In each of the conducted experiments, two data sets were studied: a set containing
only “accessible” substrings, according to Definition 1, and a “control” set which in-
cluded the original complete mRNA sequences. A comparison of the results obtained
for each of the two sets repeatedly confirms the contribution of the “accessibility” cri-
terion as a powerful filter for masking out noise associated with inaccessible motifs and
raising the significance score of otherwise invisible motifs.

Translation Related Motifs. Arava et al. [3] measured the ribosomal densities of al-
most all the mRNAs of the yeast S. cerevisiae under normal cell conditions, using the
following method. First, mRNAs are extracted from the cells and separated by veloc-
ity sedimentation. Then, each fraction across the gradient is analyzed by microarray
techniques for its mRNA content. Based on this, a fraction is assigned to each mRNA:
the lower this fraction is, the higher the mRNA’s ribosomal density is. We applied our
approach to this data in order to detect translation cis-regulatory elements within 5’
untranslated region (5’UTR)3. A few novel potential cis-regulatory elements were dis-
covered that may affect translational efficiency (see Table 1). In particular, the average
ribosomal density of the set of mRNAs containing the motif AGSNNK in accessible
substrings was low in comparison to the background. Thus, AGSNNK seems to be a
translation repressor.

Degradation Related Motifs. We applied our approach to the whole-genome
mRNA decay rate data measured by Yang et al [37] in order to seek mRNA

3 We used as 5’UTRs the regions spanning 150bp upstream to the translation start codons.
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Table 1. Motifs potentially regulating mRNA translations. The accessible substring criterion was
applied with window size 10 and δ = 2Kcal. The average ribosomal density without the motif
was computed based on ∼ 5000 different genes.

Motif Number Average density Average density p-value confined to p-value in any Hypothesized

of occurrences with the motif without the motif accessible substrings substring function

ACASACT 14 1.7 0.7 10−18 10−4 Translation enhancer
AGSNNK 1292 0.6 0.7 10−11 10−3 Translation repressor

Table 2. Motifs potentially regulating mRNA degradations. The first 3 columns refer to the case
of accessible substring with window size 10 and δ = 2Kcal. The average half life without the
motif was computed based on ∼ 5000 different genes.

Motif Number Average half-life Average half-life p-value confined to p-value in any Hypothesized
of occurrences with the motif without the motif accessible substrings substring function

AGCKTTA 24 26.54 15.46 4.83 · 10−7 0.0083 Stabilizer
GGGCY TR 5 57.75 15.5 2.76 · 10−9 0.0081 Stabilizer
ACMGCGT 4 42.75 15.49 4.84 · 10−7 0.01198 Stabilizer
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Fig. 4. miR-161 and it’s p-values in different plant tissues. The accessible substring criterion was
applied with window size 25 and δ = 6Kcal.

stability-regulating elements within 3’ UTRs4. We successfully identified some novel
potential cis-regulatory motifs that may affect mRNA stability (see Table 2). For ex-
ample, the average half-lives (i.e. log(2)/Decay rate) of the set of mRNAs containing
the IUPAC motif AGCKTTA in accessible substrings was high in comparison to the
background. Thus, AGCKTTA seems to be a strong mRNA stabilizer. Table 2 also
demonstrates that, when relieving the accessibility criterion, the significance of the p-
values substantially dropped.

Tissue Specific microRNAs. In order discover microRNAs, which are potential trans-
factors influencing mRNA stabilities, we collected the genome-wide expression
(measured using a microarray technique) profiles of 5 A. Thaliana tissues, includ-
ing flowers, stems, siliques, leaf, and root. MicroRNAs with potential tissue-specific

4 We used as 3’UTRs the regions spanning 150bp downstream to the stop codons of genes.
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activity were discovered5. These microRNAs showed a significant p-value for binding
in one of the tissues and non-significant p-values in the rest of the tissues. For example,
the microRNA miR-161, represented in Figure 4, is specific to silique tissue. Interest-
ingly, the figure demonstrates that in most of the tissues the p − values corresponding
to the first (accessible substring) and second (control) input sets are almost similar.
However, in the silique tissue, where the microRNA miR-161 seems to be active, the
difference between the two input sets becomes conspicuous.
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