〕 Open access • Journal Article • DOI:10.1002/SCE. 3730100403

A study of achievement and subject matter in general science: STUDY OF ACHIEVEMENT IN GENERAL SCIENCE — Source link \square

August Dvorak

Published on: 01 May 1926 - General Science Quarterly (Wiley)

Related papers:

- Student factors as correlates of achievement in physics
- Science achievement within the United States: a view through affective and demographic lenses
- Influences of attitude toward science, achievement motivation, and science self concept on achievement in science: A longitudinal study
- Sex differences in achievement, attitudes, and personality of science students: A review
- The Effects of Science Achievement and Science-related Attitude by Science Writing Activity for Middle School Students

A STUDY OF ACHIEVEMENT AND SUBJECT MATTER IN GENERAL SCIENCE

A THESIS
SUBMITTED TO THE GRADUATE FACULTY
OF THE
UNIVERSITY OF MINNESOTA
BY

AUGUST DVORAK
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF
DOCTOR OF PHILOSOPHY
JUNE
1923

ACKNOWLEDGMENTS

This study in General Science, involving as it did over ten thousand pupils, could not have been made without excellent co-operation of the administrators and teachers in the twentytwo school systems where the original General Science test was given. To these men and women who have made this study possible the author wishes to express his sincere appreciation. To J. 0 . Johnson and to J. E. Bohan the author is indebted for the privilege of securing data on the reliability of the finished Scale Forms from Stillwater High School and Central High School, Minneapolis respectively. To Lloyd R. Anderson is due the oredit for the scoring of the ten thousand original General Science tests. To Earl R. Glenn, Teachers College, Columbia University, and to S. R. Powers, University of Minnesota, the writer is indebted for a considerable number of the preliminary General Science test items. To Dootor Van Wagenen the writer is under obligation for the statistical method of developing and scoring the completed Scale and for the many valuable suggestions relative to the proper statistical treatment of data. No small amount of credit is due, for any final value this study may have, to Doctor \mathbb{N}. S. Miller under whose guidance this work was completed. Lastly the writer cannot begin to estimate the oredit for the success of this study Which is due his wife, Hermione Dealey Dvorak, without whose untiring and valuable assistance this work could not have been completed.

TABLE OF CONTENTS

PAGES
TABLE OF CONTENTS ii-iv
INDEX TO TABLES AND FIGURES v-vi
CHAPTER I INTRODUCTION 1-3
CHAPTER II PURPOSE 4-5
CHAPTER IIICHAPTER IVMETHOD19-27
CHAPTER V RELIABILITY OF THE GENERAL SCIENCE TEST 28-39
A. RetestingB. Stability of the itemsC. High positive correlation withother criteria
D. Correlation between a part and the whole of the test
CHAPTER VI DEVELOPMENT OF THE GENERAL SCIENCE SCALE 40-91
A. Reasons for construction of scale
B. Kinds of scales possible
C. Derivation of the Scale

> 1. Reliability of selected cases
2. Frequency of correct responses
3. Reduction of frequencies of correct responses to percentages
4. Reduction of percents of correct responses to percent of deviation from median
5. Reduction of percents of deviation from median to P.E. from median
6. Computa tion of average P.E. differences between groups
7. Reduction of all scores to 8th grade level
8. Weighted average P.E. Value'
9. Location of the value of each item with reference to the arbitrary zero
10. Selection of Scale items
11. Scoring of the Scale
12. Directions for finding pupil's score
(a) Combining the errors in groups
(b) Uncorrected score
(c) First corrected score
(d) Final score

CHAPTER VII RELIABILITY OF THE GENERAL SCIENCE SCALE 92-104
A. Composition of the General Science Scale
B. Correlation with original General Science test
C. Correlation and agreement of test and scale medians
D. Self Correlation
E. Correlation with intelligence test scores
F. Correlation between General Soience marks and Scale scores
PAGES
CHAPTER VIII COMPARATIVE STUDY OF ACHIEVEMENT IN GENERAL SCIENCE 105-158
A. Comparison of group achievement in individual schools
B. Overlapping
C. Numbers of soiences
D. Differences in achievement dueto initial possession
E. Comparison of 8 th and 9 thgrade achievement
F. Sex differences
G. Annual growth in achievement
H. Relative diffioulty of the dif-ferent items for boys and girls.
CHAPTER IX CONCLUSIONS 160-162
APPENDIX 1-xi
BIBLIOGRAPHY xil-xiv

PAGES

TABLE I Total number of returns of General Science 22
TABLE II Distribution of scores of 5,980 cases on the 300 items of the General Science test... 47
TABLE III Frequencies with which each of the 300 items was done correctly by 500 eighth grade girls and 400 eighth grade boys who had not had General Soience, and by 430 ninth grade girls and 430 ninth grade boys who had had General Science 50-52
TABLE IV Computation of item value or difficulty worked from Table III Appendixvi-xi
TABLE V P. E. values corresponding to given per- cents of the normal surface of frequency, percents being taken from the median. 56
TABLE VI Difficulty of the 300 items in the General Science test figured from the selected and defined arbitrary zero point 69
TABLE VII Items selected to form Scale Forms R-1, $S-2$, $T-2$ and the difficulty or value of each item computed to the nearest tenth P.E. (.1 P.E.) from the arbitrary zero point. 71-73
TABLE VIII Distributions of items of three Scale Forms under eight specialized sciences 94
TABLE IX Results by schools on the first 221 items of the General Science test. 107-109
TABLE X Distribution of scores of 8,970 cases on first 221 items of the General Science test 113
TABLE XI Percentile scores on first 221 items made by 8,970 cases 119
TABLE XII Percentile scores on 300 items made by 6,053 cases 124
TABLE XIII Number of sciences per pupil for 5,742 oases 142
TABLE XIV Mean number sciences per pupil in the various grades 143
TABLE XV Frequencies with which different sciences were taken by 5,742 students 148

FIGURE I	```Graphic representation of the P. E. values of group medians and of test items with reference to the arbitra- ry zero point 67```
FIGURE II	Scale and test medians for five grades of plus boys ... 99
FIGURE III	Distributions of General Science scores for 221 items, 8970.caョes.................... 114-118
FIGURE IV	Distributions of General Science scores for 300 items, 6053 cases 120-122
FIGURE V	Percentile distribution of scores made on 300 item test by different groups of pupils . $125-132$
FIGURE VI	Medians by grades on first 221 items of the General Science test involving 8,591 саses .. 133
FIGURE VII	Medians by grades on 300 items of the General Science test involving 5,970 cases 134
FIGURE VIII	Maximum, third quartile, first quartile, and minimum scores for each grade and group based on 300 items for 5,970 \qquad
FIGURE IX	Mean number of sciences per pupil in each grade based on 5,970 cases 144

A STUDY OF ACHIEVEMENT AND SUBJECT MATTER IN GENERAL SCIENCE

CHAPTER I

INTRODUCTION

1
In 1864 when Fisher attempted to establish some standards by which the achievement of school children in different elementary school subjects could be measured objectively, he started a new era in scientific school administration. The public, however, was not ready to receive Fisher's suggestions, so for approximately forty years nothing was done towards their fulfill2 ment. Later, in 1894, when Rice startled even the more progressive school men with his facts regarding the insignificance of such factors as (a) the amount of time, (b) the social status of the school or of the pupil, and (c) the time of day at which the subject was taught, as related to the success of the pupil in a given subject, the work of Fisher gained impetus. During the twenty-five years following Rice's monumental work, the American elementary and secondary schools have been the ground for many standardization, measurement, and curriculum studies. Today the status of the subject matter of elementary and secondary school subjects varies anywhere from the practically established state of Latin to the most experimental state found in some of the vooational subjects. Standards in subjeot mat-
1."See Jr. of Ed. Psy., vol. 4, pp. 551. A quotation from The Museum, a Quarterly Magazine of Education, Literature, and Science, vol ili, 1864, is reproduced as a communication" Thomdike.
2. Rice, J. M. "The Futility of the Spelling Grind". The Forum: 23:163-172. PP 409-419, 1897.
ter range anywhere from the well established four fundamentals in arithmetic to the rather subjective standards used in General Science. Methods of measurement of achievement in the various subjeots range anywhere from the scientifically established test and scales, as in spelling and reading, to practically none at all, as in manual training and civics.

In spelling, for instance, we have the work of Ayres, Thorndike and Buckingham, all of whom have attempted not only to ascertain what words in the English language are most necessary in the average adult's vocabulary but also to ascertain whioh of those necessary words the school children of different ages are capable of mastering. That information, once scientifically established, can be made the basis of selection of subject matter for each school grade, of method of presentation of subject matter, and of measurement of achievement in the subject. Such studies would serve to show what words can be most economically and wefully taught in different school years and what words the child will master in the natural course of events as the result of other similar words previously mastered. They would also serve to show the relation of achievement in subject matter to abilities, either special or general, and to other subjects simultaneously or previously pursued. It is clear that a study of this kind thoroly and completely carried out in any school subject, once that school subject is itself located in the school curriculum both as to time and place, would serve to secure maximum achievement and maximum usefulness with a minimum of effort.

The subject of "General Science" is a comparatively recent addition to the secondary sohool ourrioulum and as a result of its comparative youth is as yet unstandardized and undefined both as to subject matter and achievement. In spite of its newness and the generalized nature of its content, however, General Soience has aroused a volume of popular interest sufficient, not only to warrant ita place among the secondary school subjects but also to place it among the required subjects in numbers of secondary schools. Consequently, to the writer -- himself a teacher of General Science and keenly aware of the lack of standards and the lack of information regarding the relative values of different elements in the subject -- a soientific analysis of the subject matter of General Science seems distinctly worth while.

CHAPTER II

PURPOSE

In general, the purpose of this study is the development of a measure of achievement in General Soience in order to ascertain the relative amount of General Science subject matter possessed by school children, both that which is already common knowledge to the pupils thru "experience" and that which is aoquired speoifically thru instruction in General Science or in other science courses. It would also serve to measure amount of information retained and would indicate factors which $1 \pm m$ and modify the acquisition and retention of General Science subject matter.

More specifically, the purpose of this study has been differentiated as follows.
(1) To ascertain to what extent the material supposedly taught in the General Soience course is already possessed by pupils before taking the course. It has been the experience of the writer that pupils in a given section, purposely selected for its homogeneity of ability, came to the class at the beginning of the year with various amounts of the subject matter already in their possession. In other words, certain portions of the generalized. subject matter of General Science appear to be common knowledge, Whether one has or has not taken the subject of "General Science". (2) For this reason a diagnostic test is to be developed which will serve to place pupils into sections homogeneous as to the point at which their General Science course should begin and as to what it should include.
(3) To find out to what extent the subject matter of General Science has been mastered sufficiently by pupils, who have had General Soience, to enable them to state it objeotively. (4) To ascertain how much of the material once mastered is retained one year, two years and three years later.
(5) To study the differences between boys and girls, both as to the common knowledge of and as to the acquisition of the subject matter of General Science.
(6) To investigate the relative difficulty of different items of the subject matter of General Science for boys and girls. This is important in order to determine whether there is any real difference in difficulty which would justify the popular belief that General Science is easier for boys, or that some parts of General Science are best mastered by boys.
(7) To compare achievement in General Science for different school grades, as determined by General Science test scores. The comparisons in General Science achievement of 8 th grade pupils and of 9 th grade pupils would be especially desired by Junior High School advocates.
(8) To ascertain what General Science information is aoquired by pupils who do not take General Science. For this purpose control groups of pupils, who had not taken General Science, were used.

CHAPTER III

SURVEY OF LITERATURE ON GENERAL SCIENCE

A. History of General Science

The teaching of Chemistry as a college subject began in the United States as early as 1767 at Columbia College. As a secondary school subject Chemistry made its debut in 1819 at Hassam Private Academy, North Carolina. Since then other soiences have appeared in the secondary school curricula. These sciences in the main tended towards such high specialization that about half a century later there began to be felt a read for a kind of science teaching which did not have as its goal specialization in science, but which did fill an immediate and perhaps even a local need.

Such a "reform" course was offered in 1869 by Thomas H. Huxley Who gave a series of illustrated leotures to London children at the Royal Institution and later published the course in a book entitled "Physiography". In this course Huxley dealt with the immediate vicinity of London and the Thames. His subject matter embodied the physiography and geology of the Thames' Basin and the activities of the London people. The course was informational and soarcely suited for the pupils of Edinburgh or Boston, but it filled a desired end.

1. Powers, S. R. "A history of the teaching of Chemistry in the secondary schools of the United States previous to 1850". Research Publications of the University of Minnesota. No.13, p. 16.
2. Twiss, G.R. "A textbook in the principles of science teaching". The Maomillan Co. N.Y. 1921.pp. 411-435.

It is interesting to note that Huxley gave as his aims of the introduotory science course much the same objectives as are outlined today for General Science. To quote,-

1. "To fumish in the first year of the high school the information and the training in thinking that are fundamental to the special sciences and are necessary to the successful pursuit of these soiences later on in high school or college.
2. To impart information from the scientific standpoint about the useful and interesting things that are all about us, especially for the benefit of those who will not go on to collge and may not go farther in high school, and who therefore would otherwise remain ignorant of scientific facts and of the scientific way of dealing with the materials and forces that are everywhere available for our use.
3. One writer regrets the failure of the schools to produce the crop of amateur scientists which is essential for keeping alive the popular interest in science so necessary to scientific progress in the nation. It would seem to be a worthy aimof a general science course to stimulate and foster such amateur interest in science.
4. is free to organize these materials with reference to these interests and these needs and to make voluntary problemsolving and purposeful information-getting the proximate aim of the pupils. He may thus hope to train the youngsters in methodically gathering information and applying systematic thought to the things in the environment that they desire to comprehend and manage.
5. It is thought by some that a general science course may serve to show something of the relations of the sciences to one another, of the order and unity that exist in nature, and of the essential unity of the scientific method, and thus that it may appeal to imagination, contribute to a state of mental poise or balance, and perhaps develop some power of interpretation that could nott so well, be gained by separate courses in the special sciences." (pp.415-417) ${ }^{1}$

From 1869 to the present, especially since 1900, an elaboration of Huxley's "Physiography" has been widely taught under the name 1 of General Science. Few of these courses, according to Twiss, surpass that of Huxley in organization and general local merit, because there are few "Huxleys" to teach them. From about 1912 to date, however, there have been many serious atternpts to outline 1. Twiss, G. R. Ibid.
objectives for General Science which would satisfy the long felt need of a science course in high school which did not aim at developing Edisons, but rather at teaching youthful citizens how to make use of Edison's work. Typical of writers in this vein 1 2 3 are Barber, Eikenberry, Hessler, and Downing.

B. Objectives of General Science

Because there have been few "Huxleys" to teach and to organize the courses, General Soience has undergone numerous experimental changes, most of which have been for the better. At the present time courses of study and textbooks vary widely. In a recent 5-6
study Webb found that on classifying the subject matter of eighteen of the most commonly used textbooks of General Soience that it could be divided among eight basic secondary school sciences as follows.

Subjeot	No.of Topics
Physics	56
Physiograp	22
Botany	22
Zoology	17
Physiology	24

1. Barber, F. D. "Fundamental considerations in the reorganization of High School science". School Review 24:724-734. 1916.
2. Eikenberry, W. L. "Faots about the General Science situation". Sohool Review 23: 181-191. 1915.
3. Hessler, J.C. "General Science in the first year". School Science and Mathematics. Vol. XVI. pp. 407-411, 1916.
4. Downing, E. R. "What standard tests in science should do". Sohool Science and Mathematics. Vol. XIX. pp. 651-654, 1919
5. Webb, H. A. "General Science instruction in the grades". George Peabody College for Teachers Contributions to Education, \#4, McQuiddy Printing Co. Nashville, Tenn. 1921.
6. Webb, H. A. "quantitative analysis of General Soience". School Science and Mathematics. Vol. XVII. pp. 534-45. 1917

Because of the wide range of subject matter which might be included in a course of General Soience, there has been a growing feeling among soience teachers that fairly concrete and definite objectives ought to be formulated, which could be used as guides for limiting or extending the work in General Soience. Therefore, at the instigation of the Solence Section of the North Central Association of Science and Mathematics Teachers, Miss Philipine 1 Crecelius prepared a report on the objectives of General Soience . Miss Crecelius sent out a questionnaire formulated by S. R. Powers and from the returns was able to evaluate opinions of about 100 soience teachers regarding the relative importance of 14 objectives of General Soience. These objectives are given below in the order of the values assigned.

1. "To provide opportunity for aoquaintance with such elementary laws of nature as are necessary for the health of the individual and the community.
2. To give children information about those appliances whioh soience has developed and which are useful in making for greater comfort and convenience in the home and community.
3. To provide opportunity for acquaintance with the simpler applications of science in publio utilities in order that the individual may more adequately fulfill the duties of oitizenship.
4. To provide opportunity for acquaintance with the elementary laws of nature which aid in understanding those oitizenship problems Which arise in connection with such topics as conservation of our natural resources, smoke elimination etc.
5. Crecelius, Philipine "A report on Objectives of General Soience teaching". School science and Mathematics. Vol 23: 313-319.1923.
6. To contribute such specific ideals, habits, and concepts as those of acouracy, persistance, open-mindedness, honesty, cause and effect which are essential to the study of soience.
7. To give to pupils a broad and genuine appreciation of what the development of science means in modern sooial, industrial, and national life.
8. To provide opportunity for the student to explore the fields of science for the purpose of educational and vocational guidance. 8. To satisfy the natural interests in the things and forces of nature with which men are surrounded and with which they must deal; to give information interesting purely for its own sake.
9. To develop system, order, neatness, and possiblyother attributes to the end that they will function in the ordinary affairs of life. 10. To afford in some measure an opportunity to show the importance of scientific research and to stimulate the spirit of investigation and invention on part of student.
10. To make pupils able to read more intelligently and with greater interest, articles on science in magazines and scientific books of a popular character and to read with greater understanding literature containing scientific allusions.
11. To correct common superstitions and ignorant practices.
12. To give children a full opportunity to indulge in the playful manipulation of toys, tools, machines etc., in order that they may explore the world of reality as deeply and widely as possible. 14. To give such training as will result in increasing respect for the work of recognized experts."

It may be worth while to note that while these objectives were not avallable when this study was begun, the writer used a somewhat similar set of objectives in the construction of the original test and final Scale Forms for the measurement of achievement in General Science. The writer tried to make each item satisfy one or more of the Cardinal Principles of Education, namely, 1. Health
2. Worthy use of leisure
3. Vocation
4. Citizenship
5. Worthy home membership
6. Command of the fundamental processes
7. Ethical character.

Recognition of the value of properly selected principles and facts of soience for immediate, everyday use, has led to the development of courses in "Nature Study" for the elementary grades. Some of these courses in "Nature Study" are adapted for pupils as far down as the first and second grades. With the motto "Study 2 Nature First: then Books about Her", Miss Conover of the Detroit city schools has organized a "Nature Study" dourse for pupils in the first and second grades. This course of study is well worth the attention of General Science teachers as well as of first and second grade teachers. It is an excellent illustration of what can be accomplished in the construction of a course of study around specific objectives.

1. Cardinal Principles of Secondary Education. U. S. Bureau of Education Bulletin, $\frac{1}{191} \frac{8, \text { No. } 35}{8}$
2. Conover, Lenora "Course in Nature Study". Board of Education. Detroit Public Schools, 1922.

C. Achievement tests in General Science

In the interval between the work of Rice and the present time, a time which has been characterized in Education by the development of tentative standards of achievement in school subjeots and of tentative measuring devices for measuring the achievement of these standards, men in the field of secondary school science have contributed or attempted to contribute to the current test movement. To be sure the preliminary attempts were handicapped by the same conditions which characterized the preliminary attempts at measurement in the other subjects, that is, lack of consideration of the many factors involved in the development of a statistically accurate measuring instrument. They were also handicapped by the fact that teachers of science in colleges and secondary schools were trained more or less only in the field of the specialized science which they taught. A Physics teacher was trained in Physics and a Chemistry teacher was trained in Chemistry. Usually neither of them had any training in Educational practices and technique. This has frequently resulted, as stated under "History of General Science" in this Chapter, in a desire on the part of the teacher to emphasize the teaching of a specialized subject, Chemistry or Physics, as a preparatory course for pupils all of whom were assumed to be beginning a prolonged and specialized course of training in that science. In contradiction to this assumption is the common knowledge that a very limited percent of pupils taking ${ }_{\wedge}^{a}$ science course in the high school continue their work in science even to the extent of taking an additional course in college, much less
beooming specialists in that particular field. Beoause of this condition some of the attempts made to measure solence achievement have not endured the effects of analytical educational oritio1sm.

1

For instance, in a recent article by Doctor Foley of the University of Indiana is a severe criticism of the achievement of high school pupils in Physics. Dootor Foley bases his oriticsm on a ten item test which he gave to about 700 students entering the University and who presented high school oredit in Physios. Dootor Foley's work is open to oritioism itself beause he says nothing about the difficulty of the ten items and their bearing on a high school course is not evaluated. Dootor Foley does not state whether or not students who have taken his University course In Physics would, one or two years later, do any better on his test than did the high school pupils.

In the field of Physics at least four other tests besides 2
Dootor Foley's may be mentioned. Daniel Starch prepared a test of Physics consisting of 75 questions, problems and incomplete statements differentiated among mechanics, heat, light, sound, magnetism and electricity. On the basis of a comparatively small number of pupils he then prepared standard scores in each of the differentiated aspects of Physios. This test of achievement in Physics is open to two main criticisms, namely (a) all the items are given equal value and (b) the standard scores were seoured

1. Foley, Arthur L. "The College student's knowledge of high school Physics". Sohool Soience and Mathematics. Vol 22, No. 7 pp. 601-613.
2. Starch, Daniel "Educational Measurements". Maomillan Co. N.Y. 1916.
on too few cases. 1
J. Crosby Chapman prepared a test of Physics in electrioity, magnetism, sound, and light which consisted of 30 questions which were answerable by one word which the pupil was to write in. Criticism of this is that thirty words, the answers to the thirty questions, in the four fields of Physics mentioned, are a very small number of samples by which a pupil's achievement should be judged. The test was standardized by giving it to 158 high school pupils just finishing the study of Physics. As the author states, "This is meagre evidence as to the suitability of this type of test but from a large amount of evidence obtained when engaged in army work, the author is convinced that tests of this kind are well worth while (words underlined by writer) when employed for the limited purpæ for which they are designed."

The Randall, Chapman and Sutton "High School Physios Test" ${ }^{2}$ consists of 14 problems with spaces for the pupils to put the answers.

3
Franklin T. Jones worked out a preliminary set of tests in Physics ("Union Soience tests for practice and comparison"). These consist of twenty-eight individual tests of five to ten problems or questions each under different headings, such as "thermometers", "heat", "work", "light A", "light B", Each of these 28

1. Chapman, J. C. "The measurement of Physics information". School Review 27: 748-49. Dec. 1919.
2. Randall, Chapman, and Sutton. "The place of the numerical problem in high school Physics". School Review 26: 39-43. Jan. 1918
3. Jones, F.T. "Practice exercises in Physics and Chemistry". School Review 26: 341-48. May 1918
tests could be better characterized as Chapter Test, to be given at the completion of each of the subjects mentioned. These tests if properly evaluated would be of much help to teachers. 1
Harold L. Camp of the University of Iowa produced in 1921 some "scales for measuring results of Physics teaching". This work, a Doctor's thesis, is very well worked out with one exoeption, that in many items as few as sixty cases, in no case more than onehundred forty-nine cases, were used to secure standards. 2
L. L. Thurstone also has prepared a test in Physics for college freshmen and high school seniors which consists of 25 short problems.

In Chemistry there are at least five tests for measuring stu3 dents' achievement. J. Carleton Bell has prepared a Chemistry 4 test of 24 brief questions and 1 problem. Jones has a Chemistry test (Union Science Series) which is of similar nature to his Physics test mentioned above. 5
Hanor A. Webb's test in Chemistry consists of a series of names of Elements, Mixtures, and Compounds. The pupil's problem is to label these names "E", "M", or "C" as he judges them to be Elements, Mixtures or Compounds. Tentative norms have been worked out.

1. Camp, H. L. "Scales for measuring results of Physics teaching". Univ. of Iowa studies in Education. Vol. II \#z. Pp. 50
2. Thurstone, L. L. "Test V. Physics". Carnegie Institute of Teohnology, Pittsburgh.
3. Bell, J. C. "Study of the attainments of high school pupils in first-year Chemistry". School Science \& Mathematics.18: 425-432, May 1918
4. Jones, F. T. Ibld
5. Webb, H. A. "A preliminary test in Chemistry". Jr. of Ed. Psy. 10: 36-43. January 1919

1
B. J. Rivett's Chemistry test consists of (a) 31 elements, the problem being to label them with the proper symbols, (b) a list of the 20 elements, the problem being to give their valence and 20 of their compounds with their formulae, and (c) 20 formulae, the problem being to give the name of the compoun for which they stand and state whether the compound is an acid, base or salt. 2
The General Chemistry test by Henry L. Gerry follows a someWhat more scientific procedure, but this test is still in its trial form and no results are available.
S. R. Powers' Chemistry test, now completed, is one of the most elaborate and most soientific of all the science tests now being presented. It was constructed with consideration of the objectives of General Science, the items are evaluated, and the Scale is standardized with preliminary norms, now available, based on 1200 pupils.

4
A test in Biology by Leo M. Cossman consists of a list of words which the pupil is asked to define and of spaces where the pupil is asked to make drawing of a typical "insect", a typical "flow er" etc. There is no way of scoring the test objectively. 5
N. M. Grier has prepared an achievement test in Physiology,

1. Rivett, B. J. "Testing results in Chemistry". School Science \& Mathematics. 19:742-745. Nov. 1919
2.Gerry, H. L. "Trial test in general Chemistry". Graduate School of Education, Harvard University.
2. Powers, S.R. "Chemistry Test" (World Book Co.) University of Minnesota.
3. Cossman, L. M. "Biology". University of Oregon.
4. Grier, N. M. "Range of information test in Biology". Jr. of Ed. Psy. 9:210-16, 388-93. April-September, 1918.

Botany and Zoology, each of which consists of 100 words of technical nature pertinent to those subjects. Pupils' instructions are
" I. Place a D before the terms you can define as exactly as words are ordinarily defined in the dictionary.
2. Place an E before the terms you can explain to one not familiar With their meaning
3. Place an F before the terms with which you are roughly familiar
4. Place an \mathbb{N} before the terms which are new to you
5. At the bottom write out the definitions of the first five words you marked D, and the first five you marked E
6. Count the number of $D^{\prime} s, E^{\prime} s, F^{\prime} s$, and $N^{\prime} s$ and record the result at the top of the page in the one inch space".
F. T. Ullrich has a similar test in Agrioulture. The main objec-
tions to the tests by Grier and Ullrich are the difficulty of
properly scoring them and the fact that the person evaluating a paper cannot know, by a study of five samples of diotionary definitions, whether a "D" means that the pupil putting down a "D" really knows the dictionary definition or not. Furthermore, there is a question whether diotionary definitions are really what one is trying to teach in a science subject.

Glenn and Powers* were experimenting with a General Soience
test which will be discussed in the chapter on "Method".
G. M. Puch, ${ }^{2,3,4}$ after experimenting with a similar test in

General Science, finally evolved a very commendable multiple answer test considting of 50 statement of General Solence facts and 20

1. Ullrich, F. T. "Tests in agrioulture". State Normal Schools Platteville, Wisconsin.
2. Ruch, G. M. "A range of information test in General Soience". General Soience Quarterly 4:257-62. Nov. 1919
3. Ruch, G. M. "Range of information test in General Soience; preliminary data on standards". Gen.Soi. Quarterly 5:15-19. Nov. 1920
4. Ruch, G. M. "A new test in General Science". General Science Quarterly $7: 188-197$. Maroh, 1923.

* Earl R. Glem, Teachers College, Columbia University Samuel R. Powers, University of Minnesota.
lettered diagrams. Concerning these diagrams are a number of completion statements which the pupil is asked to complete with the proper diagram letter.

There are also the Caldwell ${ }^{2}$ science Tests, Downing's ${ }^{2}$ Informa3
tion Test in soience, and Herring's test in Soientific Thinking.
With the exception of the tests by Powers, Ruch and Camp, the tests for secondary school science measurement mentioned in the preoeding paragraphs, have not developed beyond the preliminary steps of test construction. They are not, however, without value. They represent attempts in the soientific measurement of classroom products by men in the field of secondary school science. The writer has surveyed all this literature carefully and is. indebted to the authors for valuable suggestions regarding procedure and for a few of the items actually used in his General Soience test. To Ruch he is especially indebted.

1. Caldwell, O. W. "The Gary public sohools: soience teaching". The General Education Board, N.Y. 1919
2. Downing, E. R. "A range of information tests in science". Sohool science and Mathematics 19:228-83. March 1919
3. Herring, J. P "Measurements in soientific thinking". Jr. of Educational Psychology 9:535-58. December 1919

METHOD

One of the first essentials in this study was to build up a preliminary measuring instrument of subject matter in General Science. Since economy of time, accuracy, and objectivity were considered valuable characteristics of this measuring device, the following oriteria were considered in the construction of the preliminary test.
(a) The material selected should cover the field.
(b) The material should range from easy to difficult.
(c) The arrangement of the test should be such as to facilitate readability on the part of the pupils.
(d) The arrangement should be such as to facilitat accuracy in scoring.
(e) The items of the test should be definite and clear.
(f) There should be only one acceptable response to each item.
(g) The test should be given to as wide a range of pupils as possible in order to test its selective power.
For the purpose of developing such a measuring instrument the writer procured two unfinished studies begun simultaneously, the one by Earl R. Glemn, Lincoln School, New York, and the other by Samuel R. Powers, University of Minnesota. These studies represented a partial compilation of General Science material in the form of objective multiple answer statements, problems, and science vocabulary. To these the writer added material In the same subject matter which was pertinent but which was not included in the above compilations. This additional material was gleaned from various kinds of preliminary at-
tempts in General Science measurement and from a survey of General Science textbooks. The resultant total number of individual items amounted to about six hundred. Out of this total were selected three hundred items which seemed to be most definitely related to the subject, most objective in nature, and most justifiable in terms of the cardinal principles of education?

These three hundred items were then reduced to the multiple answer type of statements. The list of three hundred statements when completed was reviewed by two science teachers at the University Highschool, University of Minnesota, who agreed that the choice of the three hundred items was inclusive and well differentiated among the different kinds of subject matter which go to make up General science. In as much as the list of three hundred items was to be revised and worked over later on the basis of pupil achievement, it was deemed satisfactory when it passed the combined judgments of three University Highschool science teachers.

The three hundred items were arranged in as random an order as possible. No one knew the order of difficulty of the different items. For each item the number of multiple answers was five. As will be shown later, this number of possible answers reduced successful guessing to a negligible amount.

The General Science test* of three hundred items and a list of instructions for the person giving the test** were sent out to principals or superintendents of twenty-two school systems With whom arrangements for the giving of the tests had previously

[^0]been made by personal letter. The list of instructions was mimeographed but the test was printed in order to facilitate accuracy and speed on the part of the pupils and accuracy and speed in scoring. The schools selected to give the test represented large, medium and small school systems of Minnesota. All pupils in the 8th, 9th, 10th, llth, and l2th grades of the twenty-two school systems, with the exception of the three largest school systems, were given the test provided they happened to be present at the particular hour on the day when the test was presented. The total number of pupils who took the test approximated eleven thousand. In each of the three largest school systems the 8th grades of two most representative grade schools and all the pupils in one highschool were given the test. All tests were taken by the pupils between the first and tenth of June, 1922. Table I shows number of returns of the test in terms of schools and grades.

In order to carry out comparative studies, control groups consisting of several schools where no General Science is taught were selected. One of these was the Johnson Highschool in St. Paul with about 800 pupils.

The test was also given to 339 University of Minnesota students in Physics and Chemistry classes and to 33 Normal School students attending the summer session, 1922, at Moorhead Teachers College.

In September, 1922, 140 pupils in the University Highschool were retested with the same test. Results of the retest and of the original test were compared for purposes of securing some idea as to the stability or reliability of the measuring devioe

TOTAL NUMBER OF RETURNS OF GENERAL SCIENCE TEST FROM 22 SCHOOLS

SCHOOL SYSTEM	8th		$\begin{aligned} & \text { GRADES } \\ & 10 \mathrm{th} \end{aligned}$	11 th	12th	TOTAL
Annandale.	25	33.	18	26	9	111
Alexandria	41	97	78	64	75	355
Crookston	80	87	74	50	46	337
Duluth	96	220	400	313	237	1266
Excelsior	29	44	25	14	17	129
Ely	109	105	63	62	57	396
Fertile	25	38	22	23	9	117
Glencoe	35	25	34	20	23	137
Hibbing	151	149	131	83	78	592
Hopkins	62	68	24	26	24	204
Mankato	115	131	168	126	128	668
Minneapolis	65	730	588	414	380	2177
Moorhead	92	99	81	67	48	387
New Ulm	30	73	56	42	50	251
Red Wing	93	138	89	79	61	460
St. James	34	73	50	40	32	229
St. Paul	66	317	187	132	92	794
Slayton	23	27	30	30	27	137
Swanville	12	24	12	6	7	61
University Highsohool		57	59	37	48	262
Virginia		238	135	148	85	803
Worthington	48	64	37	38	35	222
Normal school students						33
University students						347
totals.	1489	2837	2361	1840	1568	10475
*Pupils who were examined in June as prospective University Highsohool pupils.						

in General Soience with respect to a given group of individuals.

Procedure in handling the data.
(1) Fortunately a graduate student and science teacher, reliable and systematic, was enlisted as a paid assistant to sort and to score the entire set of approximately 11,000 tests. First all test papers were sorted for the purpose of eliminating those in which vital data, such as name, age, classification of pupil, and answers to questions about courses previously taken by the pupil, were omitted. Then the assistant scored each test by means of celluloid stencils, the use of stencils facilitating the scoring and increasing the accuracy, and entered the total score made by each pupil on the upper right hand corner of the first page of each test.
(2) After the tests were scored they were sorted according to (a) name of school, (b) the five grades within each school $8 \mathrm{th}, 9 \mathrm{th}, 10 \mathrm{th}, 11 \mathrm{th}$ and 12 th , (c) sex of pupils in each of the classes, and (d) whether each pupil in each grade had or had not taken General Science. This meant that each grade might be divided into four groups e.g. boys and girls who had taken General Science and boys and girls who had not taken General Science. This made it possible to have each school divided into twenty groups in order to facilitate the handing of data in the different group studies.

Since experimental work with the test results of these groups ocoupies a large portion of this study, considerable time would be saved by the use of a few desoriptive terms for naming each of the twenty groups. Therefore, since this
study has to do with General Science achievement, it was decided to use the symbol "+" to characterize any group of pupils who had taken General Science, while any group of pupils who had not taken General Science was characterized by the symbol "-". Then, by adding to the "+" or "-" the sex initial e.g. "G" or "B" for Girls or Boys respectively, and the grade number, e.g. 8th, 9th, loth, llth, lath, a complete, descriptive term for any one of the twenty groups was established. To illustrate, "-8B" is interpreted in this study to mean 8 th grade boys who had not taken General science and "+llG" is interpreted to mean llth grade girls who had taken General Science. This system of nomenolature is used thruout the study in text, tables, and figures.
(3) Test score, age, length of time in school, time taken in doing the test, science courses taken, whether or not the pupil liked soience, and mental test score (when avallable) were then tabulated for the different schools in terms of the twenty different groups already described.
(4) The frequency of correct responses for each of the 300 items of the test was secured by actual count of errors for each item in 1760 cases. The percentage of correct responses and the relative order of difficulty were secured for a group of 500 8th grade girls and for a group of 4008 th grade boys who had not taken General Science. Similar data were secured for groups of 4309 th grade girls and for 4309 th grade boys Who had taken General Soience. These data were then used as a basis for making three scales out of the original General Science test of 300 items. The number of cases taken for this
part of the study was sufficient to give as accurate results as would be given by an infinite number of cases. In the study each group was divided in two parts and the percent of correct responses for the first part was compared with the whole. Rank order correlations between the two distributions were over . 99.
(5) The distribution of scores and the median score in the General Science test were secured for each of the twenty groups of each of the twenty-two school systems. From a combination of the median scores and the distributions of scores for the different schools, tentative grade norms for the General Science test were secured.
(6) Statistical evaluations.

The following are some of the correlations worked out for the purpose of establishing the reliability of the 300 item test as a measuring instrument in General Science
(a) The correlation between intelligence test results and the results of the General Soience test.
(b) The correlation between chronological age and the General Solence test.
(c) The correlation between time in taking the General Science test and success in the test.
(d) The correlation between general scholastic success and the General Science test, University Highschool.
(e) The correlation between marks in General Science and the General Soience test, University Highschool.
(7) One hundred and sixteen pupils for whom both test and retest results mere available were studied for stability in response.
(8) The median scores and distributions for +groups of pupils, pupils who had taken General Science, were secured. The same data were also secured for the -groups of pupils, pupils who had not taken General Science.
(9) Grade medians for $9 t h$, l0th, 11 th, and l2th grade pupils who had taken General Science were compared with medians in the same grades for pupils who had not taken General Science in order to isolate success in the General Science test due to having pursued a course in General Science groups under approximately similar conditions.
(10) Norms for pupils who had taken General Soience in the 8th grade were compared with norms for those who had taken General Science in the 9 th grade. The greater or less suocess of these pupils would tend to justify the placing of General Science up or down in the sahool curriculum, the latter being the tendency in junior high schools.
(11) A measure of the persistence of General Science material and of its acquisition in later science courses was secured from a study of the achievement of University and Normal school students, about 350 in number.
(12) Because not all of the pupils had been allowed sufficient time to complete the General Science test and because it was found that equally accurate comparisons could be made on the basis of the first three pages (the first 221 items of the test)
of the test, all the usable papers - about 9,000 in number were rescored and retabulated on the basis of the 221 items and comparisons similar to those made with the 300 items were obtained.
(13) When the scales had been made, for the purpose of comparing Scale and test scores for the same pupils and groups, a hundred of the original papers were selected at random from each grade for the + Boys and were rescored on the basis of only the items in the scale.
(14) Finally, two forms of the finished Scales were mimeographed and given to General Science pupils in three schools-(a) Central Highschool, Minneapolis - 250 pupils, (b) Stillwater Highschool -140 pupils, and (c) University Highschool -58 pupils. Two Scale Forms of equal difficulty were given to check up the reliability of the Scales themselves and to compare Scale achievement with marks in General Science, intelligence test scores.

It is needless to say that if the General Soience test were unreliable, any comparisons or developments of that test would carry with them the same unreliability. Therefore, before proceeding further with the exposition of this study, statement will be made concerning the reliability of the original 300 item General Science test given to approximately 11,000 pupils.

Study of results has shown that the original test with its inherent faults of extreme length and of a few valueless items was highly reliable. Evidence of this reliability of the test is presented in terms of the following criteria.
(1) Retesting
(2) Permanency or stability of the pupils' correct and incorrect responses
(3) High positive correlation with other criteria of known value
(4) Correlation between a part and the whole of the test.
(1) Retesting

In September, 1922, 116 pupils of the University Highschool were retested with the same test. The majority of these pupils were beginning sophomores who had finished General Science the preceding June, a small number were freshmen who had been tested on June tenth as 8 th grade pupils, and the remainder Were juniors and seniors in soience classes.

For the purpose of ascertaining the stability of the achievement as shown by one testing, the results of the second
test were compared with those of the first test given the preceding June. Since the first test had been given at the very end of the school year and the second test had been given at the beginning of the following school year, with only three months of vacation intervening, it would seem that rather ideal conditions were secured for establishing the reliability of the measuring instrument used. The three months of vacation were sufficient to allow the pupil to foregt enough of the details of the test taken in June to make the scores secured in September fair measures of the pupil's achievement at that particular time. At the same time the three intervening vacation months added little to the pupil's fund of General Science information other than that which he had gained by simply living three consecutive months outside of the schoolroom.

When the iirst and second test papers were examined it was found that while all the retest papers were completed, among the June tests there were only 75 papers in which all 300 items had been marked and 41 papers in which only the first three pages, or 221 items, or a little more were marked. Therefore it was deemed advisable first to compare the 75 completed papers with their 75 completed retests and then to rescore the whole 116 papers on the basis of the first 221 items and to compare those 116 scores with the retests for reliability.

Both in the complete test and in the 221 item test correlations with retests were very high, as can be noted on the following page.

These coefficients of correlation would indicate that the abllity of the original General Science test to differentiate among pupils was fairly constant, that is, a pupil who scored high on the first test would also score high on the second test and a pupil who scored low on the first test would consistently score low on the second test. On account of the narrow range of the group tested, however, the correlations of . 82 and .88 (.877) - mean . 85 - are relatively high.
(2) Permanency or stability of the pupils' correct and incorrect

responses

The papers of the 116 University Highschool pupils who had been retested were subjected to another examination for the purpose of determining whether a pupil's responses to particular items in June and in September showed variation. In other words, how permanent were the responses made in june to the various items?

It is conceivable, while not probable, that a pupil taking a 300 item test in June and making a score of 150, a score of 50% right, on taking the same test in September might again make a score of 150 or 50% right. It is further conceivable that an examination of the actual items failed the first time and items failed the second time might show a variation from

[^1]a condition where the same 150 items were right in each trial to a condition where no item of the 150 originally correct was correct the second time. In either case a correlation between first and second scores would be 1.00 , whereas the reliability of the items would be zero. As a measure of the relative amount of achievement such a condition might be satisfactory, for it gave the same total score each time, but as an indicator of the kind of material on which the pupil failed such a condition would be highly unsatisfactory. - It is to be understood that the above assumptions are only theoretical possibilities and not what was even probable.

In the present study it was ascertained what percent of each of the 116 pupils' responses were identical in the two tests and what percent varied. This was done by taking note of all the individual errors made on the second test and all the individual errors made on the first test and then comparing the two sets to find out which errors were made both times and which errors were made only once. The method used in locating the errors was as follows.

The scored original test was spread over the scored retest paper, the two were clipped together securely and with a pencil point were punched thru on the item numbers where errors were marked on the original test. That is, on a retest paper, where an error persisted, the retest paper would have both a marked error and a hole punched thru from the original. Where the original paper had an error which had not persisted only a hole would be found. Where the retest paper had an error which did
not appear in the original, only a marked error would be found. Results of aotual count on the retest papers of holes alone and of marked errors alone showed that with the exception of a small percent the responses were uniform in both trials. In other words, an item correctly marked in June would be correctly marked in September and an item incorrectly marked in June would be incorrectly marked in September. The actual percents of pupils' responses in two trials which were not identical ranged from 3.9% to 16.5% - median 8.7% (Standard Deviation of 1.5). Since a deviation from identical response on one item would cause two counts of it to be taken, that is, if a pupil changed a wrong response $u p$ or down one place from the place of that wrong response in the original paper, there would be a hole punched thru from the original where no error was found and a marked error on the retest where no hole had been punched thru from the original. Both were counted as variations. Apparently from 1.9% to 8.2% - median 4.35% - of the responses varied from June to September. In as much as the scores made on the two tests varied from 57 to 256 or the number of "wrongs" varied from 243 to 46 , it would seem that this 4.35% represents the median number of variations due to guessing. Underlining of the correct response twice at intervals of three months, when there are five possible responses, could not be attributed to pure guess. In short, the stability of the items, or their tendency to secure from the pupil the same response whether it be right or wrong, was such that uniform responses amounted to over nine $-t y-f i v e ~ p e r c e n t ~ o f ~ t h e ~ 300 ~ i t e m s ~ o f ~ t h e ~ G e n e r a l ~ S c i e n c e ~ t e s t . ~$

The P.E. of estimate, based on retest correlation, using formula P. E. of estimate equals the P. E. times square root of $1-r$ square, was 9 points. In other words, the true soores made by pupils if an infinite number of trials were given would not differ by more than 9 points from the soore obtained at the first trial.
(3) High positive correlation with other oriteria

It was first ascertained by retesting pupils with the 300 item General Soience test that the test had a tendency to give individual pupils relatively the same ranking on its second test as it did on its first. In other words, the measurements of the original 300 item test resembled measurements of a steel ruler a much as is indicated by a positive correlation of .85 between two measurements. It was further ascertained that this positive correlation of .85 was made by identical responses to over 95% of the items. Just as the retest results showed that the test as a whole possessed a fair amount of reliability, the counting of actual errors made on each item showed the individual items to be very reliable. A test, however, might be reliable as a whole and also reliable in its parts and still be no measure of achievement in General Soience. That is, a test might always give the same measurements but the measurements might have no relationship to the achievement in the subject it was supposed to measure.

To make certain that the original test was a measure of achievement in General Science, it was further correlated with other criteria which are known to have some validity as measures of General Science achievement. For instance, General Soience achievement
is in part dependent on intelligence. Studies of the relationship between marks in school subjeots and scores in standard intelligence tests show positive correlations ranging from about .30 to .70. That these correlations are not higher is usually explained by the fact that all pupils do not achieve in proportion to their native ability because of the influence of other factors such as industry, interest, and so forth. Further, if pupils did achieve in proportion to their native ability, there would still be many variations, since studies of school marks have shown certain inherent weaknessees in marks given by teachers. When, however, scores in standardized achievement tests of school subjects are correlated with scores in intelligence tests, the result, while a little better, is still far from a perfect correlation. A positive correlation between achievement test and mental test scores of . 50 is quite usual.

When achievement in the 300 item General Science test was correlated with mental test scores for the University High School pupils, results given on the following page were secured. Examination of the figures shows that when the achievement on the whole 300 item test was correlated with intelligence the relationship was relatively high. Further, when the achievement on the first three pages of the test (221 items) was used the relationship was also uniformly high, and even slightly more valid because of the larger number of cases involved. Scores made by these pupils in the Miller Mental Ability Test, Form A, and in a large number of cases for both Form \mathbb{A} and Form B (in which case the average of the two Forms was taken) were available as well as
mental ages and intelligence quotients. For the juniors (tenth grade) an average of five mental tests given in the freshman year was secured.

Examination of the pupils' achievement in General Science as indicated (a) by marks in General Science and (b) by an average of marks in all subjects and (c) in the case of seniors also of honor points*, the latter two being taken as criteria of general scholarship, also showed a decided degree of positive relationship. In the case of the 8 th grade pupils, who had taken the General Science test on June tenth as a part of their preliminary examination before entering the University Highschool, the scores on the General Science test and only the first two quarters' marks were considered. Therefores the correlation for these pupils indicates the degree with which the original test gave an accurate prognosis of what marks teachers gave those pupils after they had taken the course in General Science. In the case of the 9 th, 10 th, llth and 12 th grade pupils, all of whom had taken General Science in the 8 th grade, the correlation is between the average marks earned in their freshman year in General Science and the achievement in the General Science test taken June first, 1922. In the case of l2th grade pupils, their contact with General Science as a subject was three years removed.

Correlation between	Grade	Pearson r	P.E.	No.Cases
1. General Soience marks \&	8	. 61	. 065	39
300 item General Science	9	. 835	. 039	38
test scores	10	. 76	. 05	30
	11	. 47	. 11	22
2. General Science marks \&	8	. 62	. 057	52
221 item General Soience	9	. 60	. 059	54
Test scores	10	. 64	. 055	54
	11	. 44	. 10	29

[^2]
Correlation betwoen

3. Percentile Rank, lst yr.'s Marks \& 300 1tem General Science Test scores
4. Percentile Rank, lst yr.'s Marks \& 221 item General Science Test scores
5. Honor Points \&

300 item General Science Test scores
6. Honor Points \&

221 item General Science Test scores
$\frac{\text { Grade }}{10} \frac{\text { Pearson r }}{.59} \frac{\text { P.E. }}{.10} \frac{\text { No. Cases }}{19}$
10.43 . 085

40
(4) Correlation between a part and the whole of the test

In the case of the University Highschool pupils data Were available for 164 pugils whose papers were evaluated both on the basis of their achievement on 300 items of the General Soience test and on the basis of their achievement on the first 221 items of the General Science test. In a later part of this study it was necessary to make comparisons on the basis of the first three pages of the test only. Justification for doing so is to be found in results of this study of University Highschool pupils on the 300 and 221 item bases. For instance, when the results of the 300 and 221 item General Soience test of a group consisting of from 26 to 40 pupils were correlated by the rank order method, the correlation was practically perfect. When the achievement on a part and on the whole of the General Science test was correlated by the product-moments method, the results While not perfect were very close to 1.00 , as can be noted in
the following figures.

Correlation between	Grade		Pearson r	P.E.	No.Cases
300 1tem General science	8		.97	.003	40
Test scores \&	9		.90	.025	28
221 1tem General Science	10		.99	.002	31
Test scores	11	.996	.001	26	
	12	.995	.001	39	

From these figures it is evident that for purposes of group comparison, the first three pages of the Genersl Science test gave practically as accurate relative results as did the whole test. This of course was due to the fact that the items as arranged in the original test were placed in absolutely random order.

In resume it might be said that the original General Science test as a measure of achievement and information in General Science was a fairly reliable measure. Its self-correlation by a retest of 116 pupils was . 85 . By the use of Brown's formula, a desired r equals $\frac{N r}{1+(N-1)}$ when N equals the number of repetitions necessary to get a desired coefficient of correlation. If a self-correlation of .95 were desired, then .95 equals $\frac{N(85)}{1+(N-1) .85}$. Solving, N equals 3.4 . In other words, another repetition of the same test would have given a correlation of almost .95. Or, were two more repetitions given, then r would have equalled $\frac{4(.85)}{1+(4-1) .85}$. Solving, r would equal .96. When to this are added the facts that identical responses after three months equalled 95 percent of all responses made by a pupil on two trials,
the high correlations secured with known oriteria, and also high correlations between a part and the whole of the test, the preliminary and original 300 item General Science Test was considered satisfactorily reliable.

CHAPTER VI

DEVELOPMENT OF THE GENERAL SCIENCE SCALE

In the preceding ohapter it was made evident that the original 300 item General Science Test was fairly reliable. In fact the test proved more reliable when compared with certain known criteria than are some achievement tests for various sohool subjects which have been standardized and placed on the market today.

It might have been possible, on the basis of the large number of pupils for whom data were available, to establish norms and to use the test in its crude form. This original test, however, had certain inherent faults - faults which are bound to occur in every test of its kind. In the first place, in order to be inclusive, the test had 300 items. That is too many. The median time for doing this test computed on 600 cases was fifty-nine minutes with a range of thirty-five to one hundred ten minutes, and a quartile deviation of eleven minutes. Besides the fact that the test took longer than the average pupil is able to maintain interested effort, the work of scoring and recording of results was deoidedly laborious. Efficiency in giving requires a shorter test and one which is also easier to score. Further, some of the items in the original test turned out to be decidedly valueless.

In the original test it was possible to find class, grade, and school medians, but for purposes of comparison it was im-
7. Henmon, V.A.C. "Some limitations of educational tests". Jr. of Ed. Research. Vol. VII. No. 3 March, 1923. Pp.185-198
possible to tell whether a difference of twelve items between two medians was a real difference or due to chance, unless one entered into statistical procedure to ascertain the fact. This fact when ascertained was, however, still open to the question of quantity - How much of a difference is a difference of twelve items on the original test? A study of data presented later Will show that this difference of twelve items might mean a difference due to chance and therefore negligible when occuring in one part of the scale, and a difference which might easily represent the difference between the median and the seventy-fifth percentile when occuring in another part of the scale. A study of the value of individual items, which appears later, also shows that succeeding in twelve items in one part of the scale might be due to chance whereas succeeding in twelve items in another part of the scale would represent ability of practically genius type.

It was also found that the original General Science test contained enough material which, if properly evaluated and arranged, would make a General Science Scale composed of three Forms of known difficulty, which could be used interchangeably With long or short periods intervening for purposes of checking up progress of teaching and accuracy of testing. To be sure, if a test with a smaller number of items were to be used, in order to secure as accurate results as those secured by the three hundred items, the lesser number of items would necessarily have to be selected and evaluated accurately. Moreover,
as stated before, in the 300 item test it was possible, owing to the large number of items of more or less equal difficulty, for two boys to achieve equal scores up to 150 items each and still leave no single item which had been done correctly by both of them or failed by both of them. From the standpoint of diagnostic quality this was a decided weakness, the remedy for which was the development of three or more standardized forms of the General Science test, each Form of known difficulty.

Furthermore, were the original General Science test used, because of varying difficulties of the different items the various items represented various amounts of achievement. That is, the 300 item test represented a measuring tape with 300 units, very few of which were of equal length (difficulty). Suceeding in five items in one part of the scale was not equal to succeeding in five items in another part of the scale. These facts besides being annoying in the interpretation of results would be unknown to the person using the test, hence the necessity for developing scale Forms of known difficulty from the items at hand.

There are at least three methods possible for developing a scale from a set of unselected items containing possible material for the construction of a scale. The first of these methods is well oharacterized by the English Composition Scale developed by Doctor Van Wagenen. In the construction of this Scale Doctor Van Wagenen had English compositions on the same subject,-

1. Van Wagenen, M.J. English Composition Scale. World Book Co.
"How I earned some money", rated by numbers of competent judges on Structure, Mechanios, and Thought Content. The compositions were rated by judges simply by placing them in order of merit on the basis of each of these three criteria. The rating of one composition was then secured by comparing the number of judges Who decided that that composition was better, without any regard as to how much better, than the one of slightly poorer quality. Since the judges did not agree as to which of two compositions was better, the amount by which the better one was assumed to be superior to the poorer one was determined on the relative unanimity of the decisions. That is, if fifty percent of the judges decided that composition A was better than composition B and Vice versa, the two compositions were assumed to be of equal merit. If $37 \frac{1}{2}$ percent of the judges decided that composition A was better than composition B and $62 \frac{1}{2}$ percent decided that composition B was better than composition A, there was then a difference of 25 percent of the judges in favor of composition B Which, according to the table of frequencies on a normal surface of distribution, represents a difference of 1 quartile or 1 P.E. and composition B was given a rating of 1 P.E. superiority over composition A. It is evident, however, that starting with original compositions, the ultimate values while obtained by a thoroly reliable method would show various unequal intervals between individual compositions in the scale. This scale represents a steel tape in which all lengths are known and marked, but, instead of always starting at the end of one unit and at the beginning of the other - like $1,2,3$ inches etc.-, it was divided
thus - $1,3 \frac{1}{2}, 3 \frac{3}{4}, 7$ etc inches at the distances so indicated. In using this scale the composition to be graded is first compared with the different compositions in the scale whose values are known. Decision is then made that the composition in question is like composition B in structure, rating 77 on Structure, like composition F in mechanics, rating 85 on Mechanics, and like composition H in thot content, rating 95 on Thot Content. While a scale of this form has certain merits it did not seem feasible for a General Science scale.

Another method of scale development is that used by Woody 1 in the development of the Woody Arithmetic Scale. This method has also been used by Trabue in the Language Completion Scale and by Posey and Van Wagenen in the development of their Geography soale. In this method the unit is the difference of difficulty of an item which will cause the correct responses to that item to vary one-tenth of a P.E. (.1 P.E.) in a normal surface of frequency from the item one unit easier or more difficult. Stnce this method was adopted for use in the development of the General Science scale, its description will be left to be given in detail for the various steps in the construction of the scale.

1. Woody, Clifford "Measurements of some achievements in arithmetic". Teachers College. Columbia University. Contributions to Education, No.80. 1916. Pp. 1-63
2. Trabue, Marion R "Completion-Test Language scales". Teachers College. Columbia University. Contributions to Education \#77 1916
3. Posey-Van Wagenen "Geography Scales". Public School Publishing Company, Bloomington, Illinois.

There is, however, another method for scale construction which consists in taking a number of questions not necessarily related to fundamental elements of a subject (in this case the subject would be General Science), giving them to a considerable number of pupils who have just completed the subject (in this case General Science), and ascertaining for each question the number of pupils who succeeded in that question and who were rated "A" (in this case rated "A" in General Science), the number who succeeded in that question and were rated "B", the number who succeeded in that question and were rated "C", and so forth. In this method the ability of the question to differentiate among pupils of varying abilities - its diagnostic ability - is ascertained. A scale is then made up of a number of such questions which combined are able to differentiate among those pupils who receive grades of "A", "B", "C" etc. Such a diagnostic test method was used in some of the army trade tests during the war. For Instance, where questions were selected to differentiate between an expert carpenter and a joumeyman carpenter or an ordinary laborer who desired to be a carpenter, oftentimes questions which had little to do with the actual work of the carpenter but which could only be answered by the expert were used to differentiate different levels of trade ability.

A method of scale construction similar to this, if used for a General Science scale, would be dependent for its accuracy on the accuracy of the marks given in General Soience. In view of recent studies of the unreliability of school marks this method would be far less accurate than the method which has been employed.

For some purposes it seems that while both the first and third methods described, being the only methods available for certain subjects, are more satisfactory than no method at all, they carry the weakness which is inherent in dealing with an unknown from the standpoint of another unknown. In the method adopted for the General Science scale there are at least two things certain, namely, that (a) the questions or items selected are from the subject to be measured and can be rated right or wrong, and (b) it is possible to ascertain what percent of any particular group or classification of pupils can do each item correctly.

Derivation of the Soale
When the 300 item test for each pupil had been scored and the score clearly indicated on it, the test papers were divided according to the classification described in previous chapter, namely, according to grade, sex, and whether or not the pupil had taken General Science. This made in all twenty classifications. In Table II (DISTRIBUTION OF SCORES OF 5980 CASES ON THE 300 ITEMS OF THE GENERAL SCIENCE TEST) are the distributions of the scores made by 5,980 8th grade and highschool pupils in the 22 school systems that had co-operated in this study. From this Table it is evident that one 8 th grade girl and one 9 th grade girl, neither of whom had studied General Soience, made scores between 25 and 29 inclusive. It is also evident that the best scores secured by $-8 G$ were two between 180 and 184. A glance at the Table shows the gradual slope of the bulk of the frequencies towards the lower right hand corner, indicating a gradual increase of the median.

TABLE II

DISTRIBUTION OF SCORES OF 5980 CASES ON THE 300 ITEMS OF THE GENERAL SCIENCE TEST.

Score $-8 G-8 B+8 G+8 B-9 G-9 B+9 G+9 B-10 G-10 B+10 G+10 B-11 G+11 G-11 B+11 B-12 G+12 G-12 B+12 B$

20-																				
25-29	1	.	.	.	1	.	.	.	-	-	-	-	-	-	-	.	-	-	,	
30-34	-	-	.	-	.	-	-	-	
35-39	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
40-44	-	-	-	-	-	-	-	-]	-	-	.	-	-	-	-
45-49	1		,	.	-	-	.	.	-	-	-	-	1	-	-	1	-	-	-	-
50-54	3	3	1	-	.	.	1	.	.	-	.	-	-	.	-	1	-	-	-	-
55-59	2	1	.	.	.	1	.	.	.	-	.	.	-	;	-	-
60-64	4	5	.	.	1	1	.	.	2	-	-	-	-	1	,	-	-	-	-	.
65-69	5	5	.	.	4	.	-	.	1	-	-	2	,	,	1	-	-	-	-	-
70-74	7	?	.	.	.	1	.	.	3	-	.	-	1	-	1	-	-	-	-	-
75-79	6	9	.	.	2	3	.	2	1	.	.	.	1	1,	.	.	.	-	,	-
80-84	23	7	.	.	7	3	2	5	3	1	.	1	2	.	.	.	1	-	-	-
85-89	24	10	1	.	9	3	2	3	3	2	.	.	3	.	1	.	.	.	-	-
90-94	27	9	1	.	16	2	5	2	8	2	.	,	1	-	.	.	,	-	-	-
95-99	26	16	1	3	13	6	4	9	8	1		1	3	-	.	.	3	1	.	.
100-104	33	21	1	.	29	9	4	3	13	5	2	.	6		.	.	3	1	1	1
105-109	46	21	1	2	33	9	10	10	21	4	3	1	11	2	3	.	3	2	1	.
110-114	48	19	2	1	24	19	13	4	27	6	3	3	13	5	3	1	4		.	.
115-119	49	25	4	.	38	16	18	13	46	14	2	4	16	8	3	.	?	5	.	-
120-124	39	25	2	4	49	17	18	16	29	17	13	6	15	3	5	1	8	2	1	.
125-129	44	33	5	1	50	28	20	16	41	20	8	6	19	8	2	1	8	4	3	
130-134	25	39	5	1	41	28	28	11	46	11	12	10	28	7	10	1	12	3		1
135-139	14	26	3	4	34	18	24	19	46	18	23	13	36	8	8	2	17	6	6	3
140-144	23	23	1	3	26	16	33	27	42	19	14	10	29	8	14	1	17	8	3	
145-149	24	32	3	3	26	19	33	20	38	24	16	14	35	16	8	5	23	11	2	3
150-154	7	19	1	2	39	19	34	22	33	18	19	10	30	17	10	6	25	4	7	
155-159	4	11	4	5	12	15	31	29	21	21	29	14	29	17	14	6	30	7	8	5
160-164	3	16	5	1	12	12	32	24	19	20	22	14	34	17	21	2	24	6	9	6
165-169	4	8	2	4	,	9	31	26	18	20	26	18	24	12	17	9	36	8	13	$?$
170-174	4	4	.	3	6	8	22	21	10	10	12	15	30	9	21	8	19	19	15	5
175-179	2	3	1	4	?	6	15	23	11	14	12	12	22	11	19	7	27	22	13	10
180-184	2	3	.	5	1	13	15	29	8	8	10	18	12	13	16	15	17	14	9	15
185-189	.	.	.	1	3	3	13	17	4	4	9	8	15	5	17	8	13	16	9	12
190-194	.	.	.	1	1	3	6	18	2	7	8	16	4	8	15	13	12	11	17	14
195-199	.	.	.	1		5	6	22	2	6	9	13	10	5	11	8	11	10	24	8
200-204	1	1	7	6	4	2	2	5	5	5	9	8	11	9	13	8
205-209		3	3	8	1	3	2	4	3	2	9	7	15	6	9	8
210-214	.	.	.	-	.	1	3	10	.	5	2	6	1	2	8	7	5	7	16	11
215-219		3	6		3	1	4	2	3	6	$?$		3	9	4
220-224		.	-	.	.	.		4	2		1	5	.	3	6	7	2	1	4	
225-229				3	.	2	1	3		1	3	3	2		9	8
230-334		.			.	1	.	.	-	1	.	4	.	1	2.	3	,	.	2	3
235-239		1	1	.	-	.	-	,	2	4	1	
240-244		2	-	.	-	-	-	-	.	3	-		2	
245-249			-	-	+	-	-	.	2	-	2	3	
250-254		-	-	-	-	.	-	,	-	.		,	-	.		
255-259		.	.		-		.	-	-	-	-	1	-	.	.	-				
260-264			-		-	-		-	-	.	-		.	-	-	.				
Total	500		44	49	482	300	437	430	513	289	261	242	440	197	363	143	347	192	210	141

In as much as General Soience is almost universally a 9th grade or freshman subject in four year highschools and an 8th grade subject in Junior highschools, it was deemed satisfactory to take for the purpose of standardizing the items for the different Scale Forms (a) the $500-8 G$ and the $400-8 B$ and (b) $430+9 G$ and the $430+9 B$. (Actually there were $437+9 G$ who had turned in completed papers). All of these pupils had turned in papers in which all of the 300 items had been marked.

At this point it might be explained that the use of 900 8th grade pupils who had not had General science for the purpose of standardizing a General Science Scale, while not at first self-explanatory will become clear when it is considered that (a) the Scale was intended as a diagnostic test, (b) even with -8th grade pupils a considerable percentage exceeded the median achievement for +9 th grade pupils, and (c)a pupil's success in General Science is to a certain extent quite as much dependent on what he knows before entering the course as it is on what he learns in the course.

The unit of measurement in this Soale was to be that difference of difficulty of items which would cause the correct responses to any item to differ one-tenth of a P.E. (.I P.E.) on a normal surface of frequency from the items one unit more easy or more difficult. The next problem, therefore, was to reduce the difficulty of all items to P.E. values, all of which were known to have normal surfaces of frequency.

Having selected the four groups which were to form the basis for the valuation of items, responses for the total of

1760 papers were tabulated so as to secure the number in each group that made correct responses to item 1, the number that made correct responses to item 2, and so on. The result of this tabulation is given in TABLE III (FREQUENCIES WITH WHICH EACH OF THE 300 ITEMS WAS DONE CORRECTLY BY 500 EIGHTH GRADE GIRLS eto.). In this Table the items are not arranged in numerical order because it was found desirable to arrange them in order of increasing frequency for at least one group, hence the items are arranged in the order of difficulty for the -8G.

The number of pupils in each group was found to be large enough to insure the stability of the item placement. This was done by dividing each of the four groups into two parts when counting the number of correot responses, treating the first part as one distance one distance and the whole group, the seoond part, as another distance. The rank order of each item of the 300 was then determined, first on the basis of the first part and then again on the basis of the whole group. The rank order correlation between a part and the whole group in each case was over . 98 . Thus correlation between

(a)	350	$-8 G$	and	500	$-8 G$	gave	coefficient of	.9964	
(b)	300	$-8 B$	$"$	400	$-8 B$	$"$	$"$	$"$.9968
(c)	215	$+9 G$	$"$	430	$+9 G$	$"$	$"$	$"$.981
(d)	215	$+9 B$	$"$	430	$+9 B$	$"$	$"$	$"$.984

The significance of these figures is clear,namely, that for most purposes, had the selection of data stopped with the $350-8 G$,

FREQUENCIES WITH WHICH EACH OF THE 300 ITEMS WAS DONE CORRECTLY BY 500 EIGHTH GRADE GIRLS AND 400 EIGHTH GRADE BOYS WHO HAD NOT HAD GENERAL SCIENCE, AND BY 430 NINTH GRADE GIRLS AND 430 NINTH GRADE BOYS NHO HAD HAD GENERAL SCIENCE.

Item	-8G	-8B	-9G	-9B	Item	-8G	-8B	-9G	-9B	cont ${ }^{\prime}$ d
78	14	46	75	122	251	73	71	135	138	
27	16	20	23	28	149	74	52	115	80	
35	19	21	95	78	89	74	58	161	162	
138	19	29	87	108	9	74	41	86	110	
173	21	33	92	120	86	75	71	103	160	
16	24	67	24	152	191	76	64	153	162	
87	27	21	13	19	244	76	68	45	64	
228	27	15	32	18	11	78	62	156	202	
39	29	16	65	60	283	80	134	183	215	
57	31	39	27	36	4	81	94	57	137	
134	31	23	85	58	267	81	133	120	187	
67	31	63	28	70	194	81	68	236	214	
18	33	36	105	118	300	82	89	75	142	
143	34	47	69	57	243	82	95	178	116	
144	37	45	53	71	92	83	90	129	193	
164	37	41	140	134	163	83	67	125	143	
81	38	56	166	192	214	84	52	83	82	
249	40	42	175	178	259	84	79	89	128	
28	44	59	144	179	50	85	73	192	196	
43	47	43	131	104	44	86	99	159	128	
58	48	37	32	38	177	86	90	168	166	
38	48	35	115	119	235	87	44	135	72	
6	48	36	51	40	210	88	75	157	141	
66	49	48	54	65	19	88	143	206	280	
224	50	44	92	108	69	88	56	126	123	
64	52	28	158	158	298	89	112	109	150	
135	54	41	60	55	125	90	41	102	100	
180	55	53	164	140	127	90	83	124	118	
208	55	40	116	100	207	93	84	185	157	
219	57	51	109	140	61	95	114	181	203	
273	57	45	176	166	47	96	85	135	155	
15	59	117	153	262	171	96	96	114	149	
34	59	60	58	64	241	96	89	79	86	
90	59	57	88	111	5	98	117	315	310	
280	61	172	162	288	85	98	105	116	116	
124	62	59	61	53	91	102	115	92	159	
10	63	45	198	172	205	102	102	134	153	
217	63	55	75	72	253	102	88	112	139	
278	63	55	103	109	53	103	86	193	188	
270	63	49	183	137	174	103	128	373	383	
121	65	75	146	141	179	103	110	93	109	
258	65	51	89	98	204	103	86	117	110	
170	66	74	141	197	74	106	78	28	88	
88	66	31	- 99	89	294	106	72	73	119	
110	66	62	27	40	108	107	96	158	157	
140	70	45	89	77	212	111	87	117	115	
290	70	63	79	116	282	113	123	301	236	
260	71	97	186	339	36	115	177	205	273	
56	72	90	149	145	138	115	81	110	202	

TABLE III CONT'D

Item	-8G	-8B	-9G	-9B	Cont'd	Item	-8G	-8B	-9G	-9B	Cont'd
159	115	103	173	134		162	159	147	168	230	
1.30	116	85	199	175		84	162	143	298	275	
70	118	92	82	93		93	163	155	211	233	
284	119	87	138	158		152	164	152	192	196	
288	120	146	176	202		232	164	189	324	348	
52	121	99	171	169		291	165	264	127	337	
261	121	104	215	223		59	168	273	218	308	
206	132	111	111	154		158	168	199	223	254	
26	123	111	194	167		101	170	140	223	256	
7	123	92	94	126		264	170	146	251	233	
17	123	118	135	192		72	171	239	218	230	
266	124	91	234	204		181	171	137	165	185	
37	125	129	158	179		175	173	169	259	275	
227	126	103	108	114		155	177	146	154	159	
8	126	179	290	322		286	177	283	178	357	
73	126	86	118	113		75	182	169	228	264	
80	127	169	310	337		42	182	155	249	243	
12	127	100	226	201		71	182	268	188	220	
41	127	132	214	233		245	183	203	243	304	
276	127	79	169	174		151	185	169	205	199	
268	130	146	197	190		105	185	130	182	183	
226	132	88	189	141		139	187	130	139	163	
167	133	133	150	189		165	188	111	106	129	
22	134	134	239	357		176	190	189	222	240	
231	134	95	156	96		209	190	143	306	271	
77	135	137	236	245		281	191	158	223	216	
30	136	146	242	295		97	193	186	179	193	
146	136	109	115	117		272	193	244	207	207	
116	139	156	134	215		184	195	193	268	299	
29	139	116	218	214		201	195	136	152	128	
15 ?	140	136	156	157		238	195	123	157	167	
236	140	117	284	239		285	195	225	268	298	
293	140	126	244	303		252	197	201	243	293	
82	141	166	172	254		20	200	231	279	275	
218	143	155	199	213		187	200	197	324	318	
223	144	145	135	120		25	204	164	202	217	
193	145	201	142	259		199	205	158	201	191	
49	146	99	250	276		172	207	239	262	304	
46	147	100	80	113		277	207	271	330	370	
233	147	150	196	248		242	208	142	218	196	
289	147	154	135	172		271	208	173	223	200	
160	148	179	212	274		94	311	228	282	298	
31	149	141	248	268		95	214	146	214	167	
106	149	109	111	107		211	214	184	319	393	
45	150	141	185	229		119	217	186	256	278	
178	150	132	202	221		255	218	234	275	324	
136	151	107	140	146		213	219	161	204	204	
2	151	112	356	316		13	220	204	159	216	
166	151	115	248	234		215	220	117	219	202	
33	152	130	167	216		63	222	162	206	201	
117	152	119	241	213		195	222	199	215	263	
182	152	143	166	169		216	222	244	330	344	
21	159	165	150	253		186	223	154	222	184	

Item			-9G	-9B Cont'd	Item-8G-8B-9G-9B Cont'd				
147	224	179	218	325	295	339	304	329	349
262	228	235	363	363	234	342	297	334	363
141	229	197	252	243	150	348	289	352	344
265	829	197	263	269	129	349	246	307	269
55	232	198	312	339	192	352	295	387	367
154	232	184	286	260	202	364	256	326	305
115	233	215	255	277	248	367	305	360	352
197	235	232	228	233	132	374	266	354	317
274	240	209	234	248	183	374	264	383	337
279	241	253	266	338	225	376	253	369	319
99	244	211	270	260	98	377	264	370	312
256	247	227	317	341	51	379	310	372	361
200	248	238	216	253	107	385	294	397	377
137	250	198	252	223	188	385	329	351	374
263	251	236	279	278	230	386	277	407	359
153	257	176	218	166	198	388	329	323	334
238	258	212	263	273	250	389	334	356	384
196	263	217	238	275	103	396	304	423	406
297	263	244	308	318	76	398	268	351	301
112	263	229	264	261	296	399	336	366	356
65	265	250	258	300	292	405	315	388	371
240	269	195	283	235	100	411	343	383	368
54	270	228	368	364	102	417	355	407	397
68	270	282	383	388	246	417	317	394	360
287	273	243	216	306	123	418	341	420	409
1	277	231	327	338	23	423	366	361	393
113	278	231	269	264	126	423	338	396	389
96	280	209	250	242	79	424	349	387	403
14	284	259	252	293	104	429	311	394	372
109	287	243	310	343	185.	430	297	384	352
222	288	300	232	390	229	433	328	420	376
40	289	222	249	249	190	438	339	383	367
220	291	216	239	218	83	445	369	374	403
168	292	260°	358	384	3	446	375	415	410
161	294	294	257	338	254	448	350	402	392
237	296	158	281	294	62	450	346	413	381
299	296	251	292	311	133	459	338	418	390
156	297	231	302	273	131	462	378	428	413
120	298	258	349	319	122	465	361	413	415
169	299	265	270	317	145	471	361	420	408
60	301	208	329	306	24	485	396	424	422
142	314	246	341	293	148	491	389	427	417
247	315	276	310	305					
189	318	266	350	321					
111	319	305	324	328					
221	319	281	352	362					
114	325	297	386	390					
32	325	240	280	280					
269	328	291	348	364					
118	330	239	385	356					
257	330	304	316	327					
203	331	343	340	335					
48	334	279	311	324					
275	338	345	307	310					

the $300-8 B$, the $215+9 G$, or the $215+9 B$, the order of difficulty would not have changed enough to have made any appreciable difference as the P.E. of P with such high coefficients and large numbers of cases is negligible.

It is in order at this time also to show that the combining of these four groups of data into a composite source of data for the Scale is not as lacking of homogeneity as would be indicated by the fact that pupils who have not had and pupils who have had General Science were used to standardize a General Science Scale. In Table XII (PERCENTILE SCORES ON 300 ITEMS MADE BY 6053 CASES) the medians for these four groups are $114,127,150$, and $162 \mathrm{re}-$ spectively. An examination of the medians would indicate considerable dispersion of results. Examination of the following data, however, shows that while the $+9 B$ whose median was 162 did as a group 48 items more than the -8G Whose median was 114 , the order of difficulty of items for all four groups was relatively similar. This is indicated by the fact that the rank order correlation of items for

Reduction of frequencies of correct responses to percentages
Having in Table III the number of times each item was done correctly by each of the four groups selected, the next step was to convert each of the frequencies into percent of the total group and into the P.E. value for that group. Reference to

Table IV (COMPUTATION OF ITEM VALUE OR DIFFICULTY WORKED FROM TABLE III - See Appendix IV) will show that whereas the first item, number 78 in Table III, was done by $14-8 G, 46-8 B, 75$ $+9 G$, and $122+9 B$, in Column 2 of Table IV the 14 , the number of correct responses in the $-8 G$ group, has been converted into percent by dividing 14 by 500 , which gives 2.8%. In Column 5, the 46 , the number of correct responses in the $-8 B$ group, has been converted into percent by dividing the 46 by 400 , which gives 11.5%. In Column 10, the 75, the number of correct responses in the $+9 G$ group, has been converted into percent by dividing the 75 by 430 , which gives 17.4%. In Column 15, the 122, the number of correct responses in the $+9 B$ group, has been converted into percent by dividing the 122 by 430 , which gives 28.4%, and so on for each item. In Columns 2, 5, 10, and 15 the first number is the percent of correct responses made by each of the four groups on Item 78. Similarly, for each item the frequency of correct responses indicated in Table III divided by the number of pupils in that group, namely, 500, 400, 430 and 430 respectively, for the $-8 G,-8 B,+9 G$, and $+9 B$ respectively, is given in the columns of percents, - columns $2,5,10$, and 15.

Reduction of percents of correct responses to percent of deviation from median

In as much as the unit of measure adopted was the P.E. from the median, the next task was to convert the percents of correct responses into P.E. values from the median. For this purpose it was found convenient to use the Table of P.E. Values given by

1
Woody - See Table V (P.E. VALUES CORRESPONDING TO GIVEN PERCENTS OF THE NORMAL SURFACE OF FREQUENCY, PERCENTS BEING TAKEN FROM THE MEDIAN). In this Table are given the P.E. values corresponding to given peroents of the normal surface of frequency, peroents being taken from the median. It was therefore necessary to ascertain for the percent of each item the percent of deviation from the median, or fifty percent, which the percent of correct responses represented. As stated in the preceding paragraph, 14 correct responses for item 78 on the part of the $500-8 G$ represents 2.8% of correct responses. Two and eight-tenths percent, however, is 47.2% below the median ($50 \%-2.8 \%$). Forty-six correct responses on the part of the $400-8 B$ represented 11.5% of correot responses which was in turn 38.5% below the median ($50 \%-11.5 \%$). The 75 correct responses on the part of the $430+96$ represented 17.4% correct responses which was 32.6% below the median, while the 122 correct responses on the part of the $430+9 B$ represented 28.4% correct responses which was 21.6% below the median. Therefore in columns 3, 6, 11, and 16 are given the deviations from the median of each of the percents in columns $2,5,10$, and 15 .

Reduction of percents of deviation from median to P.E. from median To convert the deviations from the median was a matter of looking up in Table III each of the deviations from the median. Thus, 47.2% below the median, indicated by -47.2 in column 3, is equivalent to 2.834 P.E. below the median and is indicated in column 4 by -2.834 . In column $6-38.5 \%$ is equivalent to -1.780

1. Woody, C. "Measurements of some achievements in arithmetic". Page 37. Table X -("taken directly from B. R. Buckingham's Spelling Ability, Table XLVII. It is a modification of the table given in E. L. Thorndike's Mental and social Measurements (page 200)".)
P.E. Values corresponding to given per cents of the normal surface of frequency, per cents being taken from the median.

\%	,	1	. 2	. 3	4	. 5	. 6	. 7	. 8	. 8
0	.000	. 004	. 007	. 011	. 015	. 019	. 022	. 026	. 030	. 033
1	. 037	. 041	. 044	. 048	. 052	. 056	. 059	. 063	. 067	. 071
2	. 074	. 078	. 082	. 085	. 089	. 093	. 097	. 100	. 104	. 108
3	. 112	. 115	. 119	. 123	. 127	. 130	. 134	. 138	. 141	. 145
4	. 148	. 153	. 156	. 160	. 164	. 168	. 172	. 175	. 179	. 183
5	. 187	. 190	. 194	. 198	.201	. 205	. 209	. 213	. 216	. 220
6	. 224	. 228	. 231	. 235	. 239	. 243	. 246	. 250	. 254	. 258
7	. 261	. 265	. 269	. 273	. 277	. 280	. 294	. 288	. 292	. 296
8	. 299	. 303	. 307	. 311	. 315	. 318	. 322	. 326	. 330	. 334
8	. 337	. 341	. 345	. 349	. 353	. 357	. 360	. 364	. 368	.372
10	. 376	. 380	. 383	. 387	. 391	. 395	. 389	. 403	. 407	. 410
11	. 414	. 418	. 422	. 426	. 430	. 434	. 437	. 441	. 445	. 449
12	. 453	. 457	. 461	. 464	. 468	. 472	. 476	. 480	. 484	489
13	. 482	. 496	. 500	. 504	. 508	. 512	. 516	. 519	. 523	. 527
14	. 531	. 535	. 539	. 543	. 547	. 551	. 555	. 559	. 563	. 567
15	. 571	. 575	. 579	. 583	. 588	. 592	. 596	. 600	. 603	. 608
16	. 612	. 616	. 620	. 634	. 628	. 632	. 636	. 640	. 644	. 648
17	. 652	. 656	. 660	. 665	. 669	. 673	. 677	. 681	. 685	. 689
18	. 693	. 698	. 702	. 706	. 710	. 714	. 719	. 723	. 727	. 731
19	. 735	. 740	. 744	. 748	. 752	. 756	. 761	.765	. 769	. 773
20	. 778					.799	. 803	. 807	. 812	. 816
21	. 820	. 825	. 829	. 834	. 838	. 842	. 847	. 851	. 855	. 860
23	. 864	. 869	. 873	. 878	. 882	. 886	. 891	. 895	. 900	. 904
23	. 909	. 913	. 918	. 922	. 927	. 931	. 936	. 940	. 945	. 949
24	. 954	. 958	. 963	. 968	. 972	. 977	. 982	. 986	. 991	. 996
25	1.000	1.005	1.009	1.014	1.019	1.024	1.028	1.033	1.038	1.042
26	1.047	1.052	1.057	1.062	1.067	1.071	1.076	1.081	1.086	1.091
27	1.096	1.101	1.105	1.110	1.115	1.120	1.125	1.130	1.135	1.140
28	1.145	1.150	1.155	1.160	1.165	1.170	1.176	1.181	1.186	1.191
29	1.196	1.201	1.206	1.211	1.217	1.222	1.227	1.232	1.238	1.243
30	1.248	1.253	1.259	1.264	1.269	1.275	1.279	1.386	1.291	1.296
31	1.302	1.307	1.313	1.318	1.324	1.329	1.335	1.340	1.346	1.351
32	1.357	1.363	1.368	1.374	1.380	1.386	1.391	1.397	1.403	1.409
33	1.415	1.421	1.427	1.432	1.438	1.444	1.450	1.456	1.462	
34	1.475	1.481	1.487	1.493	1.499	1.506	1.512	1.518	1.524	1.531
35	1.537	1.543	1.549	1.556	1.563	1.568	1.576	1.582	1.589	1.595
36	1.602	1.543 1.609	1.549	1.556	1.629	1.636	1.643	1.649	1.656	1.663
37	1.670	1.677	1.685	1.692	1.699	1.706	1.713	1.720	1.728 1.803	1.735
38	1.742	1.749	1.757	1.765	1.772	1.780	1.788	1.795	1.803 1.884	1.811
39	1.819	1.827	1.835	1.843	2.851	1.859	1.867	1.875	1.884	1.892
40	1.900	1.909	1.918	1.926	1.935	1.944	1.953	1.962	1.971	1.978
41	1.988	1.997	2.007	2.016	2.026	2.035	2.044	2.054	2.064	2.074
42	2.083	2.093	2.103	2.114	2.124	2.134	2.145	2.155	2.166	3.177
43	2.188	2.199	2.211	2.222	2.234	2.245	2.257	2.269	2.281	2.293
44	2.305	2.318	2.331	2.344	2.357	2.370	2.384	2.397	2.411	2.425
45	2.438	2.453	2.468	2.483	2.498	2.514	2.530	2. 546	2.562	2.579
46	2.597	2.614	2.631	2.648	2.667	2.686	2.706	2.726	2.746	2.767
47	2.789	2.811	2.834	2.857	2.881	2.905	2.932	2.958	2.986 3.346	3.395
48	3.044	3.077	3.111	3.146	3.182	3.219	3.258	3.300	3.346	3.395
49	3.450	3.506	3.571	3.643	3.725	3.820	3.938	4.083	4.275	4.600

P.E. from the median, indicated in column 7. In column 11, -32.6% is equivalent to -1.391 P.E. from the median, indicated in column 12. In column 16, -21.6% is equivalent to -.847 P.E. from the median, indicated in column 17. Therefore an examination of columns 4, 7, 12, and 17 will show that they represent the P.E. value of each of the percents of deviation from the median of correct responses for each group for each item. The direction from the median is indicated by positive and negative P.E.s. That is, any P.E. value for a deviation from the median of a percent of correct responses which is less than 50 is indicated by a negative number. The P.E. value of deviations from the median for any percent of correct responses which is over 50 is indicated by a positive number.

Examination of the P.E. values for item 78, the first item in Table IV, shows that for the four groups selected this item had P.E. values of $-2.834,-1.780,-1.391$, and -.847 . It is evident that this item was not of equal difficulty for each of the four groups, since it has been seen that the percent of correct responses for the four groups ranged from 2.8% to 28.4%. A similar condition is to be found for each of the succeeding items. For instance, item 27 has P.E. values of $-2.746,-2.439$, -2.397 , and -2.245 (columns 4, 7, 12, 17) for each of the four groups. Obviously each item has four P.E. values instead of one, and unless some method of equating these P.E. values be found, four separate scales, -one for each of the four groups would be necessary. If eight different groups were to be measured and the same conditions were true, eight scales would be necessary, etc.

Computation of average P.E. difference between groups
This apparently confused state of affairs, howéver, was easily adjusted. It was decided to ascertain the mean P.E. difference on all 300 items between each of the groups, then using this mean P.E. difference to convert each of the groups to the level of the lowest group. Therefore, in column 8 is the difference between the P.E. value of item 78 for $-8 B(-1.780)$ and the P.E. value of item 78 for -8G (-2.834), which is 1.054 P.E. Since a greater number of the -8 B did item 78 correctly than did the $-8 G$ this difference is positive. In the next line, column 8 , is the P.E. difference on item 27 for $-8 B$ and $-8 G(-2.439)$ - (2.7.46) or .307 P.E. This process is repeated for each of the 300 items. At the bottom of the Table is to be found the algebraic sum of all the P.E. differences occuring in column 8 , which is equal to 49.295 . This sum divided by 300 , the number of P.E. differences in column 8, gives a mean P.E. difference of .164. In other words, on 300 items the P.E. values of the correct responses of the $400-8 B$ exceeded the P.E. values of the correct responses of the $500-8 G$ by .164 P.E.

In the same way column 13 is a column of the P.E. differences between the P.E. values of the $+9 G$ and the $-8 B$. Thus $(-1.391)-(-1.780)$ is equivalent to .389 or the P.E. value of the superiority of the responses to item 78 of the $430+9 G$ over those of the $-8 B$ and $(-2.397)-(-2.439)$ or .042 is the P.E. value of the superiority of the $+9 G$ over the $-8 B$ on item 27 . Repeating the same process for each item one finds at the bottom of the

Table the algobrale sum of all the P.E. differenoes in oolum 13, namely, 124.308. This number divided by 300 gives an average P.E. differonce of .414 or the amount in P.E. by whioh the reaponsea of the $430+90$ are auperior in acouracy to thas of the 400 -8 B .

In the aame way oolum 18 is the oolum of the differences betweon the P.E. values on asoh them of the +90 , oolum 13, and the P.E. values on the same thams for the +98, oolum 17. Thus, (-.847) - (-1.381) is the equivalent of .544 found in oolumn 18 and (-2.245) - (-2.397) is equivalent to . 152 found in oolumn 18. Repesting the same proesse for each item and totaling the P.E. differenoes, at the bostom of the fable is found the sigebrate sum of all the P.E. differonces in oolum 18, whioh is 25.821 . This sum divided by 300 gives . 086, whioh is the mean P.E. difference between colum 17 and colums 12 or the amount in P.E. by whioh the +98 are superioz to the +90 on these 1 tems.

The oomputation of the mesh P.E. differmees between the different groupa has shown in P.E. anounte what would be ovident from the examination elther of the individual number or of the peroent of correot reaponese made by asoh group on asek iten. Temoly, that from the etandpoint of aoklevement in the Geteral Solence test the -80 - Bth grade girle who asve not had Oeneral Bolenoe - group is the lowest, the -8B group the next Mgher, the $4 e 0$ next, and the -9 B group atands the atghest of all four groups. The advantage, hovever, of results of colums 8,13 , and 18 is that this difference in aohlevenent among the four groups is given in P.E. amounts. It oan be said, therefore, that
the $-8 B$ are .164 P.E. superior to the $-8 G$, that the $+9 G$ are .414 P.E. superior to the $-8 B$, and that the $+9 B$ are .086 P.E. superior to the $+9 G$.

Reduction of all scores to 8 th grade level
In order to have the items all evaluated to an average P.E. value, the next step was to reduce the achievement of each group on each item to a common level. The necessity of this procedure oan be easily illustrated by the following hypothetical case. Suppose A, B, C, and D were each given a tape measure in which the units were all of uniform length - inches in the case of the tape messure, P.E. smounts in the case of this test -. But suppose that $A^{\prime} s$ tape measure began with the inches numbered at $0, B^{\prime} s$ tape measure had 164 inches torn off, $C^{\prime} s$ tape measure had 414 inches more torn off than had $B^{\prime} s$, that is 414 plus 164 inohes or 578 inches torn off, while $C^{\prime} s$ tape measure had 86 inches more torn off than had $C^{\prime} s$, that is 164 plus 414 plus 86 or 664 inches torn off. Suppose that all four measured a certain distance. Let us assume that this distance was 1,000 inches. If each began with his tape as it was numbered and took the reading at the farther end on his tape, it is obvious that $A^{\prime} s$ reading would be 1,000 inches since the divisions on his tape were numbered beginning with zero. It would further be obvious that the reading on $\mathrm{B}^{\prime} \mathrm{s}$ tape would be 1164 inches, since the numbers on his tape began with 164. Likewise $C^{\prime} s$ and $D^{\prime} s$ reading would be 1578 and 1664 inches respectively, because their tapes began with the numbers 578 and 664. Any mean evaluation which these four individuals might make of the distance measured would first require
that the four readings be reduced to a common basis. This could be accomplished by reducing the readings to the level of any one of the four individuals, that is, reduced to A^{\prime} s readings by subtracting 164,578 , and 664 from $B^{\prime} s, C^{\prime} s$, and D^{\prime} s readings respectively. Or, readings could be reduced to B^{\prime} 's reading by adding 164 to $A^{\prime} s$ reading and subtracting 414 and 500 (414 plus 86) from $C^{\prime} s$ and D^{\prime} s readings respectively. In the same way the readings could be reduced to the level of C or of D. Once the readings were reduced to a common level, an average obtained, and account taken of the zero point, then the four readings on the four tapes, each of which began with a different number, would give a measure as reliable as would measurement with a steel tape in which the units began with zero.

In the case of the General Science Scale it was decided to reduce the P.E. values made by each group to the level of the 8th grade girls without General Science. To do so it was necessary to subtract 164, the mean P.E. difference between $-8 G$ and $+9 B$, from each of the P.E. values given for $-8 B$ in column 7,.578, the sum of the P.E. difference between $-8 G$ and $-8 B$ or .164 plus the P.E. difference between $-8 B$ and $+9 G$ or .414, from the P.E. values given for $+9 G$ in column 12, and . 664, the sum of the P.E. difference between $-8 G$ and $-8 B$ or . 164 plus the P.E. difference between $-8 B$ and $+9 G$ or .414 plus the P.E. difference between $+9 G$ and $+9 B$ or .086 from the P.E. values given for $+9 B$ in colunm 17. In this way columns 9 , 14, and 19 were seoured. They are labelled "P.E. Value"" for
each of the groups. These columns represent the P.E. values on each item reduced to the level of the $-8 G$. Thus, column 4 is both "P.E. Value" and "P.E. Value"", since the -8G were taken as the basis. Column 9 is the result of subtracting . 164 from the values given in column 7, column 14 is the result of subtracting . 164 plus Al4 from the P.E. values given in column 12, and column 19 is the result of subtracting. 164 plus .414 plus .086 from the P.E. values given in column 17. Whereas the results in columns 4, 7, 12, and 17 are the P.E. values computed from the four different medians of the four different groups, the results in colums 4, 9, 14, and 19 are the P.E. values made by the four different groups but computed in each case from a common point, namely the median of the 8 th grade girls without General Science.

Weighted average P.E. Value'

Having the values in columns 4, 9, 14, and 19 for each item so that they are in comparable form, that is, all computed from the same basis, the next step was to ascertain the average value of these four measures. Thus, for item 78, the "P.E. Values'" are -2.834 P.E., -1.944 P.E., -1.969 P.E., and -1.511 P.E. made by the four different groups. It is evident that a simple arithmetical mean of these four P.E. values might be used. It was thot advisable, however, to weight these values in the order of their reliability. That is, P.E. values are most accurate in the middle fifty percent of a distribution, one P.E. on each side of the median, less accurate 2 P.E. away, still less
accurate 3 P.E. away, and more so when 4 P.E. away from the median. Therefore, in computing the average P.E. value of each item it was decided to use a multiplication factor of 10 for values between 0 and 1 P.E., of 6 for values between 1 and 2 P.E., of 3 for values between 2 and 3 P.E., and of 1 for values between 3 and 4 P.E. In each case the actual P.E. value of the item, not its recomputed value or P.E. Value', was used to find the multiplication factor. To illustrate, for item 78 the final, weighted average P.E. Value' was computed as follows.

$$
\begin{array}{r}
-2.834 \times 3 \quad(2.834 \text { is between } 2 \text { and } 3) \text { equals }-8.502 \\
-1.944 \times 6 \quad(1.780 \text { is between } 1 \text { and } 2) \text { equals }-11.664 \\
-1.969 \times 6(1.391 \text { is between } 1 \text { and } 2) \text { equals }-11.814 \\
-1.511 \times \frac{10}{25}(0.847 \text { is between } 0 \text { and } 1) \text { equals } \frac{-15.110}{-47.090}
\end{array}
$$

-47.090 divided by 25 equals -1.884 , or the final weighted average value of item 78 computed from the median of the $-8 G$ group. In like manner each of the 300 items were weighted and averaged to secure the final weighted average value from the median of the $-8 G$ group found in column 20. Where items near the middle of the scale had both positive and negative values, the total in the above computation was the algebraic sum of the plus and minus values.

Location of the value of each item with reference to the arbitrary zero

Thus far a final average P.E. value has been secured for each item. This value, however, is merely a relative value in
uniform unite oomputed from the modian of the 8th grade girla without General Solence. It is apparent that even the lowest 8 th grade girl, who made a score of botweon 25 and 29 , did not represent zero ability in aohlovesent on this teat. Were there a hypothetiosl osae of an 8th grade girl who had made a zero score on this teat, it would still be doubtful whether or not her aohievement or ability in General Solence was zero, for, were there an 1tem easier than the easiest item on the test, it is quite oonoeivable that ahe might have marked it suocessfully.

Zero, or better yet, a soore of 1 item or one-fifth of one peroent on the table of frequenoles of a normal surface of distribution would represent a deviation from the median of -49.8% or a P.E. value of $\mathbf{- 4 . 3 7 5}$. This, however, is an unknown distance or value above zero. Since the sero is unknom, it wae thot adFiable arbitrarily to seleot a sero point suffloiently low to inolude for all practiosl purposes every posalble achievement or abllity in General soience. It wae therefore deolded to make this arbitrary sero point B P.E. below the median aohievement of 880 individuals who had taken Goneral soienoe for one year. Since both boye and gizle had taken General goienoe and the modian sohlevements of the tro groups in the gth grade varled by .086 P.E., this zero point is 8 P.Z. below a point whioh is one-half of .086 P.E. or .043 P. K. above the medisn sohlevement of the plue 9 O1rls and .043 P.E. belor the modisn sohievenent of the plus 9 Boys. This zero point is slso . 043 plus .414 plus .164 or $.621 \mathrm{P}, \mathbb{Z}$. above the median of the -8 th grade girls who were taken as the basis for oomputing the P.E. value of each item.

It is obvious then that in order to compute the actual value in P.E. of each item above the arbitrary zero point, it would be necessary to bear in mind that the average P.E. value already computed is computed from the -8 Girls' median, and that this median is .621 below the point which is 8 P.E. above the arbitrary zero point. In other words, the -8 Girls' median is $8.000-.621$ P.E. or 7.379 P.E. above the arbitrary zero point. To secure the actual P.E. value of each item above its zero point it was necessary to recompute the average P.E. value, bearing in mind that the -8 Girls. median is the point of reference for the average value and that this point of reference is 7.379 P.E. above the zero point. On this basis column 21 was computed.

In the computation of the column, an item which is below the median, that is, has a minus P.E. value, as does item 78, is an item which was very hard since it was done successfully by less than 50% of the pupils. An item having a negative P.E. value is then above the median in difficulty. Therefore, while item 78 was done successfully by an average number of pupils equivalent to an average P.E. value of -1.884 , the difficulty of item 78 was really 1.884 above the -8 Girls' median and its actual P.E. value was 7.379 plus 1.884 , or 9.263 P.E. above the zero point. LikeWise item 27 which had an average P.E. value of -2.808 from the 8th grade girls' median, had an average difficulty which gives it a value of 7.369 plus 2.808 P.E. or 10.187 P.E. above the zero point. Item 148 at the bottom of the Table was so easy that enough pupils - an average of about 96% - did it successfully to give it an average P.E. value of positive 2.570. This item, there-
fore, was extremely easy. Its difficulty was really 2.570 P.E. below the 8th grade girls' median and its final value was 7.369 - 2.570 P.E. or 4.809 P.E. above the zero point. In like manner all 300 items were given a final P.E. value above the zero point in column 21 by adding the P.E. value in column 20, if negative, to 7.369 and subtracting the P.E. value in column 20 , if positive, from 7.369.

Figure I (Graphic representation of the p.e. values of GROUP MEIIANS aND OF TEST ITEMS WITH REFERENCE TO THE ARBITRARY ZERO POINT) is a graphic representation of the relatige positions of the grade medians and of the range of difficulty of items in the test. Reference to the two figures (Figure I and Figure IA) may help to simplify any obsourity in the preoeding description. It should be borne in mind that figure IA is a magnification of that part on Figure I which lies between A and B.

The range of the items was from about 4.5 P.E. to about 10.2 P.E. above the arbitrary zero point. Naturally some uniform unit of diffioulty should exist between items on the soale, Just as uniform inches exist on a footrule even if each end of the footrule has a part out off from 1t. The unit which was selleoted as comparable to the inches on the footrule was one tenth of one P.E. (.1 P.E.). Therefore in column 21 the P.E. values above the zero point have been immediately converted into one-tenth P.E. values. Thus item 78, which has a value of 9.263 P.E., is written as having a value of 92.63 points or one-tenth P.E. each above the zero point. Item 27, which has a P.E. value

of 10.187 above the zero point, is written as having a value of 101.87 points of one-tenth P.E. eachabove the arbitrary zero point.

To ascertain the value in one-tenth P.E. (.I P.E.) above the zero point for any item, one should look in column 21. To ascertain its value in P.E. above the zero point for any item, one should look in column 2l, find the value in one-tenth P.E. points, and divide by ten.

In Table IV, column 21 gives the relative value above the arbitrary zero in . 1 P.E. The fact is obvious, however, that several items will be found at each .l P.E. level of difficulty if the 300 items range between $4.5 \mathrm{P} . \mathrm{E}$. and $10.2 \mathrm{P} . \mathrm{E}$. or between 45 and 102 one-tenth P.E. points, in other words over a range of 5.7 P.E. or 5 ? one-tenth P.E. points. Table VI (DIFFICULTY OF THE 300 ITEMS IN THE GENERAL SCIENCE TEST FIGURED FROM THE SELECTEDAND DEFINED ARBITRARY ZERO POINT) gives the original item numbers which represent the actual items as they appeared in the original General Soience test and which occur at each one-tenth P.E. level of diffioulty. With Table VI in hand, all that remained to make up any soale or duplicate scale forms was to decide on the kind of items and the ranges of items to appear in each scale.

Selection of soale items

A survey of items, of the ranges of difficulty, and of the number of items at each level of difficulty showed that three Forms of known value could be constructed. Having in mind a

DIFFICULTY OF THE 300 ITEMS IN THE GENERAL SCIENCE TEST FIGURED FROM THE SELECTED AND DEFINED ARBITRARY ZERO POINT.

Difficulty

No.P.E.s
above Zero*
Item Numbers

4.6	24
4.8	148 (
5.2	131 ¢
5.4	3,122,145
5.7	123,254
5.8	62,82,102, 133
5.9	79,229
6.0	23,126
6.1	100,103,190
6.2	104, 246, 292
6.3	185,250
6.4	68,51,107,188
6.5	114, 192, 230, 248
6.6	54,183,198, 234
6.7	118, $150,168,221,269,296$
6.8	$1,76,98,111,132,225,257,275$
6.9	48,189,202, 203,295
7.0	109,120, 161, 222, 247, 262,277
7.1	129,142,169,299
7.2	32, 60, $156,216,256,297$
7.3	55, 65, 113,211, 240, 279
7.4	14, 59, 94,112,172, 187, 237, 255, 263, 287
7.5	20, 40, 96, $99,115,154,196,232,238,285,286$
7.6	80,119,137, 141, 184, 197, 200, 209, 220, 245, 252, 265, 374
7.7	2,5,8,71, 84,175,195,291
7.8	22, 30, 42, 72, 75, 147,158,176, 215, 272
7.9	$13,19,25,31,36,49,63,101,153,160,174,186,213,236,364,271,281,29$
8.0	$77,82,93,95,97,151,166,193,199,233,243$
8.1	$21,29,41,45,117,152,162,218,280,282,178$
8.3	12,33, 105, 116,181, 261, 266, 268, 288
8.3	15,26, 61, $139,155,167,182,201,239,260,283,289$
8.4	$17,37,50,52,53,130,157,226,276$
8.5	108, 136,159,165, 177, 194, 207, 223, 267, 294
8.6	$10,11,16,44,81,91,92,106,138,146,170,205,206,231,384$
8.7	$28,46,47,56,73,85,89,171,191,210,227,243,249,270,273,298$
8.8	$7,64,86,121,127,163,179,180,204,212,251,253$
8.9	4,69, 70, 164,335,259,300,
9.0	219,341,290
9.1	$9,38,43,74,88,90,125,149,208,214,258,278$
9.2	18,140,173,224
9.3	78,128, 217,244
9.4	34,124
9.5	$35,66,67,110,135,143,144$
9.6	$6,58,134$
9.7	39
9.8	57
10.2	27,87,228

*Figured to nearest tenth (.I). In Table IV these values are multiplied by 10 (Column 21), which gives the difficulty in number of one-tenth P.E. (.I P.E.) above zero.
method of computing scale scores, which will be described later, it was decided to construct a Scale having three Forms, each of which was composed of three groups of twenty items each. The range of difficulty of the items in any one group was to be one P.E. or ten points of one-tenth P.E. each. This meant that in each group there would be ten levels of difficulty with two items at each level. It also meant that the total range of any one scale would be three P.E. or thirty points of one-tenth P.E.

It was found that the easiest scale Form could begin with items at 5.7 P.E. or 57 points and should end at 8.6 P.E. or 86 points in difficulty. This scale Form, designated by "Form R-1", was divided into three groups of items, having two items at each tenth P.E. level of difficulty and ranging from 57 to 66, 67 to 76 , and 77 to 86 points of difficulty in each of the three groups respectively. The other two Forms, designated by "Eorm S-2" and "Form T-2", are also made up of sixty items each over a range of thirty points or 3 P.E., having two items at each level of difficulty and beginning in both forms with item difficulty 67 and ending with item difficulty 96 and divided into three groups of items ranging from 67 to 76 , from 77 to 86 , and from 87 to 96 points of difficulty for each of the three groups respectively. Reference to Table VII (ITEMS SELECTED TO FORM SCALES R-1, S-2, AND T-2 AND THE DIFFICULTY OR VALUE OF EACH ITEM COMPUTED TO THE NEAREST TENTH (.1) P.E. FROM THE ARBITRARY ZERO POINT) shows the original item numbers which have been used to make up the Scale and the difficulty of each item. With the exception of two items, which occurred alone at one level of difficulty and

ITEMS SELECTED TO FORM SCATES R-1, $\mathrm{S}-2$, AND T-2 AND THE DIFFICULTY OR VALUE OF EACH ITEM COMPUTED TO THE NEAREST TENTH (.1) P.E. FROM THE ARBITRARY ZERO POINT.

SCALE -- R-I
GROUP I
(Average value 61.5*)

SCALE -- S-2
GROUP I
(Average value
71.5*)

Scale item Test item Value in numbers numbers P.E.

| 1. | 123 | $\ldots \ldots$ | 5.7 |
| :--- | ---: | :--- | :--- | :--- |
| 2. | 254 | $\ldots \ldots$ | 5.7 |
| 3. | 62 | $\ldots \ldots$ | 5.8 |
| 4. | 102 | $\ldots \ldots$ | 5.8 |
| 5. | 79 | $\ldots \ldots$ | 5.9 |

7. $23 \ldots . .6$

8.	126	\ldots	$\ldots .0$	6.0
9.	100	\ldots	\ldots	6.1
10.		103	\ldots	\ldots

11. $104 \ldots . .6 .2$
12.
13.
14.
15.
16.
17.
18.
19.
20.

292 6.2
68 6.3
185
6.3

107
6.4

188 6.4
114 6.5
230 6.5
54
6.6

234
6.6

Test item Value in numbers P.E.

118 6.7
269 6.7
1 6.8
275 6.8
$48 \ldots . .$.
295 6.9
109 7.0
222 7.0
169 7.1
299 7.1
$156 \ldots . . .7 .2$
297 7.2
$65 \ldots . . .7 .3$
279 7.3
187 7.4
287 7.4
40 7.5
115 7.5
141 7.6
209 7.6

SCALE -- T-2
GROUP I (Average value 71.5*)

Test item Value in numbers P.E.

168 6.7
221 6.7
111 6.8
257 6.8
189 6.9
203 6.9
262 7.0
277 7.0
129 7.1
$142 \ldots . . .7$
216........ 7.2
$256 \ldots . .{ }^{7} .2$
$55 \ldots . . .7 .3$
211 7.3
59 7.4
172 7.4
$20 \ldots \ldots . .7 .5$
96
7.5

119 7.6
184 7.6

* The unit used in scoring is . 1 P.E. Hence the "average value 61.5 " Means an average value of 6.15 P.E. above the arbitrary zero point.

* The unit used in scoring is. $1 \mathrm{P} . \mathrm{E}$. Hence the "average value 71.5 " means an average value of 7.15 P.E. above the arbitrary aero point.

SCALE -- R-1	SCALE - S-2	SCALE -- T-2
GROUP III	GROUP III	GROUP III
(Average value	(Average value	(Average value
81.5^{*})	$91.5^{* *}$	91.5^{*})

Scale item Test item Value in Test item Value in Test item Value in numbers numbers P.E. numbers P.E. numbers P.E.

41.	2	7.7	28	8.7	89	8.7
42.	195	7.7	191	8.7	298	8.7
43.	101	7.8	64	8.8	86	8.8
44.	147	7.8	180	8.8	212	8.8

49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
41 8.1

43
9.1

88 9.1
$\begin{array}{cccc}282 & \ldots & 8.1 \\ 181 & \ldots & . & 8.2 \\ 288 & \ldots & . & 8.2\end{array}$
208
9.1

125 9.1
18 9.3
224 9.2
217 9.3
244 9.3
283 8.3
$50 \ldots . . .8$
$53 \ldots . . .8 .4$
124
9.4

110 9.4

194 8.5
207 8.5
143
9.5

135 9.5
144 9.5
39 9.6
58 9.6

* The unit used in scoring is .1 P.E. Hence the "average value 81.5" means an average value of $8.15 \mathrm{P} . \mathrm{E}$. above the arbitrary zero point.
consequently were put into two Forms, no items found in one Form are to be found in another Form.

Taking Table VII and substituting for the numbers the actual items, we have the final Forms of the Scale. These Forms with direotions for giving and with correct responses underlined follow. Sooring of the Soale

The method of evaluating the achievement of any pupil on the General Soience Scale is an adaptation of the method worked out by Doctor M. J. Van Wagenen in the Posey-Van Wagenen Geography Scale. This method is based on a statistical computation of ten points or sub-divisions per P.E. of a normal surface of frequency. Excepting slight revision, due to the fact that in the General Science Scale there are twenty items for each group whereas in the Posey-Van Wagenen Soale there are ten items in each group, the method designed for the General Soience Scale is practically the same as that used in the Posey-Van Wagenen Soale. In the use of this method of scoring, each item is assigned a value of $\frac{1}{2}$. Failure on one item is considered $\frac{1}{2}$ an "error". The total of "errors" for any group is the number of items failed divided by 2 . According to this scheme, a paper in which all the items were wrong would be oredited with 10 "errors" in each group, whioh adapts the points to a ten point per P.E. computation on a normal surface of flequency.

1. Class Record Sheet for the Posey-Van Wagenen Geography Scales. Division 2. Information G, L, R, S, T, U, V, or W. Division 2. Thought R The Public Sohool Publishing Co. Bloomington, Illinois.

Name \qquad Oity \qquad Sohool

Age: \qquad Yrs. \qquad Mos. Grade \qquad Date \qquad :

INSTRUCTIONS

Below are statements, such as -"A fly
© Roup 1:
:Group 2:
is AN ANIMAL, A FISH, AN INSECT, A REPTILE, :Group 3: A BUILDING". YOU can make each of these : statements true by underlining the correct : SCORE : one of the five parts printed in large type. For instance, in the statement "A fly is AN ANIMAL, A FISH, AN INSECT, A REPTILE, A BUILDING", it isplain that a $f l y$ can not be all of the five things in large type. A fly is an insect, so if you underline "AN INSECT" the statement will read, "A fly is AN ANIMAL, A FISH, AIT INSECT, A REPTILE, A BUILDING". By underlining "AN INSECT" you have shown that you know what is correct. In the statement "The heart pumps BLOOD, WATER, OIL, AIR, SAND", "BLOOD" should be underlined.

UNDERLINE THE PART IN EACH OF THE STATEMENTS BELOW WHICH WILL MAKE THE STATEMENT MOST TRUE.

GROUP I. (AVERAGE VALUE 61.5)

1. A bright, blue sky indioates BAD, FAIR, RAINY, GLOOMY, STORMY weather.
2. The house fly is harmful because it DESTROYS CROPS, HAS A POISONOUS BITE, CARRIES BACTERIA, DESTROYS FOOD, IS HARD TO STRIKE.
3. Balloons float in the air because of their LIGHTNESS, SILVERY COLOR, ENGINES, BASKETS, SIZE.
4. The best way to make impure water safe is to LET IT SETTLE, BOIL IT, FREEZE IT, USE CHEMICALS, DO NOTHING.
5. Refrigerators should be cleaned by uang KEROSENE, GASOLINE, WARM WATER AND SODA, VINEGAR, SALT.
6. Which can turn somersaults most safely with his machine: the CHAUFFEUR, FLIER, SAILOR, CONDUCTCR, CAINNONEER.
7. The source of most healthful light is THE SUN, KEROSENE, GAS, ELECTRICITY, CANDLES.
8. The electric wires are oovered beoause the wire WOULD TURN UP, SET FIRE TO INFLAMMABLE MATERIAL, BREAK, GET HOT, GET COLD.
9. Dressings on a wound should be removed and fresh ones applied ONOE A WEEK, ONCE A DAY, NEVER, WHEN THE WOTMD IS WELL, EVERY HOUR.
10. To make milk free from bacteria, milk is PASTEURIZSD, FROZEN, INOCULATED, POISONED, SKIMOED.

GENERAL SCIENCE SCALE. GROUP I. FORM R-1 Cont'd.
11. Small pox isprevented by MEDICINE, VACCINATION, ANTI-TOXIN, PASTEURIZATION, STERILIZATION.
12. A thermometer is used to measure TEMPERATURE, PRESSURE, WEIGHT, HEAT, COLD.
13. In the dark the pupil of the cat's eye is LARGER, SMALLER, OF EQUAL SIZE, VERY SMALL, ABSENT.
14. The water pipes burst in the winter time because of CONTRACTION OF LEAD, EXPANSION OF WATER, EXPANSION OF LEAD, CHEMICAT ACTION, BRITTLENESS.
15. Grasshoppers may be distinguished from other insects by LARGE PAIR OF JUMPING LEGS, LARGE WINGS, BRIGHT GREEN COLOR, PRESENCE NEAR FLOMERS, NUMBERS.
16. Windows should be opened at SIDES, TOP AND BOTTOM, TOP AND SIDES, BOTTOM AND SIDES, BOTTOM.
17. Mosquitoes can be eliminated by SWATTING THEM, IMPORTING BIRDS, DESTROYING THEIR BREEDING PLACES, SMUDGES, POISON.
18. The water best fitted to remove dirt is HOT HARD, HOT SOFT, COLD HARD, COLD SOFT, TEPID HARD.
19. Milk is tested for the amount contained of BUTTER FAT, WATER, PROTEINS, BUTTER, BUTTERMLK.
20. When air is heated, it CONTRACTS, EXPANDS, FALLS, LIOUIFIES, SOLIDIFIES.

$$
\text { GROUP II. R }-1 \text { (Average value 71.5) }
$$

21. A kodak is a MOUTH ORGAN, PICTURE TAKING DEVICE, MUSIC BOX, BROWNIE, FILM.
22. The hard substance of the tooth is called DENTINE, ENAMEL, MECK, ROOT, BONE.
23. To reduce danger of ptomaine poisoning, a can of salmon should be HEATED THOROUGHLY, PROTECTED FROM FLIES, EMPTIED OUT OF CAN PROMPTLY, THOROUGHLY SALTED, EATEN WITH VINEGAR.
24. The food which is most important to be kept in the coldest part of the refrigerator is BREAD, COOKED FOODS, VEGETABLES, MLK, BUTTER.
25. The colored parts of a flower are SEPALS, PISTIL, PETALS, STAMENS, COROLIJA.
26. The rainbow is seen DIRECTLY OVERHEAD, IN THE NORTH, IN THE SOUTH, IN THE EAST, IN THE MORNING.
27. All cows in certified dairies are tested for TYPHOID, TUBERCULOSIS, MANGE, DIPHTHERIA, YELLOW FEVER.
28. Concrete is reinforced with IRON, WOOD, STRAW, CLOTH, ROPE.
29. When the child's first permanent teeth appear he is 6 OR 7 YRARS OLD, 12 YEARS OLD, 18 YEARS OLD, 20 YEARS OLD, 30 YEARS OLD.
30. The kidneys DIGEST FOOD, CLEAN BLOOD OF WASTES, BUILD UP NEW BLOOD CELLS, SUPPORT THE BACKBONE, ARE USELESS.
31. The propelling mechanism of an automobile is termed the CHASSIS, PISTON, DIFFERENTIAL, GOVERNOR, MOTOR.
32. The capacity to do work is termed ENERGY, MOMENTUM, EFFICIENCY, MECHANICAL ADVANTAGE, VELOCITY.
33. Adhesive tape may be put over open wounds NEXT TO SKIN, WITH GAUZE BETWEEN TAPE AND SKIN, NOT AT ALL IF FRESHLY CUT, IF THERE IS DIRT PRESENT, IF NO DIRT IS PRESENT.
34. Tea should never be drawn in vessels of ALUMINM, TIN, GRANITE, SILVER, CHINA.
35. The best lining for refrigerator is TIN, ENAMEL, COPPER, IRON, ZINC.
36. Mosquitoes breed IN FILTH, IN STILL WATER, IN RIVERS, ON THE GROUND, IN OCEANS.
37. The coldest place for food in a refrigerator which is iced at the bottom is the LOWEST SHELF, TOP SHELF, SIDE, CENTER, BACK.
38. Hemorrhages from wounds should be stopped by APPLYING PRESSURE ON SIDE OF BLOOD VESSEL FROM WHICH BLOOD IS COMING, APPLYING AN TISEPTICS, KEEPING CLEAN, SHUTTING OUT AIR AND DUST, APPLYING DIRT.
39. Insects have the following number of pairs of wings: ONE, TWO, THREE, FOUR, FIVE.
40. The average pulse rate for an adult man is $100,45,72,60,50$.
GROUP III Form R-1 (Average value 81.5)
41. The process by which animals change their food materials into soluble form is known as ABSORPTION, DIGESTION, PHOTOSYNTHESIS, OSMOSIS, RESPIRATION.
42. The souring of milk is caused by BACTERIA, HEAT, FREEZING, AIR, MOI STURE.
43. Fleas are parasitic on rats and transmit a disease called BERI-BERI, BUBBONIC PLAGUE, MALARIA, YELLOW FEVER, MUMPS.
44. The vertebrae are parts of the HEART, MUSCLES, BACKBONE, TEETH, TOES.
45. The eyes are injured most by IMPROPER LIGHT, DARK, DUST, STRAIN, WORK
46. Domestic toasters, curlers and irons are based on the principle of ELECTRICAL REPULSION, ELECTRICAL ATTRACTION, HEATING EFFECT DUE TO RESISTANCE OF A CONDUCTOR, VOLTAGE, ROTATION OF ARMATURE.
47. The best method of sewage disposal is CESS POOL, OPEN SEWER, CLOSED SEVER, SEPTIC TANK, SURFACE DRAIN.
48. The magnetic field in Dynamos is produced by TRANSFORMERS, MATURAL MAGNETS, ELECTRO MAGNETS, CONDENSORS, LEYDEN JARS.
49. Voltaic cells are studied about in BOTANY, BACTERIOLOGY, ZOOLOGY, ELECTRICITY, PSYCHOLOGY.
50. Heating systems are placed in the cellar, because heat causes water and air to EVAPORATE, CONTRACT, EXPAND, RISE, FALL.
51. Large buildings are best heated by A PIPELESS FURNACE, HOT AIR, HOT WATER, STEAM, ELECTRIC HEAT.
52. An example of a leguminous plant is the CLOVER, TOADSTOOL, PANSY, LILAC, MOSS.
53. A dynamo has as one of its parts a RESONATOR, CARBURETOR, ARMATURE, PISTON RINGS, CLUTCH.
54. The device in water or steam pipes for stopping the flow at any point is called a DAMPER, FAUCET, VALVE, SWITCH, STOKER.
55. The weight of moisture or water vapor contained in a cubic foot of air is called the ABSOLUTE HUMIDITY, DEGREE OF SATURATION, RELATIVE HUMIDITY, DENSITY, CONCENTRATION.
56. Escaping illuminating gas mixes with the air of the room by CAPILLARITY, DIFFUSION, CGHESION, GRAVITATION, CHEMICAL AFFINITY.
57. An ortanism that reproduces by means of spores is the MAPLE, AMOEBA, BREAD MOLD, SPONGE, EARTHMORM.
58. The flowers of the elm trees are pollinated by PEOPLE, WIND, ANIMALS, WATER, INSECTS.
59. Current is conduoted to and from the commutator by MAGNETIC POLES, BRUSHES, FUSES, INSULATORS, SWITCHES.
60. The handle of a skillet becomes not as a result of RESISTANCE, CONDUCTION, FRICTION, RADIATION, LATENT HEAT.
genteral science scale - form s -2.

Name \qquad City \qquad Sohool \qquad
Age : \qquad Yrs. \qquad Mos. Grade \qquad Date
 BUILDING". You can make each of these statements true by underlining the correct one of the five parts printed in large type. For

SCORE

 instance, in the statement "A fly is AN ANIMAL, A FISH, AN INSECT? A REPTILE, A BUILDING", It is plain that a fly can not be all of the five things in large type. A fly is an insect, so if you underline "AN INSECT" the statement will read, "A fly is AN ANIMAL, a FISH, AN INSECT, A REPTILE, A BUILDING". By underlining "AN INSECT" you have shown that you know what is correct. In the statement "The heart pumps BLOOD, WATER, OIL, AIR, SAND", "BLOOD" should be underlined.UNDERLINE THE PART IN EACH OF THE STATEMENTS BELOW WHICH WILL MAKE THE STATEMENT MOST TRUE.

GROUP I. (Average value 71.5)

1. Tuberculosis is prevented by MEDICINE, HYGIENIC LIVING, MASSAGE, OSteopathy, chiropractic.
2. Soil deposited at the mouth of a river is called a PENINSULA, DELTA, STRAIT, ISLAND, CAPE.
3. The normal temperature of a human being is 100 F., 104 F., 98.6 F., 93 F., 90 F.
4. Volcanoes are most likely to be found in DESERTS, COASTAL PLATNS, MOUNTAINS, DELTAS, ISLANDS.
5. The telephone was invented in 1876 by JAMES WATT, SAMUEL MORSE, ALEXANDER G. BELL, MARCONI, S.F.B.MORSE.
6. An airplane cannot remain in air when AT REST, IN MOTION, UPSIDE DOWN, GLIDING, DESCENDING.
7. The age of a tree is told by BRANCHES, RINGS IN CROSS SECTION OF TRUNK, HEIGHT, SIZE OF TRUNK, COLOR.
8. To treat a out use LIME WATER, IODINE, LINSEED OIL, SALVE, NOTHING.
9. The passage of the moon between the sun and the earth is called AN ECLIPSE OF THE SUN, FULL MOON, THIRD QUARTER, AN ECLIPSE OF THE MOON, WINTER SOLSTICE.
10. The home gas consumption is measured by a VELOCIPEDE, SPEEDOMETER, METER, GALVANOMETER, AMMETER.

GENERAL SCIENCE SCALE

GROUP I. FORM S -2 Cont'd.
11. The muscles are benefitted most by REST, HARD WORK, SYSTEMATIC DIET, PLAY, SYSTEMATIC EXERCISE.
12. The purpose of the mouthpiece on a telephone is TO CONCENTRATE THE SOUND WAVES, TO PROTECT THE TRANSMITTER, FOR SAN ITARY PURPOSES, TO KEEP MOISTURE FROM THE WIRES, TO PROTECT THE SPEAKER.
13. Soft coal is also known as ANTHRACITE, ASPHALT, LIGNITE, BIUUMINOUS, PEAT.
14. Oil is used in an automobile engine to COOL IT, CLEAR IT, LUBRICATE IT, BURN, SILENCE IT.
15. THe first electric incandescent lamp was made by EDISON, BURROUGHS, WATT, PRIESTLY, WESTINGHOUSE.
16. The process by which a plant is made to grow on the stem of another plant is PRUNING, SLIPPING, GRAFTING, SPRAYING, PLANTING.
17. Alcoholic fermentation is produced by MOLD, YEAST, BACTERIA, GERMS, AIR.
18. A stove radiates more heat when it is all BLACK, RUSTED, NICKEL PLATED, ALUMI NUM, SILVERED.
19. Animals which secure food directly from the bodies of other animals are PARASITES, HYDROPHYTES, MESOPHYTES, SAPHROPHYTES, SULPHITES.
20. Trees that have needles are called BIRCH, PINE, OAKS, GUMS, EVERGREEN.
21. Combustion is another name for DRYING, SHRINKING, BOILING, BURNING, MELTING.
22. The light from the moon is DIRECT, REFLECTED, INVISIBLE, ABSTRACTED, REFRACTED.
23. The covering of electric wires is called CONVENTION, RADIATION, ILLUMINATION, INSULATION, ISOLATION.
24. We pay for electricity by the WATT, AMPERE, VOLT, OHM, KILOMATT-HOUR.
25. The simplest independent living structure is the NUCLEUS, PROTOPLASM, CELL, EMBRYO, ATOM.
26. The device for protecting lights and motors from an overcharge of electricity is called a MAGNET, FUSE, SWITCH, BAROMETER? RECTIFIER.
27. The term induction is used most in connection with LEVERS, PUMPS, FALLING BODIES, SOLUTIONS, ELECTRICAL CURRENTS.
28. The act of transfer of pollen from an ther to stigma is called POLLINATION, REPRODUCTION, FERTILIZATION, TRANSPIRATION, MITOSIS, FILTRATION.
29. Limewater is used to test for CARBON DIOXIDE, OXYGEN, ALCOHOL, HYDROGREN, CHLORIDES.
30. Tuberculosis is contracted BY CONTACT WITH PATIENT, BY CONTACT WITH CLOTHING, FROM BACILLI OF SPUTUM, BY TAKING COLD, BY BATHING.
31. Humidity relates to DRYNESS, HEAT, COLD, FREEZING, TEMPERATURE.
32. The boiling point on the Centigrade thermometer is $0,32,100$, 120, 212.
33. The smallest of these things is the MOLECULE, BACTERIUM, PARAMOECIUM, DUST PARTICLES, ATOM.
34. Foods which contain nitrogen as a part of their chemical composition are called PROTEINS, FATS, CARBOHYDRATES, HYDROCARBONS, LIQUIDS.
35. The ovum or egg cell is produced in the KIDNEY, EMBRYO, OVARY, GAMETE, SPORAGIUM.
36. Electrolysis of water liberates hydrogen and CHLORINE, NITROGEN, CARBON-DIOXIDE, AMMONIA, OXYGEN.
37. Poisonsous products secreted by bacteria are called ENZYMES, ANTIBODIES, TOXINS, VACCINES, LEGUNES.
38. The centrifugal force of a cream separator separates milk from cream because the cream is LIGHTER, HEAVIER, THICKER, DFNSER, GREASIER.
39. Sewer gas is kept from entering a house from the sewer by a VALVE, TRAP, FAUCET, DAMPER, DRAIN.
40. A mirage is a kind of BODY OF WATER, OPTICAL ILLUSION, VISION, DESERT, WARFARE.
41. Sunlight oan be broken up into the speatrum by means of a MIRROR, LENS, PRISM, MICROSCOPE, COLOR-MIXER.
42. A general term for any living thing is PLANT, LARVA, ANIMAL, ORGANISM, MAMMAL.
43. The temperature at which pure water boils is effeoted by the HEIGHT OF THE FLAME, AMOUNT OF WATER, AIR PRESSURE, DENSITY OF THE WATER, DEPTH OF THE WATER.
44. The process of food manufacture in green plants is called RESPIRATION, MITOSIS, POLLINATION, PHOTOSYNTHESIS, PASTEURIZATION.
45. Fanning the body on a dry day produces a cool sensation because of MOVEMENT OF THE AIR, RAPID EVAPORATION OF MOISTURE INTO THE AIR, AMOUNT OF HEAT TAKEN FROM THE BODY, CREATION OF A DRAUGHT, PRESH AIR.
46. A food rich in carbohydrate is BEEFSTEAK, OLIVE OIL, CUCURBERS, WATERMELON, HONEY.
47. An example of a fungus plant is the ORCHID, PONDSCUM, BREADMOLD, MOTHER OF VINEGAR, INDIAN PIPE.
48. An anemometer is an instrument used by the weather bureau to measure the AMOUNT OF SUNSHINE, AMOUNT OF RAINFALL, AIR PRESSURE, WIND VELOCITY, ATMOSPHERIC PRESSURE.
49. Potential energy is energy possessed by an object by virtue of its WEIGHT, COMBUSTIBILITY, MOTION, POSITION, DENSITY.
50. The unborn young of an animal is termed the LARVA, EMBRYO, CHRYSALIS, OVUM, SPERM.
51. A star is really a COMET, SATELLITE, PLANET, SWN, LIGHT.
52. The greatest damage is done to trees by BIRDS, TORMS, LARVA OF MOTHS, GRASSHOPPERS, BEES.
53. All space is believed to be filled by AIR, OXYGEN, ETHER, HEAT, MOISTURE.
54. The main purpose of respiration is ENERGY-RELEASE, ELIMINATION OF CO_{2}, MANUFACTURE OF FOOD, SECRETION OF TATER, PURIFICATION OF AIR.
55. Substances without orystalline structure are termed INERT, DENSE, ELASTIC, OPAOUE, AMORPHOUS.
56. Open wounds should be bathed with a dilute solution of HYDROGEN PEROXIDE, ALCOHOL, SULPHURIC ACID, SODA, TOBACCO JUICE.
57. Heat is measured in DEGRRES, CALORIES, CANDLE PONER, KILOWATTS, GRAMS.
58. A ferment is another name for a BACTERIUM, ENZYME, TOXIN, VACCINE, SERUR.
59. One of the excretory organs in the body is the HEART, LIVER, SKIN, DUODENUM, SPLEEN.
60. Water expanda when raised above or cooled below OC., 40 C., 32 C., $4 \mathrm{C} ., 100 \mathrm{~F}$.

Name \qquad City \qquad School

Age: __Yrs.__Mos. Grade \qquad Date \qquad : Group 1: :Group 2: Below are statements, such as -"A fly is AN ANIMAL, A FISH, AN INSECT, A REPTILE, : Group 3: A BUILDING". You can make each of these : statements true by underlining the correct SCORE one of the five parts printed in large type. For instance, in the statement "A fly is AN ANIMAL, A FISH, AN INSECT, A REPTILE, A BUILDING", it is plain that a fly can not be all of the five things in large type. A fly is an insect, so if you underline "AN INSECT" the statement will read, "A $11 y$ is AN ANIMAL, A FISH, AN INSECT, A REPTILE, A BUILDING". By underlining "AN INSECT" you have shown that you know what is correct. In the statement "The heart pumps BLOOD, WATER, OIL, AIR, SAND", "BLOOD" should be underlined.

UNDERLINE THE PART IN EACH OF THE STATEMENTS BELOW WHICH WILL MAKE THE STATEMENT MOST TRUE.

> GROUP I. (Average value 71.5)

1. House flies lay their eggs IN WOOD, ON THE WATER, IN ANIMAL AND VEGETABLE WASTE, IN NESTS, IN THE SAND.
2. Distillation is a means of PURIFYING WATER, SECURING AIR PRESSURE, PUMPING WATER, TRANSMITTING WATER, SECURING HEAT.
3. The earth rotates on its axis once in 12 HOURS, 24 HOURS, 7 DAYS, 3 MONTHS, $365 \frac{1}{4}$ DAYS.
4. Wounds should be allowed to bleed A LITTLE, NOT AT ALL, UNTIL THEY STOP NATURALLY, A GREAT DEAL, QUANTITIES.
5. The yellow dust on a flower is CHLOROPHYLL, OVULES, PROTOPLASM, POLLEN, DIRT.
6. All our food comes directly or indirectly from ROCK, ANIMALS, PLANTS, AIR, MINES.
7. A dynamo is a machine for generating HEAT, LIGHT, ELECTRIC CURRENT, SOUND, MUSIC.
8. Ice cracks rock because IT IS COLD, WATER EXPANDS WHEN IT FREEZES, IT MELTS WHEN IT GETS WARM, IT IS HEAVY, IT IS BRITTLE.
9. When the child's first permanent teeth appear he is 6 OR 7 YEARS OLD, 12 YEARS OLD, 18 YEARS OLD, 20 YEARS OLD, 30 YEARS OLD.
10. The kidneys DIGEST FOOD, CLEAN BLOOD OF WASTES, BUILD UP NEW BLOOD CELLS, SUPPORT THE BACKBONE, ARE USELESS.

GENERAL SCIENCE SCALE
GROUP I. FORM T-2 Cont'd.
11. The path of a heavenly body is called its ORBIT, RADIUS, EQUATOR, LATITUDE, DECLINATION.
12. MOSOUITOES lay eggs ON SALT WATER, ON STAGNANT WATER, ON FRESH WATER, ON THE GROUND, IN GARBAGE.
13. The following gas is found in impure air: CALCIUM, GOLD, CARBONDIOXIDE, CARBON, SODIUM.
14. The purpose of flowers on a plant is to develop ROOTS, SEEDS, LEAVES, PERFUME, BRANCHES.
15. An eclipse of the sun is due to the position of the STARS, PLANETS, MOON, CONSTELLATIONS, MILKY WAY.
16. Black smoke from muffler indicates TOO MUCH AIR, TOO MUCH GAS, TOO LITTLE GAS, ENGINE TOO HOT, BROKEN CLUTCH.
17. Images are formed by the passage of light through a PRISM, HELIX? LENS, DIAPHRAGM, SPECTRUM.
18. The teeth should be examined by the dentist every HALF YEAR, YEAR, TWO YEARS, MONTH, TEN YEARS.
19. The purpose of the roots of plants is to TAKE IN OXYGEN, MANUFACTURE STARCH, GIVE OFF CO, TAKE IN SOIL WATER, GIVE OFF WASTE MATTER.
20. The best temperature for a living room is $60 \mathrm{~F} ., 68 \mathrm{~F} ., 75 \mathrm{~F} ., 78 \mathrm{~F}$. , 80 F .

T - 2. GROUP II (Average value 81.5)

21. On a curve, the tracks are HIGHER IN THE INSIDE THAN OUTSIDE, HIGHER OUTSIDE THAN IN, SAME HEIGHT, WIDER, NARROTER.
22. Water freezes at 0 F., 32 F., 42 F., 100 F., 98.6 F.
23. "Shooting stars" are properly called SUNS, ASTEROIDS, MOONS, COMETS, METEORS.
24. An illustration of capillarity is found in the IMK BLOTTER, THERMOMETER, BAROMETER, FORCE PUMP, EXCRETION OF UREA.
25. When a liquid contains all the dissolved substance possible, the condition is termed OSMOSIS, PERMEABILITY, FUSION, REDUCATION, SATURATION.
26. The separation of liquids and solids by evaporation and condensation is called SOLUTION, DISTILLATION, DIFFUSION, FUSION, TRANSPIRATI
27. An example of oxidation is the RUSTING OF IRON, ELECTROLYSIS OF WATER, MELTING OF ICE, ACTION OF ACID ON ZINC, HEATING POTASSIUM CHLORATE.
28. The corolla is made up of the PETALS, PISTILS, SEPALS, STAMENS, OVARIES.
29. The ampere is a measure of AIR PRESSURE, HUMIDITY, RESISTANCE, CURRENT, POTENTIAL
30. Ventilation is best secured with STOVES, HOT AIR FURNACES, STEAM HEATING, HOT WATER HEATING, ELECTRIC HEAT.
31. Rain is water vapor DISTILLED, EVAPORATED, CONDENSED, FILTERED? CONCENTRATED.
32. Isobars are used in TEMPERATURE, AIR PRESSURE, HUMIDITY, BINDS, GRAVITATION.
33. Water cannot be siphoned out of a boat because OF UNEQUAL AIR PRESSURE, OF UNEQUAL AMOUNTS OF WATER, OF ATTRACTION OF WATER PARTICLES FOR EACH OTHER, OF SUCTION, WATER IN BOAT IS TOO LOW.
34. The object to be photographed must be in the sun to ABSORB THE LIGHT, REFLECT THE LIGHT, BE SEEN, CAST A SHADOW, TRANSMIT THE LIGHT.
35. The hottest flame is BLUE, GREEN, WHITE, YELLOW, RED.
36. Cheese is rich in FATS, PROTEINS, QILS, CAPBOHYDRATES, WATER.
37. A collection of similar cells is oslled an ORGANISM, TISSUE, GLAND, MUSCLE, FUNCTION.
38. Heat is carried horizontally through air by CONDUCTION, CONVECTION, RADIATION, EROSION, TRANSMIGRATION.
39. A lifting crane gains power in doing work, by the use of THE WHEEL AND AXLE, THE LEVER, THE PULLEY, THE INCLINED PLANE, AN ENGINE.
40. The largest of the planets is VENUS, SATUPN, MARS, JUPITER, EARTH.
41. A ohimney on a lamp is FOR ORNAMENTATION, TO MAKE THE LIGHT MORE INTENSE, TO CREATE A DRAFT, TO MAKE THE FLAME BURN, TO SAVE OIL.
42. An example of a lever of the first class is found in the NUT CRACKER, SCISSORS, WHEEL BARROW, INCLINED PLANE, BICEPS MUSCLE.
43. The density of a solid is usually compared with that of AIR, HYDROGEN, WATER, LEAD, WOOD.
44. Pollen is produced in the OVARY, CALYX, STAMEN, STIGMA, PISTIL.
45. The ratio of the number of units of force applied to a machine to the number of units of force delivered by a machine is called EFFICIENCY, OUT-PUT, AVAILABLE ENERGY, MECHANICAL ADVANTAGE, WASTE.
46. An example of a chemical element is WATER, CARBON-DIOXIDE, MERCURY, AMMONIA, NITRIC ACID.
47. The cheapest food on the basis of calorific value is WHEAT FLOUR, BUTTER, MEAT, MILK, CELERY.
48. The foot-pound is a unit of ENERGY, WORK, DISTANCE, WEIGHT, CAPACITY.
49. The resistance a body offers to being set in motion is called MOMENTUM, FRICTION, COHESION, EROSION, INERTIA.
50. The best illumination or light for working or reading is DIRECT, REFLECTED, INDIRECT, WHITE, BLUE.
51. Refraction is studied in connection with SOUND, GRAVITY, FALLING BODIES, LIGHT, ELECTRICITY.
52. Gases enter and leave the leaves of plants through organs called STIPULES, ROOT-HAIRS, STOMATA, MICROPYLES, CHLOROPLASTS.
53. The nucleus isbelieved to play a prominent part in DIGESTION, RESPIRATION, HEREDITY, STORAGE OF FOOD, NERVE-CONDUCTION.
54. The general direction of the wind in front of a low pressure area is EAST, WEST, NORTH, SOUTH, NORTHEAST.
55. Petroleum is A CHEMICAL COMPOUND, A CHEMICAL ELEMENT, A MIXTURE, A PURE SUBSTANCE, AN IMPURE SUBSTANCE.
56. The vaccine used to prevent typhoid fever consists of BACTERIAL CELLS, HORSE BLOOD SERUM, ANTI-TOXIN, A CHEMICAL PREPARATION, ACIDS.
57. The part of the eye that regulates the entrance of light is the PUPIL, IRIS, RETINA, EYE-LID, LENS.
58. The distinguishing features of the mammals is the possession of BACKBONES, HAIR, TWO PAIRS OF LEGS, MILK GLANDS, NERVOUS SYSTEMS.
59. The attraction between molecules of a body is called CAPILLARITY, ADHESION, MAGNETISM, COHESION, CONVECTION.
60. Water rises in a suction pump because it is PULLRD UP, PUSHED UP, ATTRA CTED, REPELLED, SUCKED UP.

The method in brief consists in taking the number of errors Which the pupil makes in the third or hardest group of any Form, dividing this number by 2 to get "errors", and looking up in Key A (inserted at the end of this Chapter) to ascertain the score which corresponds to that number of "erross". This score worked out on the basis of a normal surface of frequency is the P.E. position of the pupil's achievement on this test if he made no "errors" in Group I and Group II and if he had attempted an infinite number of Groups all harder or more difficult than Group III.

Since the pupil usually makes "errors" in Groups I and II the next step consists in subtracting from the first score, called the "Uncorrected Score", the total of "errors" in Groups I and II. The third step consists in subtracting from the second score just ascertained and calkd "The first corrected score", the equivalent found in Key B (inserted at the end of this Chapter) of the number of "errors" found in Group I. This last amount subtracted is the amount which, determined on the basis of the normal surface of frequency, equals the number of "errors" the pupil would probably have made had he attempted to do an infinite number of Groups easier or less difficult than Group I.

This process of evaluating papers is not laborious. A point Which must be borne in mind is that failing to do one item correctly is counted as $\frac{1}{2}$ "error". The explanation for this may be had in a survey of Table VII which shows that in any group there are ten levels of difficulty one-tenth of one P.E. apart and that there are two items at each level. The General Science Forms
could be made up with thirty items each having ten items in a group, in which case failing one item would be counted as one "error" instead of one-half "error". As stated before, all computations were done on the basis of ten points per P.E. on a normal surface of frequency. Failing one item may be considered as failing one-half of one step equivalent to one-tenth of one P.E. It was thot advisable to have sixty items per Form rather than thirty beoause of the greater breadth of material and the greater reliability which would be possible if two items were used at each level of difficulty.

The following excerpt indicates the meaning of the pupil's score when evaluated by this method.-
"The scores yielded by these tests have no relation to percents. A score of 73 means that the pupil who makes it can answer questions or do problems of difficulty 73 and get one-half of them correct, or its equivalent. It also indioates that the pupil can answer questions or do problems of difficulty 63 and get three-quarters of them right. At the same time, if the pupil were given questions or problems of value 83, he would be most likely to get one-quarter of them correot. Throughout the soale the difference between any two points is equal to a similar distance between any other two points. For instance, the pupil Who gets 83 is doing just as much better than the pupil who gets 73 as the pupil who gets 73 is doing better than the pupil who gets 63".

Directions for finding pupil's soore.

In Appendix III are to be found the correct responses to each item of the three Soale Forms. From these sheets may be made a cardboard correcting stencil by cutting pieces of cardboard three inches wide and as longas the different pages of the Scale and by writing the correct responses in such position

1. Posey-Van Wagenen Geography Class Record Sheet. Ibid.
that each will be opposite the item for which it is the correct response, when held at either the right or the left of the sheet. The usual transparent stencil will also save much time in the marking of errors.
A.

Combining the errors in groups*
On each pupil's test paper and at the left of each incorrect statement enter " $\frac{1}{2}$ ". Combining the errors in groups for each pupil add the number of "errors" in Group $¥$ ', bearing in mind that each incorrect item is counted as $\frac{1}{2}$ "error". You have already noted these "errors" at the left of each item on the test paper. Enter this sum on the Class Record Sheet under "No. of Errors, Group I". Similarly, add the number of errors made on items 2140 (Group II) and enter this sum under "Group II". Likewise, add the number of errors made on items 41-60 (Group III) and enter this sum on the Class Record Sheet under "Group III". For example, a pupil failed on 9 items in Group I, 12 items in Group II and 17 items in Group III. This was counted as $4 \frac{1}{2}$ "errors" on the items constituting Group I, 6 "errors" in Group II, and $8 \frac{1}{2}$ "errors" in Group III, which are entered on the Class Record Sheet. In like manner enter on the Class Record Sheet the record of the errors of each pupil for each of the three groups.
B.

Uncorrected Score*

For each pupil note the number of errors entered under Group III on the Class Record Sheet. Using Key A, find the

[^3]corresponding score. Enter it under "Soore, Unoorrected". In the sample the number of errors is $8 \frac{1}{2}$ and in Key A the corresponding soore is $88 \frac{1}{2}$. We may oall these the "Uncorreoted Soores". They are the scores the pupils would receive if they made no errors on the two easier groups.
c.

Firat Correoted Score*

But most pupile will make errors in Groups I and II. Te therefore subtract them from the Unoorreoted Score, thus obtaining the "First Correoted Soore". Enter thie under "Soore, ist Correoted". In the example $4 \frac{1}{2}$ errore were made in Group I and 6 in Group II, or a total of $10 \frac{1}{2}$ errors. These are subtracted from $88 \frac{1}{2}$, giving 78.
D.

Final Soore*
Hote the number of errore each pupil made in Group I. Find this number on the firet line of Zey B. Under this number note the entry in line a of Key B. Subtract it from the Firet Correoted Soore; the result is the Final Score. Bnter it on the Clas Reoord Sheet under "Soore, Final". In the example the pupil made $4 \frac{1}{2}$ errors in Oroup I. The number under* $4 \frac{1}{2}$ "in Key B 1s 3 . Subtracting 3 from 78 gives 75 as the final soore. In making this correotion acoount is taken of the faot that a pupil Who makes several errors in Group I would probably make adtitional errors if he had still easier paragraphs to read. Key B gives the most probable number of errors that would be made on all easier paragraphs when the number of errors made in Group I is known.

* Adapted from the Posey-Van Tagenen Geography Soale Sooring and Instruotion Sheet

Key A (For use in obtaining the Uncorrected score)*

| When errors in
 Group III are. | $\frac{1}{2}$ | 1 | $1 \frac{1}{2}$ | 2 | $2 \frac{1}{2}$ | 3 | $3 \frac{1}{2}$ | 4 | $4 \frac{1}{2}$ | 5 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |\rightarrow

(Key A Continued)

$\longrightarrow \quad$| $5 \frac{1}{2}$ | 6 | $6 \frac{1}{2}$ | 7 | $7 \frac{1}{2}$ | 8 | $8 \frac{1}{2}$ | 9 | $9 \frac{1}{2}$ | 10 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 94 | 93 | 92 | 91 | 90 | 89 | $88 \frac{1}{2}$ | $87 \frac{1}{2}$ | $86 \frac{1}{2}$ | 86 |

Key B (For use in obtaining the Final Score)*

When errors in Group I are ..	交	1	$1 \frac{1}{2}$	2	$2 \frac{1}{2}$	3	4	$4 \frac{1}{2}$	5	
Take from First Corrected Score	0	0	$\frac{1}{2}$	1	1	$1 \frac{1}{2}$	2	$2 \frac{1}{2}$	3	$3 \frac{1}{2}$

(Key B Continued)

\longrightarrow| $5 \frac{1}{2}$ | 6 | $6 \frac{1}{2}$ | 7 | $7 \frac{1}{2}$ | 8 | $8 \frac{1}{2}$ | 9 | $9 \frac{1}{2}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| 4 | 5 | 6 | 7 | $8 \frac{1}{2}$ | 10 | $12 \frac{1}{2}$ | 15 | 20 |

SAMPLE CLASS RECORD SHEET*

[^4]
CHAPTER VII

RELIABILITY OF THE GENERAL SCIENCE SCALE

A. Composition of the Goneral Solence Soale

As has been stated before, the three final Forms of the General soience Soale oontain sixty itesseach. These three Forms of sixty items each were selected from the 300 items Which composed the original General Soience test. The question might arise why the particular items whioh compose the three Forms were selected in preference to the items which were discarded. Of the total number of 300 1tems, 180 1tems were retained and 120 items were discarded. The 120 items were eliminated and were not even used for the composition of additional Forms of the General selence test for three reasons. (1) The items of a Scale Form follow a regular sequence of steps or levels of difficulty one-tenth of a P.E. apart. Reference to Table VI shows that there was a large number of items near the middle of the range of difficulty, at about 8.0 P.E., With a dearth of items at elther extreme of the range. In order to have Soale Forms each with a range of 3 P.E., it was necessary to start one Form with 1 tems at 5.7 P.E. and two Forms With items at 6.7 P.E. This process took six items at each level of difficulty between 6.7 and 8.6 P.E., and as a result all the items at some levels had been exhausted. While 120 items still remained, they were not of suoh difficulty or value as to form even one sequence of sixty items over a range of 3 P.E. As had
been anticipated during the construction of the original General Science test, all of this original material could not be used. This was not a oalamity but was really quite fortunate.
(2) The elimination of certain items permitted a soientific seleotion of items. As has been stated in a previous Chapter, oertain objeotives of General Soience were to be kept in mind in the construction of the soale. No item was to be retained in the final Soale, the aohievement of which by pupils did not oontribute to the objectives of General Soience as previously outlined. It would have been deemed advisable to use material from but one specific soience if that material contributed most toward the objeotives of General Soience. In the writerts opinion, the soience material which contributes most towards the objeotives of General Solence is a mass of elementary, fundamental material which several decades ago might well have come under the heading "Natural Philosophy" or whioh today is classified by a number of research men in various fields of science as material which "commonsense" should make apparent. The frequenoy with which many of the items in the General Soience test were done unsucoessfully by high school pupils indicates the falla oy of the latter characterization, unless one were to assume a paucity of "commonsense". An analysis of the 180 items seledted for the Soale Forms results in a grouping of the following numbers of items under eight specialized sciences.

1. Chapter III

TABLE VIII

DISTRIBUTIONS OF ITEMS OF THREE SCALE FORMS UNDER EIGBT SPECIALIZED SCIB CES.

Number of Items

Sciences.......Forms R-1	8-3	T-2
1. Botany 4	6	7
2. Chemistry.............. 4	8	6
3. Domestio science 3	2	3
4. Geography* 3	7	8
5. Hygiene............... 15	5	5
6. Physios 20	21	23
7. Physiology 6	3	4
8. Zoology......................... 6	$\frac{8}{60}$	$\frac{5}{60}$

*Geography is considered in its widest sense -- including even Astronomy, Geology and Physiography.

While another person olassifying these same items might make a slightly different olassifioation than the one whioh is given above, the above olassification is an indication of the fairly uniform distribution of the items among the basio sciences. An item like "Flies lay their eggs IN NOOD, ON THE WATER, IN ANIMAL AND VEGETABLE WASTE, IN NESTS, IN THE SAND." might be olassed either as Zoology or as Hygiene. Irrespective of the solence to which it belongs, knowing it, contributes to "Health" and makes it a good General soience item. In connection with the olassifioation of General Science items, Webb's data* Which have been previously oited are a propos. * *See Ohapter III, page 8.
(3) It was found that some of the items inserted in the original General Science test were ambiguous or weak or not suffioiently objeotive. These items, therefore, were discarded beoause of their structural inefficiency.

Examination of many of the 1tems in the General Soience Soale shows that ordinarily some of them would be taught in as many as three or four specialiaed soisnces. "Capillarity", for instance, 1s legitimate subject matter for Physios, Chemistry, Botany, Agrioulture, Physiology and Zoology. Likewise the effect of air pressure (Boyle's Law) is usually legitimate subject matter for Physios, Chemistry, Domestio Soience and perhaps Blology. In other words, oertain subject matter is fundamental to several, specialized soiences. Usually teachers of these more advanoed and specialized soiences oan not take for granted the possession of these fundamentals by their students, therefore each teacher duplioates the instruction. This fundamental material in General Soienoe, besides being a prerequisite for more advanced soiences, fulfills the objectives of General Soience.

The subject matter of the original General soience test was oonsidered by General solence teachers to be so inclusive that twelve or more of them (in Minnesota) have asked for permission to include the General Soience test material in their course of study, subdividing it and using its various items as a skeleton for various parts of the course. Therefore, while it is underatood that other material might have been included in the Soale, it is believed that the material aotually inoluded, if it satisfies
other requirements, is sufficiently varied and sufficiently inclusive.
B. Correlation with original General Soience test.

In a previous chapter evidence has been presented which showed that the original 300 item test had considerable reliability, evidenced by its correlation with certain oriteria. The original test would therefore serve as one criterion for ascertaining the reliability of the final Scale. With that purpose in mind a number of the original 300 item papers, selected at random by taking the first 100 in each grade for the five grades of - Boys (8 th, 9 th, 10 th, 11 th and l2th grades), were rescored on the basis of Form S-2. That is, the oxginal 300 item papers contained the 60 items which now comprise the Form s-2. By counting up the errors on those 60 partioular items, taking reoognition of the group in which they belong (Group I, II, or III), the paper was given an S-2 Scale score, which indicated the pupil's achievement on the 60 items. The 300 item test scores were correlated with the S-2 Scale scores by the produot-moment method. The coefficients of correlation ranged from .81 to .93 for the five grade groups.

For $49-8$ th grade boys; test and scale scores r equals .87 -P.E. . 02

"	100	$-10 \mathrm{th}$	"	"	"	"	"	"	"	"	. 90	"	. 01
"	100	-11th	"	"	"	"	"	"	"	"	. 905	"	. 01
"	100	-13th	"	"	"	"	"	"	$\begin{aligned} & " \\ & " \end{aligned}$	$\begin{aligned} & \text { " } \\ & \text { " } \end{aligned}$	$\frac{.81}{.882}$	"	$\frac{.02}{015}$

* P.E. of r when r equals .882 , not a mean.

From these coefficients of correlation it is evident that if the original test had falr rellabllity, the abbreviated Form of the original test (Form S-2), having exceptionally high agreement with the original test, must, therefore, approximate the original test in its reliability. Evidence will be presented later that the Scale Form S-2 actually was more reliable than the original test. That these coefficients are not higher, is largely due to the errors of the test.
C. Correlation and agreement of test and Scale medians

Additional data obtained in the study of correlation between test and Scale are also significant. In Chapter VI it was indioated that when the rank order of difficulty for any item had been secured from as many as 215 papers, adding 215 papers did not materially change its relative position, as evidenced by a rank order correlation coefficient of .98 between a rank order on 215 and a rank order on 430 papers. In this part of the study it was found that by taking 100 papers in each grade group, the medians for the five groups of 100 papers each did not differ from the medians on as many as 500 papers by as much as an average of one-sixth P.E. of the distribution. The P.E.s of the medians of distributions having 500 cases with a P.E. of distribution of 22 were one point. The P.E.s of medians of the distributions having 100 cases with P.E.s of distribution of 22 were two plus.

On the following page is a tabulation of test and Scale medians.

SCALE S-2
On 100 cases A Sigma B Sigma C Sigma +8 Boys 155 .. 31.5 154 .. 26.7 80 .. 5.5 +9 " $162 \ldots 33$...... $165 \ldots 34$...... 81.5. 7.1 +10 " $168 \ldots 33$...... 173 .. $34 \ldots . . .84 \ldots .6 .5$ +11" $188 \ldots 28.5 \ldots . .190 \ldots 28$...... 89 .. 6.1

The coefficients of correlation between the medians of columns A and C and of columns B and C are . 993 and . 986 respectively. Further evidence of the marked agreement between the test and Scale scores is given in Figure II. It is clear from this figure that it would be possible to make up a table of scale values and their corresponding test values which would enable one immediately to translate a scale score into a test score and vice versa. In Figure II three systems of varying lengths of ordinates have been arranged in such manner that the extremes of all curves coincide. Lack of agreement among the three sets of medians must therefore appear in divergence of the central parts of the curves. Reference to these data will again be made in Chapter VIII.

D. Self Correlation

Since Scale S-2 and Scale T-2 were constructed to be of identical difficulty, both these Forms were given to a number of pupils to ascertain the agreement between them. School A (Stillwater, Minnesota) gave the two Scale Forms to 140 pupils who were taking General Science and had completed thirty weeks of the course. Results

follow.
SCHOOL A

Had four Forms of the Scale been given, or four repetitions of the same Form, r would have equallei .903*

The same Scale Forms were given to School B (University High School) pupils all of whom had been taking General Science for the first time for thirty weeks. Their results were:-

SCHOOL B

Had four Forms of the Scale been given, or four repetitins of the same Form, r would have equalled .93
P.E. of estimate equals
.6745 Sigma VI-ría
** P.E. of median equals $\quad .6745 \frac{1 \frac{1}{4} \text { S.D. Distribution }}{\text { NO. Cases }}$
Brown's formula.
r_{1} equals $\frac{N r}{1+(N-1) r}$ where N equals
number of repetitions, and r_{1} equals desired coefficient of reliability.

Had four repetitions been given r would have equalled . 915

These data show that as a device for measuring the pupils' achievement in General Science, the Scale Forms have fair reliability, as is shown by an average self correlation coefficient of .73 and an average P.E. of estimate of 2.2. As a device for measuring olass achievement in General Science, the Scale Forms are really very reliable, as is indicated by an average P.E. of medians of .9 and with close agreement of medians. Explanation of the difference of the medians on S-2 and T-2 is found in the case of Sohool A to be due to the fact that this school offers an exceptionally fine course in Biology which is elected by most pupils and therefore omits from its General Soience course as much biological material as possible. Because the items on Biology are not equally distributed in the Groups I, II, and III, failure on the Biology items in Group III Where they are of most value had a tendency to lower the scores in Scale Form T-2 for this group of pupils.
E. Correlation with intelligence test scores

Correlation of General Soience achievement scores on Scale

Forms S-2 and T-2 with the intelligence test scores was computed for two groups of pupils. In both groups the correlation ooeff1cient betweon intelligence test scores and General Solenoe Soale soores was high. For 90 cases from Central High Sohool, all of Whom had taken General Soience one year previous, the oorrelation between General Solence Scale scores and mental age in months from mental test soores (Haggerty Delta 2^{*}) was . 741, P.E. of . 03 . For 81 cases a similar coeffioient was .727, P.E. of .035. For the University High sohool group of 50 asses the ooeffioient of oorrelation between mental test scores (Miller Mental Ability Test** Form A) and the soores on the General Soience Soale Form S-2 was .603, P.E. of .O8. For the same mental test scores and the General Soience Soale Form T-2, r was .745, P.E. of . O5. For the same mental test soores and the average of the General Solence Soale scores for Forms $\mathrm{S}-2$ and $\mathrm{T}-2, \mathrm{r}$ was .633, P.E. of . 057.
F. Correlation between General Solence marka and Soale soores To compute the relationahip between General Soience Soale scores and the marks that the pupils received in General Soience, data mere used from three sohools. For Sohool A, the Central High Sohool in Minneapolis, data were available giving marks recelved in General Soience a year ago by 90 pupils and also Soale soores in Form S-3 made April 6th, 1923***. These data gave a oorrelation of $.50(.496)$, P.E. of .05 . Computed for 79 gases these data gave a coeffioient of oorrelation of . 47, P.E. of . O6. School B, Stillwater High Sohool, gave the Scales S-2 and T-2 April 18th, 1923 to pup11s who had taken General Solence for about 30 weeks. By uaing an average of the monthly marks given * M. E. Haggerty, University of Minnesota. Morld Book Company. ** T. S. Miler, Univeraity of Minnesota. World Book Company.
*** Data fumished by J. E. Bohan (Unpublished thesis).
by teachers for achievement in General Soience, the following results were obtained.

	S-2	T-2	Average $\mathrm{S}-2 \& \mathrm{~T}-2$	Marks*
Number cases	140	140	140	140
Median	92	86	88	85
Sigma	6.1	4.1	4.5	5.7
$\begin{array}{ccc}\text { r } & \text { equals } & .72 \\ " 1 & \prime \prime & .70 \\ " & " & .74\end{array}$	$\begin{array}{ccc} \text { P.E. . O3, between } \\ " & " & " \\ " & " & " \end{array}$	$\begin{aligned} & \mathrm{S}-2 \text { and } \\ & \text { T-2 " } \\ & \text { Average } \end{aligned}$	$\underset{n}{\text { Marks }}$ of $\mathrm{S}-2$ and $\mathrm{T}-2$	and Mark

Sohool C, the University High Sohool, had 58 pupils in two groups, all of whom had taken General Science from September until April 20th. Final marks were available for two oomplete quarters and were evaluated on the basis "A" equals 6, "B" equals 5 , "C-" equals 4, "C" equals 3, "C-" equals 2 , "D" equals 1 , and $"_{F}$ " equals - Results follow.

[^5]In view of the above data it is belleved that the General Bolence Bonlo Forme R-1, 8-3, and T-3 are even more relieble than was the original 300 item Oeneral Solenee test. Bealdes being more reliable, a Form of the saale aan be done by puplle of avorage oapaoity in 13 minutes, whereas the original test took one hour. The time required for aooring hae beos reduesd to a minimus. The probable error of a measuremont or eatimatior has been redues from 10 pointa on the original teat to a pointa on the 80 item Boale Forme by the elimination of unreliable itome from the Soale. Finally, eaoh unit of a Soale Form is exactly the equal of every other unit of the aame Bonle Form or of the other two fosle Forns.

Boale Forma S-3 and T-3 are of equal difficulty and are so oonatruated that a soore of 80 ia the median aohlavament for 9 ah grade puplle who have taken Goneral galence one year. Thie wae eatablished on the basis of the aollevenente of 1760 pupile. Boale Form R-1 is one P.E. or 10 pointe easier than $8-3$ or $\mathrm{T}-\mathrm{a}$. Tharafore the median aehlevenent for 9th grade pupile who have taken General Boience one year ia 90 . Beosuse of the known diffioulty of eaol Forn, the three may be used interohangeably to oheok up olase progreas in General solemoe from tern to torn, or they may be oombined to secure atill more socurate measuromente of olaes or pupil aohievementa.in General solence.
*Computed by either the formyla of (1) P.E. of eatimate equals , $674581 \mathrm{gra} x$ espare root of (1-ra), or (a) P.E. of estinate equals equare root of if time the mellan deviation.

CHAPTER VIII

COMPARATIVE STUDY OF ACHIEVEMENT IN GENERAL SCIENCE

In Chapter VII, under "B", data were presented which showed that based on approximately 500 papers in five groups of 100 each, in which the original 300 item tests were rescored on the basis of one of the Scale Forms, the coefficient of correlation between distributions of test and Scale scores ranged from .81 to .93 with a mean of .882. This would indicate that where distributions were used, distributions of either test or Scale scores would give approximately the same results, and that any statement made on the basis of test comparisons would have approximately the same justification on the basis of scale comparison, as indicated by the coefficient of correlation of .882. In "C", however, when grade medians on test and grade medians on Scale Form S-2 were correlated, they gave a correlation coefficient of over .99. These correlations mean that any comparison made on the basis of the test would, with reference to an individual case, receive only as much justification by the Scale, or vice versa, as is indicated by a mean positive coefficient of correlation of .882. Any group comparison, however, made on the basis of a median of test scores, would receive practically identical justification on the basis of a median of Scale scores, or vice versa, as is indicated by a coefficient of correlation of . 99 plus. In as much as rescoring approximately 9,000300 item tests on the basis of the Scale would be a laborious, time consuming process, and in as much as comparisons between the General Soience test and other oriteria were only
slightly inferior to those of the Soale and the same oriteria, it was decided to base the study of achievement on the scores which had been made available for the 300 item test. In other words, the development of the Scale Forms was necessary in order to prove that the original test was sufficiently accurate for measuring group achievement. The Scale Forms are a good oheck on the test medians. Since, however, for group comparisons the test medians give the same results and since, having been necessary for the Scale development, the test results were at hand, the Scale results need not for economy's sake be used for this part of the study.

The following paragraphs are disoussions of some of the comparative studies which have been made of the achievement in General Science as indicated by the 300 item test.
A. Comparison of group aohievement in individual sohools

To facilitate the treat ment and to increase the acouracy of data, results on each group were kept separately for each sohool. That is, all the data for the $-8 G$ were not only kept separately but were also subdivided according to sohools from which they oame. Thus it was possible to locate the result sor $-8 G$ for sohool A, B, or K at will. Furthemore, since each of the administrators of the twenty-two schools co-operating in this study desired to have data on the aohlevement for his school compared with the rest, it Was a matter of compilation of individual group results to formulate TABLE IX (RESULTS BY SOHOOLS ON THE FIRST 221 ITEMS OF THE GENERAL SCIENCE TEST).

These data were on the first 221 items which enabled the inclusion of practically 9,000 cases. To have compared achievement

TABLE IX
RESULTS BY SCHOOLS ON THE FIRST 221 ITFMS OF

	SCHOOLS	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	NORM＊
	No．Cases	14	15	39	52	12	57	18	17	38	33	26	42	46	13		15	41	14		28	65	18	608
5	Min．Score	55	70	65	60	65	20	65	45	50	50	60	65	50	70	60	65	45	55	60	35	40	70	20
星	1st Q．＂	72	76	80	78	77	65	79	77	80	68	85	77	76	92		＊ 92	61	83		＊＊ 76	74	85	74
－	Median＂	79	84	86	88	84	73	90	87	87	75	94	85	85	96	75	98	75	87	77	87	81	89	84
c	3rd Q．＂	90	89	95	94	100	81	99	93	95	84	104	100	93	100		106	83	92		107	88	96	94
1	Max．Score	119	99	114	124	114	109	124	114	119	99	129	134	109	119	89	119	104	119	94	134	114	109	134
	No．Cases	33	10	38	42	11	50	6	18	40	29	8	21	45	6	8	18	23	14	6	33	41	20	520
0	Min．Score	65	65	55	40	65	35	95	60	40	45	75	60	60	75	60	55	50	60	45	35	50	75	35
＋	Ist Q ．＂	86	77	87	88	84	62		86	85	71	86	84	78		65	75	79	71		93	80	91	79
\bigcirc	Median＂	95	84	96	98	100	75	102	93	98	85	92	97	89	92	82	92	92	82	87	102	93	100	92
（	3rd Q．＂	108	91	106	108	104	86		102	115	95	100	110	99	，	87	107	100	93	\ldots	117	102	107	104
1	Max．Score	129	109	129	124	109	114	114	114	139	109	104	124	159	129	109	134	124	114	119	159	129	124	179
	No．Cases	－		1	1	．	1		．		1	42		－	－	－	．	．	1	．	－	．	2	49
\％	Min．Score	\ldots	．	87	87	．	37	．	．	\cdots	87	60	．	\ldots	．	．	．	．	87	．	．	．	80	35
㫛	Ist Q．＂		．					．	．	\ldots	\cdots	87	．	．	．		．	．	8	－	．	\cdots	87	86
H	Median＂			87	87	．．	37		－	．	87	100	．．	．	．	\cdots	．	－	87	．	\cdots	\cdots	87	95 111
	3rd Q．＂	－	．		87	－						112	．	－	．	．	\cdots	．	87	．	\cdots	\cdots	94	111
$+$	Max．Score			87	87		37				87	134	．．	．	－	\cdots	－		87	．			94	134
	No．Cases			．	2		1	1	．	．	．	38	．	．	．	1	．	．	．	．	．	．		51
	Min．Score	．	－	．	95	\cdots	62	112	\cdots	\cdots	．	70	．	．		87	．．	．	．	．	\cdots		00	O
$\underset{\sim}{2}$	lst Q．＂	．	．	．	10	．	－	1	－	－	\cdots	98	．		．	－	．	．	\cdots				114	98
O	Median＂		－	\cdots	110	．	62	112	．	－	\cdots	110	\ldots	－．	－	87	．	．．	，				125	111
	$3 \mathrm{rd.Q}.{ }^{\prime \prime}$	．		．	－	．	\therefore	18	－	．		122	．	．	．		．	．	．				154	154
$\stackrel{+}{+}$	Max．score		＊		124	．	62	112	－			144	．			87	．	．	．				154	154
	No．Cases	8	11	50	115	．	63	4	－	42	10	46	196	11	18	3 60	77	173 45	8 7	11		37 35	$\begin{array}{r} 6 \\ 85 \end{array}$	815 35
\％	Min．Score	75	65	65	55		55	95	55	50	45	75	55	75	60	60	77	45	75	60		35	85	35
$\stackrel{\sim}{\square}$	1st Q．＂	85	79	87	82	－	79			77	59	93	79	87	84	$\stackrel{\square}{75}$	77	77	90	89		82	92	80
E	Median＂	92	87	95	92	．	94	102	70	90	77	104	88	90	89	75	77	88	117	105		104	92	100
9	3rd Q．＂	100	97	109	100		105			99	97	117	99	105	97 119	89	77	94 124	117	129		124	109	154
1	Max．Score	119	119	134	129	\ldots	154	109	119	134	114	139	144	129	118	89	77	124	129	128		124	109	154
	No．Cases	6		23	96	\cdots	39	．	\cdots	3	．	21	83	5	4	17	1	122	2	5 55		14 75	8 70	433 45
ω	Min．Score	55		60	70	．	45	．	．	80	．	65	65	85	6	47	102	83	110			88	89	85
＋1	1st Q．＂		．	92	93	．	71	．	\cdots	102	＊	87	84	97	77	47	102	93	115	92		100	113	98
\％	Median＂	107	－	108	104	\cdots	85	．	．	102	．	109	98	97	77			103				111	130	111
9	3 rd Q．＂			118	122	－	106	．	．	124	．	116	108	114	119	47	102	144	119	109		134	154	174
1	Max．Score	144		139	174	－••	154	．	．	124	．	144	149	114	119									
0	No．Cases	56	9	6	4	19	7	25	15	22	26	30	82	45	－	5	41	\cdots	6 80	2 100	$\begin{aligned} & 28 \\ & 75 \end{aligned}$	77	25 95	532
$\stackrel{3}{4}$	Kin．Score	65	110	95	80	60	85	90	65	65	80	70	75	80	．	55	100				107	99	110	93
$\stackrel{\text { H }}{4}$	1st Q．＂	100	120			94		108	99	94	92	94	93	105	．	99	120		110	107	125	109	123	117
と	Median＂	112	129	115	115	99	117	116	115	105	99	101	104	114	．	99	129				145	117	132	123
O	3 rd Q．＂	125	132	\％	19	130		120	120	116	112	110	114	122	－	144	164		119	114	169	164	144	168
＋	Max．Score	154	159	134	119	144	124	139	159	139	149	124	149	154		144	164	．						

＊In each case＂Norm＂is the composite of all pupils from all schools
coming under a single heading，as＂－8 Girls＂
＊＊Where number of cases，indicated by＂No．Cases＂，is less than 8，lst Q ． and $3 \mathrm{rd} Q$ ．are omitted as inaccurate．

TABLE IX
RESULTS BY SCHOOLS ON THE FIRST 221 ITEMS OF SCHOOLS
$\begin{array}{llll}\text { No.Cases } & 29 & 13 & 14\end{array}$ © Min.Score $85 \quad 110 \quad 70$ 21st Q." 117121102 Median" 136 127 121
$\begin{array}{llll}\text { Q } & \text { Mrd Q." } & 143 & 146 \\ + & 127 \\ & \text { Max. Score } & 164 & 164 \\ 174\end{array}$
$\begin{array}{lrrrr}\text { O 3rd. Q." } & 143 & 146 & 127 & 1 \\ + & \text { Max. Score } & 164 & 164 & 174 \\ & & 1 \\ & & & & \\ \text { No.Cases } & 44 & 9 & 38 & 227 \\ \text { Min. Score } & 45 & 65 & 70 & \\ \text { H lit. } & 90 & 99 & 93 & 8\end{array}$
$\begin{array}{rr}9 & 13 \\ 55 & 80\end{array}$
$\begin{array}{rrrrrrr}9 & 7 & 47 & 33 & 41 & 153 & 38\end{array}$

9	7	47	33	41	153	38
100	70	65	45	70	55	90
115	\therefore	94	89	93	95	107
125	122	110	110	107	111	117
129	\therefore	124	122	120	127	132

$$
\begin{aligned}
& \cdots \\
& 26
\end{aligned}
$$

$\begin{array}{lllllll}179 & 149 & 159 & 164 & 154 & 164 & 159\end{array}$

$$
7 \quad 12
$$

THE GENERAL SCIENCE TEST CONT'D.

$\begin{array}{lrrrr}\text { MrdQ. " } & 108 & 115 & 115 & 10 \\ \text { H Max.Score } & 144 & 124 & 129 & 14 \\ & & & & \\ \text { No.Cases } & 26 & 2 & 18 & 1 \\ \text { Min.Score } & 70 & 100 & 90 & \\ \text { Mst Q " } & 90 & & 112\end{array}$

$$
\begin{array}{lrrrrr}
\text { I Max.Soore } & 134 & 123 & 144 & 1 \\
\text { No.Cases } & 4 & 3 & 11 & \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{lllll}
\mp & \text { Max. Soore } & 144 & 149 & 112 \\
119 & 1
\end{array}
\end{aligned}
$$

$\begin{array}{cc} & \\ 38 & \cdots \\ 90 & \cdots \\ 07 & \cdots \\ 117 & \cdots \\ 132 & \cdots \\ 159 & \cdots\end{array}$

. 3	34	1	10
85	65	82	75
\ldots	105	.	101
. 127	135	82	115
	137	.	133
. 144	164	83	149

$\begin{array}{ll}80 & 115 \\ 92 & 127\end{array}$
92127

合

No.Cases
M, Min. Scoore
Mist Q."
"己 $\begin{aligned} & 1 s t \mathrm{Q} \text {." } \\ & \text { Median" }\end{aligned}$
न

TABLE IX RESULTE BY BCHOOLS ON THE FIRST 221 ITEMS OF

	SCHOOLS	A	B	C	D	E	F	G	H	I	J	\mathbb{Z}	L	M	N	0	p	Q	R	8	T	U	V	NORM
	No.Cases	8		3	40	2	11	4	3	20	4	31	81	1	-	3	18	1	4	-	16	46	14	309
$\stackrel{1}{2}$	Min. Score	115		120	45	130	110	120	D05	85	90	60	80	137	.	120	125	82	115	-	115	95	95	45
\%	Ist Q. "	137			118	.	122	.		109		115	114	-	,		139	$\dot{\square}$	35	.	122	127	114	119
-1	Median "	142		145	138	127	142	137	135	124	118	140	135	137	.	140	147	82	135	.	149	138	142	135
$\stackrel{+}{\square}$	3rd Q. "	165			138		162			152		150	146		.		155	\cdots	-	.	158	151	155	150
$+$	Max.Score	179		169	164	134	169	149	164	169	$1 \dot{5} 4$	184	304	137	.	159	189	82	159	**	179	184	189	204
0	No.Cases	32	4	23	105	5	18	7	10	27	17	34	57	28	6	1	3	55	5	4	\cdots	35	3	479
+	Min. Score	70	110	95	65	90	95	110	80	50	90	90	75	85	70	137	110	40	110	130	\cdots	80	120	40
-	1stQ. "	110		110	101	.	110	110	97	71	102	112	98	100	-	37	185	97	117	147	-	99	120	100
o	Median "	121	125	120	116	132	132	139	112	78	112	120	108	112	85	137	115	110	117	147	* .	107	132	114
$\stackrel{+}{\square}$	3 rd Q. "	137		135	129		140		120	89	125	131	119	145	130	137	129	221			\cdots	116	B	129
1	Max.Score	154	149	154	184	149	159	159	164	159	149	149	178	159	139	137	129	149	154	154	-	149	149	184
9	No.Cases Min.Soore	18 105	3 135	11 95	69 70	9 100	13 115	2 155	4 130	100	10	39 90	82	12 105	5 95	\cdots	\cdots	25 90	3 155	\cdots	\cdots	11	\cdots	300 65
5	Mnt.SOOR	105	135	95	70	100	115	155	130	100	65	90	85	122	9	.	.	113		.	.	735	\cdots	65 119
-	Median "	132	145	145 153	136	122 134	145	182	145	127	109	130	115	145	117	.	.	132	170	.	.	147	.	119 137
$\stackrel{\square}{-1}$	3rd Q. "	145		167	149	155	157	.	145	12	140	157	144	155	.	.	.	149	18i	-	.	155		150
1	Max.Soore	164	154	184	184	179	179	169	159	159	159	179	184	158	134	.	.	174	184	.	**	159		184
02	No.Cases	10	1	12	40	2	19	1	4	2		40	97	3	*	\cdots	18	6	12 105	2	38	6	20	323
H	Mn. Score	110	103	110	75	140	80	152	80	120		65	75	100	.	.	110	90	105		60	115	90	60
H	1st Q. "	120		130	100		100	.	.			110	102	17	.	.	123		117		1.3		125	107
\bigcirc	Median "	124	103	127	119	147	132	153	103	122		132	111	117	.	.	138	118	132	140	130	125	137	124
${ }_{5}$	3rd Q. "	130		137	135		150	-	.			144	137	-			137	124	140	144	142		148	137
$\stackrel{+}{+}$	Max.Score	144	102	149	184	154	164	152	179	134		154	164	134	.	.	164	124	149	144	174	254	184	184
	No.Cases	7	1	5	27		9	.	5	19	1	18	50	5	*	3	11	2	11		23	14	14	226
2	Min. Soore	110	247	135	100		90		115	110	123	105	90	125	.	105	220	13	135		130 140	115	115	90
8	18t Q. "				129		100	\cdots		127		129	128		.	35	139		160	137	15	137	127	130
0	Median "	145	147	147	140		127		137	134	122	137	145	1	.	5	143		167		180	152	132	142
$\stackrel{-}{\square}$	3rd. Q. "				155		145			163		160	160	89		139	184	144	184	137	189	185	140	158
+	Max.Soore	169	247	159	179		154		184	184	122	179	179	169	.	139	184				289	189	164	189
튼	No.Cases																							
\%	M1n.8core		05																					
咸	1stQ. "		53																					
\geq	Median "																							
告	3rd Q. "		O																					
5	Max.Soore		O4																					

on 300 items would have allowed the use of about two-thirds of the data or about 6,000 cases. Data in Chapter V show that 300 item results on the General Soience test and 221 item results on the same test agree to the extent of giving for a large number of the cases a product-moment correlation of .98. Therefore the comparative results by schools are as accurate for the 221 item test as they would have been had 300 items been used. They are in faot more aocurate in the oase of these data because of the additional 3,000 cases, the use of which was made possible by including the first 221 items of the test only.

These 9,000 cases included about 90% of all papers submitted. The 10% which had been eliminated were not used because (a) the pupils did not do as much as three pages in the original test, presumably because insufficient time was allowed for the test, (b) pupils had omitted necessary information such as their name, grade in school, and sciences taken, and (o) pupils (a small number) had misunderstood direotions and had written out correct responses instead of underling them, or had in some way falled to follow directions. These last mentioned papers could have been used but the scoring of them would have required individual reading of each paper rather than the use of the correcting stencil.

With reference to the first reason given for elimination, in an examination of time taken for the test and the score obtained, the writer found that there was no relationship between time and success in the test. Four hundred forty cases, over as wide a range of test scores as possible, were studied. The wide range of scores selected gave excellent conditions for securing a high co-
efficient of correlation. These data, however, gave a productmoment coefficient of correlation of .09 with P.E. of .03 between time in minutes and score achieved. This result is easily explained by the fact that the directions for giving the test (See Appendix II) stated that no time limit was to be used. Direotions of this kind would naturally cause pupils to work at comfortable rates rather than at maximum speed.

In Table IX each of the 22 schools, represented by a letter, has its results on the test in a column of its own. The last column labelled "Norm" is the composite of the 22 columns preceding, this composite being in the form of a single distribution rather than a median or mean of the results in the 22 columns. At the left are indicated the grades and subdivisions of the grades using nomenclature which has been used thruout this study, namely, sex, grade, and whether or not the pupil had taken General Science indicated by "-8 Girls" for 8th grade girls who had not taken General Soience and" +9 Boys" for 9th grade boys who had taken General Soience. Number of cases, minimum and maximum score, and first and third quartile and medion score for each group are self explanatory.

Examination of the Table shows that schools differ quite markedly in their achievements on this General Soience test. Also the fact that a course in General Science was taken gives the obvious results in all cases, namely, a higher soore for pupilsof any grade who have taken General Soience than for pupils of the same grade in the same school who have not taken General Sciencd. With regard to the latter result, some data will be presented later regarding the selective influence of General Science where the
subjeot is eleotive. With regard to sohool achievements, the difference is in part at least due to differences in native ability and in part to the kinds of courses which are offered in the different sohools. If the latter statement is really true, one of the valuable results of this study is to make avallable a device for measuring aohievement in General Soience, the use of which would be one of the first requisites in a study of the achievements in various courses in General Soience.

B. Overlapping

In securing the "norms" presented in the previous paragraphs, distributions of soores on the 221 item General Solence test were made. These distributions are presented in TABLE X (DISTRIBUTIOM OF SCORES OF 8970 CASES ON FIRST 221 ITEMS OF THE GENERAL SCIEMCE TEST) and are plotted in FIGURE III (A-E) -DISTRIBUTIONS OF GENERAL SCIENCE SCORES (FOR 221 ITEMS) FOR VARIOUS GRADE GROUPS TOTALING 8970 CASES. Survey of TABLE X shows a gradual shifting of the distributions toward the higher scores from the 8th to the 12th grade. The medians and percentiles for these same 8970 oases are given in TABLE XI (PERCENTILE SCORES ON FIRST 221 ITEMS MADE BY 8970 CASES). It is obvious that there is not only a gradual shifting of distributions and medians toward higher scores in the upper grades giving great differences, but that there are also sex differences and differences due to having had or not having had the subject. In like manner Table II (See page 47), FIGURE IV (A-C) -DISTRIBUTION OF GENERAL SCIEMCE SCORES (FOR 300 ITEMS) FOR VARIOUS GRADE GROUPS TOTALING 6053 CASES -, which gives the data

TABLE XI
PERCENTILE SCORDS ON TIRST 221 ITEISS MADE BY 8970 CASES

| PERCENTILE | 0 | 1 | 10 | 20 | 25 | 30 | 40 | 50 | 60 | 70 | 75 | 80 | 90 | 99 | 100 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | GROUP NUMBER

-8 Girls	6	30	47	65	77	74	77	81	84	88	92	94	97	104	123	134
-	815	35	56	72	77	80	83	86	90	94	98	100	104	112	132	154
-11	603	40	55	75	82	85	87	92	96	100	105	108	111	119	137	179
2	60	40	56	81	90	93	95	101	105	111	117	120	124	152	15 ?	169
2	479	40	63	87	96	100	103	109	114	119	125	129	133	143	165	184
+8 Girls	49	35		79	84	86	87	91	95							
$+9$	532	55	69	88	95	97	99	106	111	115	119	111	113	118		134
+10	435	65	76	91	99	101	103	108	112	116	120	123	124	133	155	169
+11	351	35	67	90	99	102	106	110	114	119	134	123	130	134	154	169
+12	323	60	77	95	104	107	110	117	124	129	134	187	141	150	165	178
-8 Воуs	520	35	43	66	75	79										
	433	45	56	76	82	85	88	93	98	103	101	104	107	116	145	179
-10	416	55	64	81	89	93	95	102	108	111		111	114	125	150	174
-11	366	45	72	94	105	109	112	118	134	130	1175	119	122	135	$15 ?$	169
-12	300	65	84	106	116	119	123	130	137	143	148	138	141	151	167	174
																184
+8 Boys	51	60		83	96	98	100	104	111	116	122					
	568	45	65	87	97	101	104	111	116	121	128	132	135			154
$+10$	441	50	70	92	102	107	110	116	122	127	134	137	131	144		194
+11	309	45	82	107	116	119	123	130	135	140.	147	150	154	153	175	194
+12	336	90	97	119	128	130	134	137	142	147	155	158	161	168	183	189
Jr.College	6	80				115			119							
Univ.	32	115		135	142	143	147	157	163	168	172	174				
2	248	105	119	140	150	153	155	161	164	169	173	175	177	183	194	204
	46	120		142	154	157	159	162	164	169	173	175	176	180		189
4	21	145		154	162	163	164	171	175	177	180	182	186	191		199
Teachers College	32	90		103	108	110	113	117	120	130	132	133	134	150		159

of Table II graphically, table Xil (PERCENTILE SCORES ON 300 ITEMS MADE BY 6053 CASES), and FIGURE V (A-H) - PERCENTILE DISTRIBUTION OF SCORES MADE ON 300 ITEM TEST BY GIRLS WHO HAD NOT TAKEN GENERAL SCIENCE, ETC, ETC - which presents graphically the data given in Table XII, all of these were made out for the - 6,053 cases who had completed 300 items on the General Soience test. Similar Figures $m i g h t ~ h a v e ~ b e e n ~ m a d e ~ o u t ~ f o r ~ t h e ~ 9,000 ~ c a s e s, ~ p e r c e n t i l e ~ d i s t r i b u-~$ tions, which are presented in Table XI. With the exception of the fact that the curves would have been smoother and uniformly nearer the form of percentile ourves for an ideal or normal surface of frequency, those Figures would have resembled Figures (a) to (h) V. To avoid unnecessary repetition they were omitted.

A glance at either table of distributions or of percentile distributions for scores on 300 items or on 221 items, will show that the medians varied from grade to grade and from group to group. To facilitate comparisons the medians for each grade and group on both the 300 item and the 221 item distributions, the medians have been plotted in FIGURES VI (MEDIANS BY GRADES ON FIRST 221 ITEMS OF GEIERAL SCIENCE TEST INVOLVING 8,591 CASES) and VII (MEDI* ANS BY GRades on 300 ITEMS GENERAL SCIENCE TEST INVOLVING 5,970 CASES).

In like manner fIGURE VIII (MAXIMUM, THIRD QUARTILE, FIRST QUARTILE AND MINIMUM FOR EACH GRADE AND GROUP BASED ON SCORES ON 300 ITEMS FOR 5,970 CASES) was constructed from Table XII. This Figure shows the minimum soore in each grade, first quartile score, third quartile score and maximum score. A similar figure could have been constructed for the data given in Table XI. In as much

TABLE XII
PERCENTILE SCORES ON 300 ITEMS MADE BY 6053 CASES.

SCORES
$\begin{array}{lllllllllll}\text { PERCENTILE } & 0 & 1 & 10 & 30 & 25 & 30 & 40 & 50 & 60 & 70\end{array}$ GROUP NUMBER

-8 Girl	50	29	54	84	94	99	103	109	11	119	125
-9	482	23	67	98	107	110	115	121	128	131	137
-10	513	60	72	107	116	118	122	129	135	140	148
-11	440	45	84	115	129	133	136	143	150	157	164
-12	347	84	99	129	139	145	148	156	162	169	177
+8 Girls	44	54	69	104	117	118	122	128	131	139	148
+9	437	50	89	113	128	132	137	144	150	157	163
$+10$	261	102	106	127	138	139	144	151	157	163	168
+11	197	63	104	123	138	143	147	151	158	165	174
$+12$	192	99	104	134	147	153	159	171	175	183	189
-8 Boys	400	50	59	87	101	107	211	120	137	133	138
-9	300	58	74	105	116	121	124	130	135	144	152
-10	289	84	89	116	126	130	136	143	150	157	165
-11	263	69	104	134	147	154	158	165	172	178	187
-12	210	104	130	152	165	168	173	181	190	196	203
+8 Boys	49	95	95	108	124	133	138	147	155	162	170
+9	430	75	78	117	131	138	142	152	162	168	179
$+10$	242	67	89	128	140	146	150	159	168	176	184
$+11$	143	54	110	151	166	170	172	183	188	194	203
$+12$	141	103	130	160	171	179	180	184	190	196	204
Jr.College		123				184			173		
University											
1...	9	190	175	$\begin{aligned} & 190 \\ & 198 \\ & 205 \end{aligned}$	$\begin{aligned} & 199 \\ & 210 \\ & 214 \end{aligned}$	$\begin{aligned} & 201 \\ & 214 \\ & 215 \\ & 212 \end{aligned}$	$\begin{aligned} & 208 \\ & 317 \\ & 316 \end{aligned}$	$\begin{aligned} & 219 \\ & 234 \\ & 219 \end{aligned}$	$\begin{aligned} & 328 \\ & 328 \\ & 329 \\ & 336 \end{aligned}$	$\begin{aligned} & 235 \\ & 232 \\ & 238 \end{aligned}$	$\begin{aligned} & 236 \\ & 239 \\ & 341 \end{aligned}$
	134	125									
		189									
		206									

$\begin{array}{llll}75 & 80 & 90 & 99-100\end{array}$

128	132	144	174	184
142	146	155	184	202
150	155	187	203	323
168	173	183	207	217
181	186	200	224	239
157	159	183	175	179
166	171	184	214	336
173	178	189	219	238
178	183	197	234	231
192	197	206	239	249
145	147	157	178	184
156	161	180	209	235
167	273	190	218	233
191	197	210	337	230
207	212	220	246	36
174	176	183	195	195
183	187	199	225	344
190	194	213	234	257
207	213	324	247	351
209	213	228	244	365
186				
237	238	343		246
341	244	249	264	274
242	344	347		368
258				

PERCENTILE DISTRIBUTION OF SCORES MADE ON 300 ITEM TEST BY GIRLS WHO HAD NOT TAKEN GENERAL SCIENCE.

PERCENTILE DISTRIBUTION OF SCORES MADE ON 300 ITEMS BY GIRLS WHO HAD TAKEN GENERAL SCIENCE

PERCENTILE DISTRIBUTION OF SCORES MADE BY BOYS WHO HAD NOT STUDIED GENERAL SCIENCE, ON 300 ITEM TEST.

PERCENTILE DISTRIBUTION OF SCORES MADE ON 300 ITEMS BY BOYS WHO HAD TAKEN GENERAL SCIENCE.

FIGURE V (e)
DISTRIBUTION OF SCORES MADE ON 300 ITEM TEST BY EIGHTH and twelfth grade pupils.

DISTRIBUTION OF SCORES MADE ON 300 ITEMS BY NINTH GRADE PUPILS.

PERCENTILE DISTRIBUTION OF SCORES MADE ON 300 ITEM TEST BY TENTH GRADE PUPILS.

PERCENTILE DISTRIBUTION OF SCORES MADE ON 300 ITEM TEST BY ELEVENTH GRADE PUPILS.

as this would have resembled Figure VIII, except in score locations, it was omitted.

Naturally at least three questions might be asked relative to the data and figures presented, namely,-

1. How reliable are the medians presented?
2. Are the groups of equal variability?
3. Are the differences noted between the medians of the different groups real differences?

The computation of the answers to these questions are too extended to be presented in detail, therefore a summary of each will be presented. To find any particular detail will entail small effort on the part of the reader.

1. The medians for both the 221 and the 300 item distributions are reliable. For the 300 item distribution the P.E.s of the medians range from .8 to 1.8 points*. For the 221 item distribution the P.E.s of the medians range from . 4 to 1.0 . In other words, Were these distributions extended infinitely, the ohances are even that even in the least reliable group the median would not vary by more than 1.8 points from that given in Table XII and 1.0 points from that given in Table XI. The quartile deviations for the twenty groups are likewise very constant, varying from $14 \frac{1}{2}$ to $22 \frac{1}{2}$ in Table XII and from 10 to $15 \frac{1}{2}$ in Table XI.

* P.E. of median equals $\frac{1 \frac{1}{1} P \cdot E \text {. of Distribution }}{\sqrt{N}}$

3. The variability of the groups decreases in the upper years. Seniors are less variable in their aohievement on the General Soience test, especially if they have taken General Soience, than are 8th grade pupils who have not taken General Soience. A course in General Soience tends to out down the variability in the test. Using the formula Variability of coefficient equals 100 Quartile Dev, the coefficient of Variability varies in the 300 item distributions from 12.7 for $-8 G$, the most variable, to 8.0 for $+12 B$, the least variable. In the 221 item distributions, the variability coeffioient varies from 12.0 for the $-8 G$ to 10.0 for the $+12 B$.
4. The differences between median achievements of the grades of any one group, as -Girls or + Boys, are all signifioant and real differences. Likewise the sex differences are real differences. In most cases the differences are from two to four times as large as they had to be in order to be signifioant and real differences. MoCall gives some formulae for finding the reliability of a Difference. Namely,

Sigma of Difference equals $\sqrt{\text { Sigma } 1^{2} \& \text { Sigma }} 2^{2}$ and Experimental Coefficient "

$$
\frac{\text { Difference }}{2.78 \times \text { Sigma of Difference. }}
$$

When, by the use of these formulae, the experimental coefficient equals 1 , MoCall states that the difference is real, that is, it cannot be the result of chance.

Since the computation and presentation of all the differences would be lengthy, the writer proposes to use these formulae to

1. MoCall, W. A. "How to measure in Education". The Maomillan Co. New York. 1922. Pp. 398-407.
compute a difference that will just give an experimental coeffioient of 1 . Then all differences which exceed the amount necessary just to produce an experimental coefficient of 1 , are large enough to be beyond doubt real differences and not the products of chance distributions.

In the answer to question (1) is found data which indicate that for the medians on 300 item distributions, the P.E.s of the medians ranged from .8 to 1.8 and for the medians of the 221 distributions the P.E.s ranged from . 4 to 1 . By taking the extreme oases in each of the distributions, we find that the sigma differences for the 300 item distributions range from 1.8 to 3.8 and for the $22 l$ item distributions range from .8 to 2.2. Using MoCall's second formula so as to have the experimental coefficient equal 1 - for the minimum sigma difference of the 300 item distribution this 1 equals Difference, then Difference equals 5.2. That 2.78×1.8
is, for the distribution having the lowest P.E. of the median, namely . 8 and a sigma difference of 1.8 , a Difference of 5.2 gives an experimental coefficient of 1 . This coefficient indicates with practical certainty that the difference is not a result of chance distributions in two series. Repeating the above process for Sigma Differences $3.8, .8$, and 2.2 , it is found that to secure an experimental coefficient of 1 for all the 300 item distribution differences of medians, the difference must range from 5.2 to 10.5. For the 221 item distribution differences of medians, the difference must range between 2.2 and 6.1.

Examination of the actual differences of medians shows, as stated before, that the differences are real differences and not
due to chance even in the oase of the four groups in the same grade. When the differences found between medians of the same group, two or more grades removed, are considered, the experimental coefficient beoomes as much as 6 times as large as it need be to eliminate all chance errors of acoidental distributions.

From the above examination it is evident that tho the differences between grades are not due to chance they are small, and that in each grade there is a certain appreciable percent of pupils who fall below the median of the grade just below, and also an appreciable percent of pupils who fall above the median of the grade next higher. Perhaps the most striking illustration of overlapping is to be found in Figure V (2) -8 th and 12th grade pupils. This Figure shows that from 4% to 40% of the 8th grade pupils' scores were above the median for the -12 G1rls, 2 to 20% of the 8 th grade pupils' scores were above the median for the +12 Girls, while 3% of the +8 Boys were above the median for the -12 Boys. In fact it was impossible to find any grade group which does not overlap considerably with each of the other grade groups. This illustration is of the extreme case, for it involved the 8 th and 12 th grades, the widest range of grades. For two adjacent grades the overlapping is even greater.

C. Numbers_of soiences

Since there are significant differences among the achievements of the different grade groups, all of which are in favor of the higher grades and also in favor of the pupils who had studied

General Science, the question arose as to the probable causes of greater achievement, other than the fact that the pupil had taken General Science. This was an important question in as much as the Figures and data show a constant growth of achievement whether pupils take General Science or not, the only difference being in the relative amounts of the growth.

It is important to note that the median of the +12 Girls is only 13 points or a little less than 1 P.E. of the distribution above the median of the -12 Girls. (See Table II, XII, and Figures $\mathrm{V}(\mathrm{a}-\mathrm{h})$, VII, VIII) Likewise note may be made that the median of the +12 Boys was identical with the median of the -12 Boys. The latter, however, was due largely to chance, as it was not in the 221 distributions and was the only case of its kind. In the Tables and Figures of the 221 item distribution, the median of the $\& 2$ Girls is 10 points or slightly less than 1 P.E. of distribution above the median of the -12 Gtrls , and the median of the +12 Boys is only 5 points or $\frac{1}{2}$ P.E. of distribution above the median of the -12 Boys. Further, the amount of inorease of achievement as noted by medians is 30 points between -8 Girls and -12 Girls, and 40 points between -8 Girls and +12 Girls, For the boys the difference between median of -8 Boys and -12 Boys is 45 points, and between -8 Boys and +12 Boys 50 points, when based on the distribution Table XI. Similar data for 300 item distribution Table XII show that the difference between the medians of -8 Girls and -12 Girls is 48 points, between -8 Girls and +12 Girls is 61 points, between -8 Boys and -12 Boys is 63 points, and between -8 Boys and $+1 z$ Boys is 63 points.

The decided differences of achievement, on the part of pupils Who had not taken General Science and have reached the lath grade, over the respective medians of their 8 th grades has at least two explanations.
(1) Soiences other than General Soience taken by the pupil have accounted for this growth.
(2) Elimination of the less oapable pupils might acoount for an apparent growth. The latter explanation, however, is subject to two criticisms - (a) The correlation between scores and time of doing the test, which usually has a positive correlation with intelligence test scores, was practically zero, and (b)ikewise the correlation between chronologioal age and scores was near zero. Both these correlations show that the less capable pupils were in the group taking the test, at least in some numbers.

In order to ascertain to what extent other sciences contributed towards the achievement of pupils who had not had General Science, the number of sciences which the pupils had taken were counted for 5,970 cases. Table XIII (NUMBER OF SCIENCES PER STUDENT FOR 5742 CASES) gives the distribution of the pupils in the twenty grade groups and the number of the soiences, which these pupils had listed on the first page of the original test in General Soience, completed by each pupil. At the right of the Table in the colum headed "TOTAL" is the actual number of soiences, eaoh taken for one year, or "soience years", which were taken by the group listed at the left. Thus 582 is the sum of 49 times zero plus 206 times 1 plus 176 times 2 plus 8 times 3 , or the total number of times any soiences were taken by all of the 439

NUMBER OF SCIENCES PER STUDENT FOR 5742 CASES
NUMBER OF SCIENCES PER STUDENT

girls. Likewise, 233 is the sum of 163 times 0 plus 186 times 1 plus az times 2 plus 1 times 3 , or the total number of times any soiences were taken by all of the 372-8 Boys. On the basis of Table XIII, Table XIV was constructed. It gives the mean number of soiences per pupil in each of the different grade groups.

TABLE XIV

GROUP

- G1rls
+Girls
$2.43 \quad 2.38$
GRADES
.63
. 56
1.10
1.82
2.8
- Boys
1.90
1.55
2.10
3.83
3.84

Un1versity(I) 3.22 .(II) 3.82.'(III) 4.22.(IV) 4.83
Table Xiv - Mean number sciences per pupil in the various grades AND PER \mathbb{Z} IIVERSITY STUDENT IN FOUR GROUPS.

Thus 582 divided by 439 equals 1.32 or the mean number of soiences per pupil in the -8 Girls' group. Likewise, 233 divided by 372 gives .63 or the mean number of soiences per pupil in the -8 Boys' group.

FIGURE IX (MEAN NUMBER SCIENCES PER PUPIL IN EACH GRADE BASED ON 5,970 CASES) is a graphic representation of Table XIV. It is worth while to notice that girls uniformly are oredited with a higher mean number of soiences than are the boys of similar olassification. That is, girls without General Soience have a higher mean number of soiences per pupil than boys without General Soience in the same grade, and girls with General Solence have a higher mean number of sciences per pupil than boys with General

Soien oe in the same grade. This would seem to indioate a fallagy in the commonly acoopted theory that girla take fewer sciences than do boys. It would also give a olue as to the reason for the growth in General Soience achievement as indioated by the median scores on the test for each grade. That is, -12 Girls are only 12 points lower than the +12 Girls beoause the -12 Girls have taken practioally three sciences (2.92) by the and of their twelfth year. The duplication and overlapping of the courses themselves have practioally made up the handioap of not heving had General Soience In the 8 th or 9 th grade.

It is also worth while to notioe that when either the - and + Girla or the - and + Boys are considered, the mean number of soiences in each grade for the plus group is simply greater by one than is the mean number of soiences of the minus group. In other words, the number of soiences for -8 Girls is 1.32 while for the +8 Girls it is $2.43,1.11$ greater. The number of soiences for the $-9,-10,-11$, and -13 Boys is $.56,1.10,1.82,2.8$ respeotively, While for the plus boys of the same grades the mean number of soiences is one greater, or $1.55,2.10,2.83$, and 3.84 . This shows that one reason for the larger soores in each grade group With General Soience is the fact that those pupils have had General Solence, for the difference in the mean numbers of soiences is 1 -namely General Solence. It also shows that the pupils taking General Soience are not stimulated to any greater extent in the election of soience courses than are the pupils who have not had General Soience. As a means of interesting pupils in solence, therefore, General Solence does not necessarily auoceed.

The numbere of pupils taking 0 and 1 aeience in each grade is an indioation of the ourrent apathy for solence ourses on the part of a high sohool population.

It might, however, be worth while to notice a posalble fallacy in the above atatement may 110 in the matzor of "requirad" solenoes and in the ourrent acience offeringe in the 22 sohools studied. That is, many sohoola require one or more solences unless the pupil astiafies some other oonditiona whioh relieve hin from taking solence oourase. If one or two solences were required, of whioh one might be Goneral soience, then the mean number of soienoes per pupil, being larger for pupila having taken General Solenoe, would indioate that Gonernl Solenoe did have some drawing power for further solence oourses, in se muoh as the pupil need not have taken extra solence ourses after having astiafted the solence requirements - but whioh many prooeed to do as indicated by the mana. Furthermore, fow sohools offer more than three solence oouraes; many only offer two. Qlanoing at Table सIIT, it is evident that with the exoeption of the 8th and gith gratab, thare pupils have not had time to take more than three solences, the oolums of a and 3 solences maintain the la rgest peroantage of pup11e.

A brief study of the aohlevemont of 150 saniors, s11 of whom had had five or more eciences, showed that in achlevement on the Genersl solence test they ranked ae followe (given on next page)

SCORES No.CASES

$$
\begin{aligned}
& \text { 150-159 } 4 \\
& \text { 160-169 } 14 \\
& \text { 170-179 } 22 \\
& \text { 180-189 } 24 \\
& \text { 190-199 } 25 \\
& \text { 200-209 } 22 \\
& \text { 210-219 } 17 \\
& \text { 220-229 } 16 \\
& \text { 230-239 ? } \\
& \text { 240-249 } \\
& 5 \\
& \text { 250- } \\
& \text { Total: } \\
& \frac{4}{150}
\end{aligned}
$$

It is to be remembered that score 175 is in the 50 percentile for the achievement of +12 Girls. One hundred twenty-one or 80% of these seniors with five soiences were in the upper half of the distribution of +12 Girls.

Reference to the relatively larger number of sciences per pupil on the part of the girls and their relatively lower achievement on the test as compared with boys, prompted an analysis of the aotual sciences taken by different groups of pupils.

TABLE XV (FREQUENCIES WITH WHICH DIFFERENT SCIENCES WERE TAKEN BY 5742 STUDENTS which shows the frequencies with which different soiences were taken by 5,742 pupils in the five grades, leads one to conclude that the higher mean number of sciences per pupil, for instance of the +9 Girls over the +9 Boys, is due to the fact that relatively larger numbers of girls take Physiology than do boys, and that a high peroentage of girls take Domestic science, which is seldom taken by boys. In as much as the difference in the mean number of sciences per pupil at any grade is comparatively small (about $\frac{1}{2}$ a soience per pupil in favor of the girls), when either -Girls and -Boys or +Girls and +Boys are considered, this latter explanation seems quite feasible. There

TABLE XV

FREOUENOIES WITH WHICH DIFFERENT SCIEITCES WERE TAKEN BY 5742 STUDENTS.

Student No. Gen.Chem-Phy- Physi- Bot-Zool-Physio Bio-Astro-Dom.Total Groups Cases Soi.istry sios ology any ogygraphy logy nomyssoi. Frequ'oy

is a relatively small number of items in the test which would be answered by Domestic Soience training.
D. Differences in Aohievement due to initial possession In ordinary practioe the teacher of General Solence, like the teacher of many other secondary sohool subjeots, frequently meets his or her olass for the first time on the opening day of school. The teacher's assignment is to take that class in the following nine months, and to teach it as much General Science as he or she is capable of teaching the olass or as the class is capable of being taught. At the end of every month and at the and of each quarter, semester, or year, this teacher has to assign ratings to each pupil which are to indicate the amount of accumulated information and knowledge whioh the pupil has aohieved in General Soience, in the teacher's opinion. Frequently the teacher knows nothing of the abilities of the various members of the olass. The olass may be composed of individusls with various levels of so-called "native ability" or "intelligenoe", whioh is known to have an important function in the speed and amount of learning of which the pupil is capable. Irrespective of this, at the end of the year or at the end of each quarter or semester, the rating assigned by the teacher on General Solence is supposed to be indicative of the amount the pupil has profited by instruction, regardle sa of his ability to learn.

In a more modernly organized school the class to thioh the teacher is assigned may have been seleoted on the basis of mental tests and may therefore have comparative homogeneity of ability. Modern teohnique has triumphed and the teacher sets forth to do
the best he oan with the class. Results have shown that a homogeneous olass selected on the basis of intelligence teste 18 oapable of more efficient progress on the part of all its members than a heterogeneous olass. Few administrators have gone beyond this new step in modern educational administration. A fer of the more daring investigators have attempted to secure ratings on the aohlevement tests for pupila before they have begun their study of the subject. Similar ratings at the olose of a year's study of the subject have shom that not all of the pupils' uaual rating in a subjeot at the end of a quarter, semestor or year is due to his study of the subject. In other words, it has bean suggested that the pupil's final achievement in a subject may be conditioned by his starting point. Pupile entering on their atudy of General solence enter the class, not only with differenese in mental abllities but also with various amounts of the subjeot matter of General Solence already in their possession. That teacher of General Solence has not been amazed at the apparent ease with Whioh many 8 th and 9 th grade boys are, during the present radio oraze, talking of "tuning oolls", "oondensers", "'B' batteries", "wave lengths", "peanut tubes", "variometers" and so forth,-subject matter and vooabulary whioh ten years ago was oommon only to the advanced student of Physios. It is easy to imagine the disdain with whioh these boys would listen to a dissertation by a not overly expert teacher on a simple subjeat suoh as "a fuse" or "a magnetic oo11" or a "knife switoh" -- subject matter and vooabulary whioh to oertain other mambers of the olass seem most complex because of their lack of previous information.

A study of the 8th grade scores made on the General Science test by boys and girls who had not had General Solence and of the scores of llth rand lath grade pupils many of whom had had several specialized sciences, shows considerable overlapping. Reference to Figure $\mathrm{V}(\mathrm{e})$ shows that 25% of the -8 Boys do as well as 3 to 50% of the lath grade boys who have had a mean number of 3.34 sciences per pupil, including General Science. Twenty-five peroent of the -8 Girls do as well as 8 to 50% of the lath grade girls who have had a mean of 4.16 sciences per pupil, including General Science. The fact is also apparent that only 50% of the l2th grade pupils in either group exceed the soores made by the best 8 th grade pupils who have not had General Soience. Likewise only about 25% of the 8 th grade pupils who have not had General Soience do poorer work on the General Soience test than the poorest lath grade pupil. It is easy to understand some of the class problems if in that class are to be found several boys or girls who belong to the upper level of the 8 th grade group just desoribed. It is also possible to realize how little some of the better pupils are really able to achieve in a olass of this kind when the subject matter of that course is already largely in their possession.

In accordance with the findings of this study, it is the Writer's purpose to suggest that pupils be divided for the purpose of olass instruction on the basis of the amount of the subject matter of General Science already in their possession rather than on sheer mental ability. Of course the ideal condition -- the most commendable class room situation in a sohool
large enough to permit it -- would be that pupils for the sake of homogeneity in teaching be divided on the basis of inftial amount of subjeot matter already in their possession and also on their ability further to aoquire subjeot matter. This suggestion is further strengthened by reference to Figure $V(b)$, whioh shows that 50% of the -8 Girls exceed 17% of the +8 Girls and 8% of the +9 Girls in aohievement. Likewise 10% of the -8 Girls exceed. 67% of the +8 Girls and 40% of the +9 Girls in achievement. It must be borne in mind that whatever the amount of percent of -8 Girls that exceed or even equal achlevements of +8 or +9 Girls, this amount or percent tends to represent the amount of effort wasted in their teaching.

It may also be added that the General Soience test given before pupils have begun the study of a subjeot, gave a correlation of .62 between test scores and school marks for the first two quarters. This would seem to indicate that the amount that pupils know of a subject before studying it is an important factor in conditioning the school mark which they will receive in that subject when they study it.

Reference to Figure VII shows that whereas the median for -8 Boys was 127 and the median for -8 Girls was 114 or 13 points less, the median for +9 Boys was 162 and for the +9 Girls was 150 or 12 points less. That is, initially the boys exceeded the girls by 13 points and one year later (basis of the 9 th grade scores) the boys still exceeded the girls by 12 points or practically the same amount by which they had exceeded the girls before instruction. In the 10 th year the medians were 157 for the plus
girls and 168 for the plus boys, or 11 polnts better. In the llth year the median score for plus girls was 158 and for plus boys 188 , or 30 points better. Reference to the mean number of soiences per pupil shows that between the 10 th and the 11th year the increase in the mean number of sciences per pupil is greater by about one-fifth science for the boys. Reference to Table XV shows that 88 of the plus 11 boys or 61% had taken Physics or Chemistry, while only 67 or 34% of the girls had added these so-called "harder" soiences to their possession. In the 12th year, when each group had added praotically a whole soience to its mean, the median for the +12 Girls was 175 while for the +12 Boys the median was 190, a difference of 15 points. Thruout this comparison it is evident that differences in grade medians, after the subjeot was studied, are dependent to a large extent on differences of grade medians before the study of the subjedt พas begun.
E. Comparison of 8 th and 9 th grade achievement

It is possible to compare the achlevement on the 221 item and on the 300 item test for 100 pupils (50 boys and 50 girls) Who took General Soience in the 8th grade of the Junior High Sohool. These data may be significant.

221 1tem test

| Median Scores of | -8 Group | +8 Group | +9 Group | -9 Group |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Girls $\ldots \ldots \ldots \ldots$ | 84 | 95 | 111 | 90 |
| Boys $\ldots \ldots \ldots \ldots \ldots$ | 92 | 111 | 116 | 98 |

300 1tem test

Median Soores of \ldots	-8	Group	+8 Group	+9 Group	-9 Group
G1rls $\ldots \ldots \ldots \ldots$	114	131	150	126	
Boys $\ldots \ldots \ldots \ldots \ldots$	127	155	162	135	

It is signifioant to note that +8 Girls do better in the test than efther the -8 Girls or -9 Girls but not so well as the +9 Girls, and that the +8 Boys do better than the -8 Boys and the -9 Boys but not so well as the +9 Boys. When, however, the difference between the -8 and the -9 grade groups (the amount due to growth without General Science) is added to the +8 grade mediam for the boys the total is almost identical with the +9 Boys' median, while for the girls it is slightly less than the -9 Girls' median. In as much as +9 pupils owe their soore to the sum of their progress without study of Cenaral Solence plus their progress with study of General Solence, it would seem that the 8 th grade pupils profited equally as muoh by instruction in General Soience as did the 9 th grade pupils. Knowledge of this is eapeoially of value in the construotion of a oourse of study for a Junior High School.

F. Sex differences

In the tabular and graphic data presented so far it has been evident that a more or less uniform difference exists between the achievement in General Soience of boys and girls for the plus and minus groups. This difference in test medians between boys and girls was in favor of the boys, as indicated in the following tabular statement.

THE AMOUNTS BY WHICH BOYS' MEDIANS EXCEED GIRL'' MEDIANS ON 300 ITEM DISTRIBUTIONS.

GRADE

	8th	9 th	10 th	11 th	12th
Plus Group	24	12	11	30	15
Minus Group	13	11	15	22	28

It has previously been demonstrated that the maximum difference of medians on the 300 item distributions, which is necessary just to eliminate all chance errors of its not being a difference, is 10.5 It is evident that the above differences all exceed 10.5 and are therefore actual differences. Similarly examination of Table XI will show that medians for the boyst groups exceed medians for the girls' group by an amount greater than 6.1 which is just necessary to eliminate all ohanoe errors of its not being a difference.

G. Annual growth in achievement

The optimistic teacher will probably be astounded by the statement that the amount of aohievement, as measured by a Scale, due to a year's work or study in a subject results in relatively smaller gains than even the more conservative teacher would estimate. When the amount of annual growth is computed on the basis of median scores on the General Science test, we find that the differences between -8 Girls and +9 Girls and between -8 Boys and +9 Boys (the only two places in this study where a comparison of this kind would be safe) are 36 points and 28 points respectively When quartile deviations are 14.5 and 17 for the 8 th and 9 th grade girls and 19 and $22 \frac{1}{2}$ for the 8 th and 9 th grade boys.

When the difference between - 8th grade pupils and +9 th grade pupils is computed on the basis of Scale points or P.E. values based on item difficulty, the difference due to instruotion is considerably less. Reference to Figure I shows that the 8 th grade median, which is the average of the medians for the -8 Girls and the -8 Boys, is 7.451 P.E. above the arbitrary zero. The 9 th grade median, based on the average of the medians of the +9 Girls and the +9 Boys, was 8 P.E. above the arbitrary zero. The difference due to one year's growth and teaching was found to be . 539 P.E. or about 5.4 Scale points. This difference corresponds fairly closely with differences found by Doctor Van Wagenen in his studies of History, Geography and English Composition* He reports that about . 6 P.E. or 6 Scale points is the median amount of growth to be expected from one year's teaching. This may be at least partly explained by assuming that there are hierarchies of ideas or conceptions deveoped in the leaming of any subject material other than mere routine memory work. That is, it is impossible to teach or to understand a complex, difficult idea or conception apart from the basio facts, ideas or conceptions which underlie it. Thus it is impossible really to understand the working principles of a suction pump without first understanding the principle of air pressure. Nor is it possible to teach or to understand respiration without first teaching or understanding oxidation. The understanding of heredity requires some understanding of reproduction and of cell structure. It is apparent that if one measured the progress made in any course by the number of really complex ideas or conceptions acquired,

[^6]the progress would necessarily be smaller than if one measured it by the number of illustrations or of the sub-ideas of these complex conceptions. If a scale of complex ideas or conceptions is constructed in such a way that the unit of measurement is an idea or conception which is possessed by 50% of pupils who have studied the subject for one year, the amount of growth will necessarily be small.

It must be borne in mind when comparing Scale and test scores and Scale and test medians that, as is seen in Table VI, if pupils are able to do tasks of the difficulty of those found 8 P.E. above the arbitrary zero because of the large number of items in the soale which are in the range of approximately 1 P.E. above and 1 P.E. below this median of 8 P.E., the pugils' scores have a tendency to show erratically large amounts of growth, as is indicated by the medians in the former paragraph. That is, beoause as many as 18 items were found to be of the same diffioulty, namely 7.9 P.E., it is logical to assume that if a pupil who could do only items of the difficulty of 7.8 P .E. Were in some way to acquire ability to do items one-tenth of 1 P.E. more diffioult, namely 7.9 P.E., this achievement would be indicated on the original test by an inorease of not 1 point but 18 points, wheress on the Scale this added achievement would be indicated by an inorease of 1 point. Therefore an increase of .539 P.E. or of 5.4 tasks on the scale really means the acquiaition of a rather large number of conceptions subordinate to these 5.4 tasks.

A word of warming should, however, be given with regard to the comparison of the test medians to measure the amount of grath

Which is due to instruction in the upper grades. In the study of overlapping data were oited which showed that certain numbers of even 8th grade pupils without General Soience exceeded the achievement of various percents of 9 th grade pupils who had studied General Science. It does not require much statistical comprehension to imagine what would happen to a median if one had a thousand 8 th grade pupils with a median of 100 with a range of 50 to 150 and then were to eliminate the lower 50%. The median would immediately rise to the position previously ocoupied by the 75 th percentile. Whereas such an elimination did not take place from the 8 th to the 9 th grade, for the whole school systems were given the General Science test and no such decrease of pupils was found from the 8 th to the 9 th grade, nor did the correlations between scores and time used in doing the test, nor the correlations between scores and chronological age verify the assumption of any such elimination, some elimination however does take place.
H. Relative diffioulty of the different items for boys and girls In Chapter VI under the introduction to the "Derivation of the Scale" were presented data which answer the question, "Do boys and girls differ in the kind of material each is oapable of learning and does learn?" The rank orders of the 300 items were made on the basis of the number of correct responses made by $500-8 \mathrm{Girls}$ and by $430+9 \mathrm{Girls}$. The rank order correlation of these rankings gave a coefficient of .87 with a P.E. of . 007 . The same was done for $400-8$ Boys and $430+9$ Boys, which gave a coefficient of correlation of .916 with a P.E. of .005 . The
mean of these two coefficients is .893 . When the same was done for -8 Girls and -8 Boys, the coefficient was .95 with a P.E. of .003 , while for +9 Girls and +9 Boys it was .91 with a P.E. of .005. The mean of the two coeffioients is . 93

In other words, the rank orders of the items for the untaught girls and untaught boys were more alike than were the rank orders of the items for girls before and after taking General Soience. Likewise the rank orders of the items were more alike for taught 9 th grade girls and boys than wers the rank orders of the items for the boys before and after taking General Soience. The medians of the boys' groups were of course higher than were the medians of the girls' groups, but except for a few items highly specialized for each group, the relative order of difficulty of the items remain practically the same. This would mean that not parts of General Soience were more difficult for girls than for boys but that relatively all of General Science was as much more difficult for girls than for the boys as is indicated by the difference in the medians. The study of annual growths showed that girls actually make as large gains by instruction as do boys. The difference in the achievements on the General Soience test began for the two sexes back in the elementary school and in the elementary training outside of the school, for the difference in medians which is found between girls and boys in the 8th grade is the difference whioh continues thruout the grades of the secondary school when measured by the General Solence test.

CHAPTER IX

SUMDARY

A summary of the conclusions reached in this study of subject matter and aohievement in General Soience is given in the following brief statements.

1. General Science originated out of a desire for a course of scipnce which would serve, not necesarily as intensive training for a specialized field, but for immediate use in everyday ife.
2. The development of General Soience has been paralleled by the formulation of General Science objectives in harmony with the Cardinal Prinoiples of Education.
3. Achievement in General Soience can be measured objeotively, as is shown by the development of a reliable scale in General Science.
4. A Scale Form of 60 properly evaluated and selected items gives as accurate results in the measurement of General Soience aohievement as does a 300 item test.
5. Before taking a General Soience course, many pupils are already familiar with much of the material of the oourse. This fact makes it desirable if not imperative to olassify pupils for instruotion in General Saience on the basis of their pree vious knowledge of the subject. Furthermore, it emphasizes the need for General Solence texts adapted to pupils of different mental le vels.
6. The annual increase in aohievement in General Soience due to teaching, as measured by the General Soience Soale, is small, namely, . 539 P.E. or 5.39 Scale points.
7. Real sex differences in amount of General Solence information exist even prior to instruction in General Soience. These sex differences, in favor of the boys, persist thruout the high school course.
8. The relative order of difficulty for the items of the General Soience test are practically similar for the two sexes. 9 . There is a wide variation of achievement in General Solence among different schools.
9. The difference in test points between the median scores of 8th grade pupils who have and who have not had General solence, is equal to the difference between the median scores of 9 th grade pupils who have and who have not had General Soience. This indicates that 8 th grade pupils profit approximately as much by instruction in General Soience as do 9 th grade pupils.
10. Pupils who have not had a course in General soience, a0quire considerable General Solence information in courses in specialized soiences. Differences in central tendencies continue, however, in favor of those pupils who have had General Soience.
11. Achievement on the General Soience test shows uniformly higher scores for pupils who have had a course in General science.'
12. Performance on the General Soience Scale shows for each sex a definite, direct relationship to the number of solence courses the pupil has taken.
13. Any two of the five grades studied show considerable overlapping of achievement, even in the ase of 8 th and 12 th grade pupils.
(1) Name
(1) Name
(4) Underline year in school: 8th grade; Freshman
(5) How many years have you been in school in all?
(6) Have you taken General Science?
(7) Have you taken Chemistry?
(8) Have you taken Physics?
(8) Have you taken Physics? How long?
(9) Have you taken Physiology-Hygiene? \quad How long
(10) Have you taken Botany?
(11) Have you taken Zoology?
(12) Have you taken Physiography? How long?
(13) Have you taken Biology?
(14) Have you taken Astronomy \qquad
(15) Have you taken Domestic Science?
(16) Do you like the study of sciences?

PART II.
Below are statements of scientific facts which are stated thus:
course a fly can not be all the things which are printed in extra-black "A fly is an Animal, a Fish, an Insect, a Reptile, a Building." Of show that you know which is correct. In the statement "The heart pumps Blood, Water, Oil, Air, Sand," "Blood" should be underlined. Underline the correct word in the statements below so that each statement is true. Water, Oil, Air. Sand," "Blou don't know, guess.

1. The normal temperature of a human being is 100 F ., 104 F., 98.6 F., 93 F. 90 F.
2. The souring of milk is caused by Bacteria, Heat, Freezing, Air, Moisture
3. Ventilation is for the purpose of securing Sunlight, Warmth, Pure Air, Comfort, Germs
4. The length of a meter in inches is about 12, 19, 27, 39, 144
5. Water boils at 100 F., 18 F., 212 F., 222 F., 98.6 F.
6. Water expands when raised above or cooled below 0 C., 40 C., 32 C, 4 C., 100 F.
7. Water pressure in city mains is ordinarily about 25,60 , 100, 150, 200 pounds per square inch
8. Water freezes at 0 F., 32 F., 42 F., 100 F., 98.6 F.

The mercurial barometer reads at sea level about 10 Im ., $18 \mathrm{In} .30 \mathrm{Cm} ., 30 \mathrm{In}$., 100 In.
A calorie is the amount of heat neecssary to raise the tem212 F . 212 F .
phoned is abt vertical height to which water can be siThe bolting point on the Centigrade thermometer is 0 $32,100,120,212$
13. An oboe is a Wood Wind Inatrument, a Siring Instra. ment, a Drum, a Hiwe Horn, a Percumion Intrument
4. A trombone is a Wood Wind Tnstrument, a Percussion Instrument, a Stringed Instrument, a Brass Instrument, a Drum
15. A dynamo has as one of its parts a Resonator, Carburetor, Armature, Piston Rings, Clutch
16. Current is conducted to and from the commutator by Magnetic Poles, Brushes, Fuses, Insulators, Switches
18. Refraction is atudied in connection wit Falling Bodles, Uleht, Electricily
19. Domestic toasters, curlers and irons are based on the principle of Electrical Repulsion, Electrical Attraction, Heating Effect Due to Resistance of a Conductor, Voltage, Rotation of Armature.
20. Images are formed by the passage of light through a Prism, Helix, Lens, Diaphragm, Spectrum
21. The ampere is a measure of Air Pressure, Humidity, Resistance, Current, Potential
22. The covering of electric wires is called Convention, Radiation, Illumination, Insulation, Isolation.
23. The electric wires are covered because the Wire Would Turn Up, Set Fire to Inflammable Material, Break, Get Hot, Get Cold
21. The automobile engine in in Front, Right, Back, Left, Center of Car
25. Eificiency of electric iron ls primarily due to its Stability, Durability, Increased Cleanliness, Constant Temperature, Hish Temperature
26. The object to be photographed must be in the sun to Absorb the Light, to Reflect the L.ight, to be Seen, to Cast a Shadow, to Transmit the Light.
27. Ammonia ls made from Wood, Salt, Coal, Orone, Vegetable Matter
28. Sunilight can be broken up into the spectrum by means of a Mirror, Lens, Priam, Microicope, Color-Miver.
29. Formaldehyde is often used as a Dye, Vaccine, Disinfec. tant. Fertilizer, Stimulant
30. An illuatration of capillarity is found in the Ink Bloter, Thermometer, Barometer, Vorce Pump, Excretion of Urea
31. When a liquid contains all the dissolved subitance poowible, the condition is termed Osmosis, Permeability, Fusion, Reduction, Saturation
92. The propeling mechanism of an automoblle is termed the Chawis, Piston, Differentlal, Governor, Motor
ax. Humidity relates to Drymeas, Heat, Cold, Freezing. Temperature
24. Subatance without crystalline atructure are termed Ineri, Dence, Elastie, Opaque, Amorphous

35. Heat is measured in Degrees, Calories, Candle Power, Kilo
watts, Grams

35
36. Concrete walks have joints filled with sand or tar-paper to Prevent Wearing, to Allow the Circulation of Air, to Provide for Expansion, to Keep the Blocks Apart, to Allow for Drainage
37. The hottest flame is Blue, Green, White, Yellow, Red....
38. The foot-pound is a unit of Energy, Work, Distance, Weight, Capacity
. Water rises in a suction pump because it is Pulled Up, 38 Pushed Up, Attracted, Repelled, Sucked Up.
40. A stove radiates more heat when it is all Black, all Rusted, all Nickel Plated, all Aluminum, all Silvered.
41. Heating systems are placed in the cellar, because heat causes water and air to Evaporate, Contract, Expand, Rise, Fall
42. The unit of weight in the metric system is the Litre, Ounce, Pound, Ton, Gram.
3. Potential energy is energy possessed by an object by virtue of its Weight, Combustibility, Motion, Position, Den-
44. When lce thaws, the partly thawed lice and water are at Different Temperatures, Equal Temperatures, at 40 Fo
45. Limewater is used to test for Carbon Dioxide, Oxygen, Alcohol, Hydrogen, Chlorides
46. Heat can pass through a vacuum only by means of Convection, Conduction, Radiation, Gravitation, Combustion.
47. Hydrogen may be prepared for laboratory use from the action of zinc on Alkalies, Salts, Chemicals, Acids, Water
48. An airplane cannot remain in air when at Rest, in Motion, Upside Down, Gliding, Descending
49. Gas, in order to burn well, should be mixed with Nitrogen, Air, Carbon Dioxide, Ammonia, Oil
50. The weight of moisture or water vapor contained in a cubic foot of air is called the Absolute Humidity, Degree of Saturation, Relative Humidity, Density, Concentration.
51. You can recognize an invisible airplane by its Shape, Sound, Color, Wings, Smoke.
52. Electrolysis of water liberates hydrogen and Chlorine, Nitrogen, Carbon-Dioxide, Ammonia, Oxygen .
53. Escaping illuminating gas mixes with the air of the room by Capillarity, Diffusion, Cohesion, Gravitation, Chemical
Affinity
54. When air is heated, it Contracts, Expands, Falls, Liquifies, Solidifies
55. The following gas is found in impure air: Calcium, Gold,
55. Carbon-Dioxide, Sodium, Carhon
56. Oxygen may be prepared for laboratory study from Salt, Magnesium, Carbonate, Calcium Oxalate, Potassium Chlorate
57. The attraction between molecules of a body is called Capillarity, Adhesion, Magnetism, Cohesion, Convection
58. A loud report from the engine is due to Too Little Air. Too Ilitle Gas, Too Much Gas, Too Much Spark, Poor Spark Plugs
59. Black smoke from muffler Indicates Too Mach Air, Too
50. Much Gas, Too Little Gas, Engine Too Hot, Broken Clutch

The capacity to do work is termed Energy, Momentum,
Eficiency, Mechanical Advantage, Velocity Efficiency, Mechanical Advantage, Velocity.
61. The smallest of these things is the Molecule, Bacterium, Paramoeciam, Dust Partlcles, Atom
62. Balloons float in the air because of their Lightness, Silvery Color, Engines, Baskets, Size
63. A boat floats in water because it is More or Less Hollow, of its Shape. If is Lighter than Water, the Water Exerts an Upward Pressure on the Boat, Water Cannot Fill the Boat
64. The temperature at which pure water bolls is effected by the Helght of the Vlame, the Amount of Water, the Air Presure, the Density of the Water, the Depth of the Water

45

46

Soft coal is also known as Anthracite, Asphalt, Lignite,
Eituminous, Peat
Patrole a Mixture, a Pure Substance, an Impure Substance.......... 66 a Mir brake, a Pure controlled by a Foot Lever, an Automatic
Device, by Tension on a Strap, by Turning a Handle, by Device, by Tension on a Strap, by Turning a Handle, by
Holding a Lever. The water pipes burst in the winter time because of Con-
traction of Lead. Expansion of Water, Expansion of Lead,
Chemial
mechatio of the number of units of force applied to a Machine is called Efficiency, Out-Put, Available Energy, 7. An example of a chemical element is Water, Carbon-
Dioxide, Mercury, Ammonia, Nitric Acid
71. On a curve, the tracks are Higher in the Inside than Out-
side, Higher Outside than In, Same Height, Wider, Nar-
2. Earl Early settlers located on bodies of water in order to Get Pure Drinking Water, to Get Water for Personal Needs,
for Pleasure and Beauty, for Navigation, to get Good Land for Pleasure and Beauty, for Navigation, to get Good Land
Sound is produced by Vibration of the Definite Part of the
Instrument by the Movement of Air, by the Effect on the nstrument by the Movement of Air, by the Effect on the
Gar of Air Waves, by Electric Waves, by Ether Waves by Magnetic Waves
The voice is carried along the wires by Sound Vibrations, The voice is carried along the wires by Sound Vibrations,
Electric Pulses, Magnetism, Energy, Electron,
We pay for electricity by the Watt, Ampere, Volt, Ohm, ilowatt-Hour An octave consists of Eight Notes, of Seven and One-half The magnetic field in Dynamos is produced by Transformers, Natural Magnets, Electro Magnets, Condensors, Leyden Jars
All space is believed to be filled by Air, Oxygen, Ether, Heat, Moisture
Which can turn somersaults most safely with his maChine: The Chauffeur, Flier, Sailor, Conductor, the CanThe modern electric light bulb is filled with Air, Hydro-
gen, Helium, Oxygen, or is a Vacuum gen, Helium, Oxygen, or is a vacuum
The handle of a skillet becomes hot as a rult of Resis-
tance, Conduction, Friction, Radiation, Latent Heat The term induction is used most in connection with
Levers, Pumps, Falling Bodies, Solutions, Electrical CurLents
Lange ships are usually made of Steel, Copper, Wood,
Lrass ... Combustion is another name for Drying, Shrinking, Boil-
ing, Burning, Melting ing, Burning, Melting
An example of an alkali is Aluminum, Sodium Hydroxide,
Table Salt, Mercury, Potassium Chlorate. Table Salt, Mercury, Potassium Chlorate
The density of a solid is usually compared with that of
Air, Hydrogen, Water, Lead, Wood A metal which can be drawn into fine thread is said to be
Elastic, Ductile, Flexible, Malleable, Marnetic The resistance, a body offers to being set into motion is called Momentum, Friction, Cohesion, Erosion, Inertia
An example of a lever of the first class is found in the Nut 8 An example of a lever of the first class is found in the Nut
Cracker, Scissors, Wheel Barrow, Inclined Plane, Biceps Muscle
The sensitive film material is made of Silver Chloride The sensitive film material is made of Silver Chloride,
Silver Bromide, Potassium Nitrate, Iron Oxalate, Potassium Chloride Aision, Desert, Warfare Eody of Water, Optical Mllusion, 9 Sewer, gas is kept from entering a house from the sewer
by a Valve, Trap, Faucet, Damper, Drain. An example of oxidation is the Rusting of Iron, Electrolysis of Water, Melting of Ice, Action of Acid on Zine,
Heating Potassium Chlorate.
95. Treating a child for whooping cough you would keep him
in a Close Room, Out of Doors, in Bed, Without Food, in a Year, Every Year, Every Two Years, Every Month, Every The Years method of sewage disposal is Cess Pool, Open Sewer, Closed Sewer, Septic Tank, Surface Drain so reduce danger of ptomaine poisoning, a can or saimon
should be Heroughly, Protected from Flies,
Emptied out of Can Promptly, Thoroughly Salted, Eaten Emptied out of Can Promptly, Thoroughly Salted, Eaten
with Vinegar Hemorrhages from wounds should be stopped by Applying
Pressure on Side of Blood Vessel from Which Blood is Out Air and Dust, Applying Diri
0. Mond

102. 103. 104.

The best way to make impure water safe is to Let it SetTo make milk free from bacteria, milk is Pasteurized, Small, pox is prevented by Medicine, Vaccination, Anti-
Toxin, Pasteurization, Sterilization Usually the most serious danger from wounds is infection which may be prevented by Covering the Wound at
Once, Keeping Wound Open and Clean, Stopping Bleeding Once, Keeping Wound Open and Clean, Stopping Bleeding,
Putting Adhesive Over it, Putting in Salve The death rate from tuberculosis is highest among stone
Cutters, House Servants, Farmers, Bookkeepers, Ste Cutters, House Servants, Farmers, Bookkeepers, Stu-
dents,
Windows should be opened, at Sides, Top and Bottom, Top Windows should be opened, at Sides, Top and Bottom, Top
and Sides, Bottom and Sides, Bottom.
Por Poisonous products secreted by bacteria are called Enzy-
mes, Anti-Bodies, Toxins, Vaccines, Legumes.
To treat a cut use Lime Wilater, Jodine, Linseed Oil, Salve, To treat a a cut use Lime Water, Iodine, Linseed Oil, Salve,
Nothing Nhe vaccine used to prevent typhoid fever consists of Bacterial Cells, Horse Blood Serum, Anti-Toxin, a Chemical
Preparation, Acids Wounds should be allowed to bleed a Little, Not at All, Un- 110 Tight bandages should be Left Untouched, be Thight bandages should be Left Untouched, be Loosened
Whe Doetor Calls, Ths, Never Be Apped Aplied, Removed When the Doctor Calls, TTghtened Adhesive tore, 112 Adhesive tape may be put over open wounds Next to Skin,
with Gauze Between Tape and Skin, Not at All if Freshly
Cut, if There is Dirt Present, if no Dirt is Present. Mosquitoes can be eliminated by Swatting Them, by Im Smudges Birds, by Poison Destroying Their Breeding Places, by Alcoholic fermentation is produced by Mold, Yeast, Bacteria, Germs, Air ... dangerous and may be recognized be-
Arterial wounds
cause blood Oozes Out, Jets Out, Flows Evenly, Flows cause blood Oozes Out, Jets Out, Flows Evenly, Flows
Siowly, Flows Rapidly Tuberculosis is contracted by Contact with Patient, Contact with Clothing, from Bacilli of Sputum, by Taking
Cold, Bathing ing, by Massage, Osteopathy, Chiropractic Hygienic Liv- 118 The best temperature for a living room is $60 \mathrm{~F}, 68 \mathrm{~F}$., ${ }_{119}$ All cows in certified dairies are tested for Typhoid, Tu-
berculosis, Mange, Diphtheria, Yellow Fever.
120 Milk produced under sanitary, conditions and from tuber-
cular tested cows is Pasteurized, Sterilized, Certified, Boiled, Impure Why are we quarantined for the Measles? To Protect the
Patient, to Prevent the Sprea of the Disease, to Satisfy
Pubbic Opinion, to Make Money, to Keep the Patient at The house fly is harmful because it Destroys Crops, has a
Poisonous Bite, Carries Bacteria, Destroys Food, it is Hard Onen wounds should be bathed with a dilute solution of
Hydrogen Peroxide, Alcohol, Sulphuric Acid, Soda, Tohe best jllumination or light for working or reading is 12 Sirect, Reflected, Indirect, White, Blue wing or reading is 125 The source of most healthful light is the Sun, Kerosene, 126
Gas, Electricity, Candles Gas and kerosene are least desirable as light sources
because of Poor Light, Oxidation Products, Excessive he main purpose of respiration is Energy-Release, Elimi- 127 ation of $\mathrm{C}_{\boldsymbol{y}}$, Manufacture of Food, Secretion of Water, When the child's first permanent teeth appear he is 6
or 7 Years old 12 Years Old, 18 Years Old, 20 Years The ovum or egg cell is produced in the Kidney, Embryo, 129 Ovary, Gamete, Sporagium $\quad 130$ Air is breathed into Stomach, Heart, Lungs, Eyes, Liver. 131
Adenoids are found in Mouth, Nose, Ear, Throat, Lungs... 132 Adenoids are disposed of by Medicine, Massage, Operation, Chiropractors, Osteopaths
One of the excretory organs in the body is the Heart, Liver, Skin, Duodenum, Spleen The distinguishing features of the mammals is the posses-
sion of Backbones, Hair, Two Pairs of Legs, Milk Glands, Vervous Systems, Gland, Muscle, Function, Gland, Muscle, Function, Lhe pleura is a protection or the heart, Eones, Muscles, 138 Lungs, Brain
Ain the ear is equalized by the Auditory Meatus, the
Cochlea, the Eustachian Tube, Incus, Semi-circular CaWhen you jerk your finger from a hot stovett. 139 Voluntary, Involuntary, Reflex, Contemplated, Premedi-
tated
41. Th

60,50 palse rate for an adult man is $100,45,72$, The kidneys Digest Food, Clean Elood of Wastes, Build Up New Blood Cells, Support the Backbone, are Useless... 142
A ferment is another name for a Bacterium, Enzyme, ferment is another name for a Bacterium, Enzyme, ${ }^{\text {To }} 143$ The part of the eye that regulates the entrance of light is
the Pupil, the Iris, the Retina, the Eve-Lid, the Lens 144 the Pupili, the Iris, the Retina, the Eye-Lid, he Lens 144
Tonsils are located in the Gullet, Troat, Nose, Ears, unsils are located in the Gullet, Throat, Nose, Ears, 145 Normal respiration per minute is $15-18,20-25,70-75,146$
$10-12,103$
The vertebrae are parts of the Heart, Muscles, Backbone, Teeth, Toes The teeth should be cleaned with a brush Every Week,
Three Times a Day, Every Month, Every Year, Never
In In a child's first set of teeth, there are 18 Teeth, 20 Teeth,
In 25 Teeth, 32 Teeth, 14 Teeth The hard substance of the tooth is called Dentine, Enamel, 149 Neck, Root, Bone
Venous wounds may be recognized because blood flows

Slowly and Evenly, Jets Out, Oozes Out, Not at All, | flows |
| :--- |
| All, | The pulp cavity contains Minerals, Periosteum, Nerves, Tendons, Ligaments

The eyes are injured most by Improper Light, Dark, Dust,
Strain, Work Strain, work ... sprays should not be used because they
Medicinal nose
Kill Germs, Clean the Nose Destroy Valuable Mucous Secretions, Prevent Colds, Have an Odor at All Times. The ears, are injured most by Loud Music, Noises, Strain,
"Foxing," Quiet The muscles are benefitted most by Rest, Hard Work, Systematic Diet, Play, Systematic Exercise
A good health motto is "Keepthe head cool and the feet
Cooler" Warm, Well Clothed, Hot, Dry The apparatus necessary to carry messages consists of two wires, batteries, receiver and a Mouthpiece, a Box, a
Transmitter, an Electromagnet, a Bell
The centrifugal force of a cream separator separates milk The centrifugal force of a cream separator separates milk
from cream because the cream is Lighter, Heavier, Thicker, Denser, Greasier
The separation of liguids and solids by evaporation and
1 The separation, of liaquids and solids by evaporation and
condensation is called Solution, Distillation, Difusion, Fu-
Concrete is reinforced with Iron, Wood, Straw, Cloth,
Rope
Ventilation is best secured with Stoves, Hot Air Furnaces, Steam Heating, Hot Water Heating, Electric Heat
Fusion means the same as Evaporation, Boiling, FreezFusion means the stilling Fanning the body on a dry day produces air, Rapid Evaporation of
because of Movement of the Alo Moisture into the Air, Amount of Hear
Body, Creation of a Draught, Fresh Air Heat is carried horizontally through air by ConducThe act of transfer of pollen from anther to stigma is
called Pollination, Reproduction, Fertilization, Transpiration, Mitosis, Filtration
Water cannot be siphoned of a boat because of Un-
Wtrat equal Air Pressure, Unequal Amounts of Water, Attrac
tion of Water Particles for Each Other, Suction, Water in Boat Is too Low
Distillation is a means of Purifying Water, Securing Air
Prans Distillation is a means of Purifying water, securing Air
Pressure, Pumping Water, Transmitting Water, Securing
Heat The passage of the moon between the sun and the earth is
called an Eclipse of the Sun, Full Moon, Third Quarter, Eclipse of the Moon, Winter Solstice
The largest of the planets is Venus, Saturn, Mars, Jupiter,
. The monthly phases of the moon are caused by its move-
ment On Its Axis, About the Earth, About the Sun, in Its Orbit, Newton's Law
An eclipse of the sun is due to the position of the Stars, Ane Planets, the Moon, the Constellations, the Milky Way,
A star is really a Comet, a Satellite, a Planet, a Sun, a Light the planets form the Constellations, 173 The sun and the planets form the Constellations, the
Solar System, the Milky Way, the Zenith, the Horizon
, She light from the moon is Direct, Rellected, Invisible, 175 Shooting stars are properly called Suns, Asteroids, The earth was formed of dust, by the cooling of Nebulous Gases, in Seven Days, Out of ce, solar system would look From a very great distance our solar system would look
Elack, Like a Star, Like a Moon, Like Jupiter, Vacant Trees that have broad leaves are classified as Soft Wood, 179 The process of food manufacture in green plants is called
Respiration, Mitosis, Pollination, Photosynthesis, PasThe process
Respiration,
teurization

An example of a leguminous plant is the Clover, Toadstool, Pansy, Lilac, Moss
Insects have the following number of legs: Four, Six,
Eight, Birds have feathers to Make Them Look Pretty, to Fluff out in Case of Danger, to Protect Them, So They Will Have Something to Wear, to Make Pillows. The purpose of the roots is to Take in Oxygen, to Manu-
acture Starch, to Give Off CO, to Take in Soil Water, to Give of Waste Matter. In the dark the pupil of the cat's eye is Larger, Smaller,
of Equal Size, very Small, Absent Butterfies may be distinguished from moths for They
Fly by Day, Are Larger Than Moths, Are More Brightly Colored, They Eat Leaves, They Do Not Live Long. 186 The process by which a plant is made to grow on the stem
f a another plant is Pruning, Slipping, Grafting, Spraying, Planting -1._ 187 Grasshoppers may be distinguished from other insects by arge Pair of Jumping Legs, Large Wings, Bright Green
Color, Presence Near Flowers, Numbers. All our food comes directly or indirectly from Rock, Ani-

mals, Plants, Air, Mines | | 189 |
| :--- | :--- | general term for any living thing is Plant, Larva, AniMa, Organism, Mammal 191 Fruits, They Are Beautiful, They Are Useful, They Sing, They Build Nests the Hills, in Swamp, on Dry 192 Land, in Rocky Soil, on Mountains. Maple, Amoeba, Bread Mold, Sponge, Earthworm 194 The process by which plants and animals change their (ood materials into soluble form is known as Absorption, 195 A great bird student in our country was Roosevelt, Bur- 196 Which of the following insects are beneficial? Housefly, Mosquito, Lady Bug, San Jose Scale Insect, Hessian Fly 197 Plants take in their food through their Leaves, Bloom, 198

Roots, Stomata, Verterae
The coral ens, Ovaries Birds suffer most from Lack of Food and Water, the Cold, 200 he Heat, Other Bird Enemies, Animals The colored parts of a flower are Sepals, Pistil, Petals, The yellow dust on a flower is Chlorophyll, Ovules, Proto-
plasm, Pollen, Dirt The calyx is made up of the Petals, Stamens, Petioles, Pis 203 the calyx is made up or the Petals, Stamens, Petioles, ${ }^{\text {tise }} 204$ ruit tres are generally propagated by Seeds, by Cut-
tings, by Grafting, by Settings, by Seedllings, Perspiration contains: Sugar, Salt, Fat, CO, Food, Food
The flowers of the elm trees are pollinated by People, Wind, Animals, Water, Insects bryo, Chrysalis, Ovum, Sperm Animals which secure food directly from the bodies of
other animals are Parasites, Hydrophytes, Mesophytes, Saphrophytes, Sulphites ... 209 Stamen anther is part of the Calyx, Corolla, Ovary, Pistil, The purpose of flowers on a a plant is to develop Roots, Pollen is produced in the Ovary, Calyx, Stamen, Stigma 211 The simplest independent living structure is the Nucleus, ${ }^{212}$ The greatest damage is done to trees by Birds, Worms, ${ }^{213}$ Birds go south in winter because It Is Cold Farther Noth Birds go south in winter because it Is Cold Farther North,
They Don't Like Snow, They Can Find Little Food, They
Find Little Material for Their Nests, They Like the Flow-
Mosquitoes lay eggs on Salt Water, Stagnant Water, Fresh ${ }^{215}$ Water, on the Ground, in Garbage.................... 216 the nucleus is believed to play a prominent part in Diges
tion, Respiration, Heredity, Storage of Food, NerveConduction Herer Birds sing to Make Us Happy, to Make Their Little Ones
Happy, to Attract Their Mates, to Warn Other Birds That Danger Is Near, Because They Like Music An example of a fungus plant is the Orchid, Pondscum,
Breadmold, Mother of Vinegar, Indian Pipe Breadmold, Mother of Vinegar, Indian Pipe
Insects have the following number of pairs of wings: One, Two, Three, Four, Five
House flies lay their eggs in Wood, on the Water, in AniHouse flies lay their eggs in Wood, on the Water, in Ani-
mal and Vegetable Waste, in Nests, in the Sand.
222. The age of a tree is told by Branches, Rings in Cross Sec tion of Trunk, Height, Size of Trunk, Color.
223. Geese fly in a V -shaped formation because They Think It Looks Pretty, They Fly in a Flock, They Will Be Protected, They Can Fly Easier Together, They Like Geo metrical Figures
224. Gases enter and leave the leaves of plants through organs called Stipules, Root-Hairs, Stomata, Micropyles, Chloro plasts
225. The food which is most important to be kept in the coldest part of the refrigerator is Bread, Cooked Foods, Vegetables, Milk, Butter
226. Cheese is rich in Fats, Proteins, Oils, Carbohydrates, Water
227. Oleomargarine is a Milk Product, an Animal Fat, a Vegetable Oil, an Adulteration, Better Than Butter
228. Coffee should be boiled One Minute, Three Minutes, Ten Minutes, Fifteen Minutes, Twenty Minutes.
229. Refrigerators should be cleaned by using Kerosene, Gasoline, Warm Water and Soda, Vinegar, Salt
230. The water best fitted to remove dirt is Hot Hard, Hot Soft, Cold Hard, Cold Soft, Tepid Hard.
231. Green vegetables should be started to cook in Cold, Warm, Boiling, Tepid or Freezing water.
Refrigerators should be made of Material Which Is a Poor Conductor of Heat, Iron, Material Which Is a Good Conductor of Heat, Rough Material, Smooth Material
233. Large warehouses where perishable foods are kept are kept cool by Electric Fans, Iceless Refrigerators, Large Quantities of Ice, Keeping Windows Open, Thick Walls.
234. Milk is tested for the amount contained of Butter Fat,
235. A food rich in carbohydrate is Beefsteak, Olive Oil, Cucumbers, Watermelon, Honey
236. Food should be kept in a refrigerator because It Is More Palatable When Cold, Some Things Stay Solid When Cold, Low Temperature Retards Growth of Molds, Yeasts and Bacteria, Some Things Stay Crisp, It Tastes Better........
237. The best lining for refrigerator is Tin, Enamel, Copper, Iron, Zinc
238. The coldest place for food in a refrigerator which is iced at the bottom is the Lowest Shelf, the Top Shelf, the Side, the Center, the Back
239. Foods which contain nitrogen as a part of their chemical composition are called Proteins, Fats, Carbohydrates, Hydrocarbons, Liquids

241.	
242.	The proper way to keep ice in
${ }^{-1}{ }_{243}$	Wrapped, to Wrap Ice in Burlap
	Becfstenk Onions, Sugar be
	sure area is East, W
	The best soil for general purposes is Clay, Loam, Sand, ${ }_{245}$
	The foilowing is classed as a garden cro Sweet Peas, Lettuce, Barley
	The rainbow is seen Directly Overhead,
	the South, in the East, or in the West
	Arid regions are made
24.	The processes which tend to ley face are collectively termed
	Erosion, Metamorphism, Stratific
H^{250}	The wheat region of North America is A
	Drain, Circumnav
	Distance measured above sea level is called
	titude, Declination, Inclination, I
	Forests prevent floods because They They Hold the Water Back, the T
	They P
	Water
254.	A bright blue sky indicates Bad, Fair, Ra Stormy weather
255.	Wind-deposited piles of sand ar
	Drumlins, Dunes, Monad
256.	The path of a heavenly body
	Equator, Iatitude, Declination
257.	The earth rotates on its axis once
	7 Days, 3 Months, 3651/4 Days
258.	
	Tornado, High Pressure Area, Typhoon, Horse Latitudes 2
259.	Of the four places named the sun is visible the fewest
	he Er or hors on Jone tw.
	the Equator, Forty Degrees North Latitude,
	grees South Latitude, South Pole
260.	
	Forests, Cutting Down Forests,

284. A fifting crane gains power in doing work, by the use of the Wheel and Axle, the Lever, the Pulley, the Inclined Plane, an Engine
285. A cream separitor is made by Conklin. McCormick. De Laval, Darwin, Steinway
286. Boats of all kinds are steered by means of Sets of Wheels,

Paddles, Rudders, Wings, Motors

287. The first electric incandescent lamp was made by Edison, Burroughs, Watt, Priestly. Westinghouse
288. Large buildings are best heated by a Pipeless Furnace,
289. Concrir, Hot Water, Steam, Electric Heat
290. A Hardened Mass, Blocks

An anemometer is an instrument used by the weather bureau to measure the Amount of Sunshine, Amount of Rainfalt, Air Pressure, Wind Veloclty, Atmospheric Pressure
291. The rudder of a ship is in the Front, Side, Rear, Center, Bottom
292. A thermometer is used to measure Temperature, Press sure, Weight, Heat, Cold
293. The device for protecting lights and motors from an overcharge of electricity is called a Magnet, a Fase, a Switch, a Barometer, a Rectifier
294. The contrivance used to raise bricks, mortar, etc., as a building is going up, is called an Elevator, a Crane, a Hoist, a Lever, a Jack
295. The telephone was invented in 1876 by James Watt, Samuel Morse, Alexander G. Bell, Marconi, S. F. B. Morse
296. A kodak is a Mouth Organ, Picture Taking Device. Music Box, Brownie, Film.
297. The purpose of the mouthpiece on a telephone is to Concentrate the Sound Waves, to Protect the Transmitter, for Sanitary Purposes, to Keep Moisture from the Wires, to Protect the Speaker
298. A chimney on a lamp is for Ornamentation, to Make the Light More Intense, to Create a Draft, to Make the Flame Burn, to Save Oil
299. The home gas consumption is measured by a Velocipede,
300. A device for, Mutomatically regulating furnace fire is called a Thermometer, a Thermostat, a Barometer, a Galvanometer, a Draft
62
263. A
264. Glaci, Flood, Sound, Because they Are Made of Snow,
270. The air in Minnesota homes in winter is commonly un-
271. A violent circular windstorm of small area is a Cyclone,

272
273. Decaying vegetable matter in soils is termed Mineral,
274. Distance east and west around the earth is called Longitude, Altitude, Declination, Revolution, Latitude.
275. Volcanoes are most likely to be found in Deserts, Coasta
elements of the soil re-

Sodium, Carbon, Hydrogen A dynamo is a machine for genera tric Current, Sound, Music Plains, Mountains, Deltas, Islands

[^7] 264265

\square

7127374858628728989

> APPENDIX II
> INFORMATION AND INSTRUCTIONS for persons giving the "GENERAL SCTENCE IMFORMAII ON" test.

This test is for the purpose of ascertaining the degree'with whicl cortain fundamental "science" facts are acquired by pupils in different scionce courses and for ascertaining the degree with which these facts are acquired by pupils NOT taking science courses. This information, if carefully and accurately secured, will make it possible to revise "General Science" and other science courses in the High School, or else it will tend to show that these courses are satisfactory as they are. Certainly it $\pi i l l$ indicate whether these courses are functioning in bringing about the acquisition of the information contained in the test In no case is it designed to oriticize the soience teaching in any particular school.

To be valid the results must be secured from all the pupils in the 8th grade and in the four years of High School. Results for your school will be available to you if you aant them, Please follow the INSTRUCTIONS as carefully as you can. When thru fill out the blanks below and tie this sheet in with the tests when you turn them in. The purpose of the information asked for below is to a scertain whether anything exceptional is to be considered in figuring up the results and in case the results should be exceptional in any way to make it possible to address a personal letter to you asking for further information.

INSTRUCTIONS

1. See that all pupils are seated and have a pencil or pen.
2. Announce that they are about to take a test to ascertain hom many scientific statements they can complete correctly.
3. Tell the pupils to do the very best they can; mhere they do not know, to guess. All pupils are to complete the test. Allow all the time they require to complete the test.
4. Put the following samples on the board and explain carefully what is to be done. See that each pupil understands the method.
(a) A fly is AN AMIMAL, A FISH, AN INSECT, A REPTILE, A BUILDING. (b) The heart pumps BLOOD, WATER, OIL, AIR, SAMD. "AM INSECT" and "BLOOD" are to be underlined after the pupils have been asked which they would underline so as to make correct statements.
5. Tell pupils to leave pamphlets face downard until told to turn them.
6. Distribute pamphlet face downward.
7. At a signal tell pupils to turn pamphlets, fill out questions at the head of the first page under Part I and then proceed to underline carefully the correct endings in all statements, in each case underlining the one item which makes the best sense.
8. The examiner may answer questions pertaining to Part I. Ho queetions pertaining to Part II are to be allowed.
9. When ail pupils are thru collect pamphlets, tie into a bundle and turn in at office.
10. Return unused pamphlete.
A. Were all instructions followed to the best of your knowlyedge?
B. Were there any excepticns to the instructions? \qquad If 80 , explain on the back of this page.
C. Did anything occur wich might invalidate results? \qquad If so, explain on the back of this page.
D. Your name \qquad Addaress
E. Do you wish a statement of results?

CORRECT RESPONSES FOR GENERAL SCIEMCE SCALE, FORM R-1.

GROUP I

1. Fair
2. Carries baoteria
3. Lightness
4. Boil it
5. Warm water and soda
6. Flier
7. The sun
8. Set fire to inflammable material
9. Once a day
10. Pasteurized
11. Vaccination
12. Temperature
13. Larger
14. Expansion of water
15. Large pair of jumping legs
16. Top and bottom
17. Destroying their breeding places
18. Hot soft
19. Butter fat
20. Expands

GROUP II
GROTP III
21. Pioture taking devioe 41. Digestion
22. Enamel
23. Emptied out of oan promptly
24. M11k
25. Petals
26. In the east
27. Tuberoulosis
28. Iron
29. 6 or 7 years old
30. Clean blood of wastes
31. Motor
32. Energy
33. With gauze between tape and skin
34. Tin
35. Enamel
36. In still water
37. Lowest shelf
38. Applying pressure on side of blood vessel from whioh blood is coming.
39. Two
40. 72
42. Bacteria
43. Bubonio Plague
44. Backbone
45. Strain

> 46. Heating effeot due to resistance of a conduotor
47. Closed semer
48. Electro Magnets
49. Eleotrioity
50. Rise
51. Steam
52. Olover
53. Armature
54. Valve
55. Absolute hum1d1ty
56. Diffusion
57. Bread mold
58. Tind
59. Brushes
60. Conduction.

CORRECT RESPONSES FOR GENERAL SCIENCE SCALE, FORM S-2

GROUP I

1. Hygienic living
2. Delta
3. 98.6 F
4. Mountains
5. Alexander G.Bell
6. At rest
7. Rings in cross sec-27. Eleotrioal ourrents tion of trunk
8. Iodine
9. Eclipse of the sun
10. Meter
11. Systematic exercise 31. Dryness
12. To concentrate the 32.100 sound waves
13. Bituminous
14. Lubricate it
15. Edison
16. Erafting
17. Yeast
18. Black
19. Parasites
20. Evergreen

GROUP II
21. Burning
22. Reflected
23. Insulation
24. Kilowatt-hour
25. Cell
26. Fuse
28. Pollination
29. Carbon-dioxide
30. From bacilli of sputum
33. Atom
34. Proteins
35. Ovary
36. Oxygen
37. Toxins
38. Lighter
39. Trap
40. Optical illusion

GROUP III
41. Prism
42. Organism
43. Air pressure
44. Photosynthesis
45. Rapid evaporation of moisture into the air
46. Honey
47. Bread mold
48. Wind velocity
49. Position
50. Embryo
51. Sun
52. Larva of moths

53. Ether

54. Elimination of CO_{2}
55. Amorphous
56. Alcohol
57. Calories
58. Enzyme
59. Skin
60. 4 c.

APPENDIX III (Cont'd)

CORRECT RESPONSES FOR GENERAL SCIENCE SCALE, FORM T-2.

GROUP I

GROUP II
GROUP III

1. In animal and vegetable waste
2. Purifying water
3. 24 hours
4. A little
5. Pollen
6. Plants
7. Eleotric current
8. Water expands when it 28. Petals freezes
9. 6 or 7 years old
10. Clean blood of wastes
11. Orbit
12. On stagnant water
13. Carbon-dioxide
14. Seeds
15. Moon
16. Too much gas
17. Lens
18. Half year
19. Take in soil water
20. 68 F . in
21. 32 F .
22. Meteors
23. Ink blotter
24. Saturation
25. Distillation
26. Current
27. Condensed
28. Air pressure too low
29. Blue
30. Proteins
31. Tissue
32. Radiation
33. The pulley
34. Jupiter
35. Higher outside than 41. To oreate a draft
36. Rusting of iron
37. Hot air furnaces
38. Water in boat is
39. Reflect the light
40. Soissors
41. Water
42. Stamen
43. Efficiency
44. Meroury
45. Wheatflour
46. Work
47. Inertia
48. Indirect
49. Light
50. Stomata
51. Heredity
52. South
53. A mixture
54. Bacterial cells
55. Iris
56. Milk glands
57. Cohesion
58. Pushed up

TABLE IV APPENDIX

TABLE IV CONT'D.

30.

31.8
31.
32.
32.
32.
32.
33.
33.
33.6
34.
34.
34.
34.
34.
35.
35.
36.
36.
36.
36.
37.
37.
37.
37.
38.
38.
38.
38.
38.
39.
39.
39.
39.
39.
40.
40.
40.
41.
41.
41.
41.
41.
42.
42.
42.
43.
43.
43.
44.
44.
44.
44.
44.
3 -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 !

$\begin{array}{ccc} & 65.5 & -14.5\end{array} \quad$| 7 |
| :---: | $41.2-8.8-.551$

3
3
3

6

$$
\begin{array}{ll}
0 & 3 \\
2 & 36 \\
0 & 3
\end{array}
$$

34

216

TABLE IV CONTINUED

1.616
1.047 8
.939 8
.939
.363 1.452 \qquad O^{2}

\qquad为 | 68, |
| :--- |
| 68 |
| 66 |
| 66 |
| 70 |
| 64 |
| 69 |
| 65 |
| 67 |
| 66 |
| 68 |
| 67 |
| 64 |
| 63 |
| 63 |
| 64 |
| 65 |
| 62 |
| 61 |
| 67 |
| 66 |
| 62 |
| 61 |
| 58 |
| 62 |
| 57 |
| 60 |
| 59 |
| 59 |
| 61 |
| 63 |
| 59 |
| 60 |
| 58 |
| 54 |
| 57 |
| 57 |
| 57 |
| 51 |
| 51 |
| 54 |
| 53 |
| 45 |

5
86.2
76.0
74.2
72.2
61.5
73.8
64.0
76.2
66.5
66.0
63.2
66.0
77.5
73.5
82.2
69.2
82.2
83.5
76.0
67.0
59.0
78.8
85.8
88.8
79.2
85.2
91.5
84.5
87.2
77.8
74.2
82.0
84.8
92.3
93.8
87.5
86.5
84.5
94.5
90.2
90.2
99.0
97.2

 \qquad

.9
.7
.9
.9
.0
.6
.7
.3
.8
.0
.5
.3
.7
.7
.8
.4
.6
.1
.2
.7
.7
.7
.9
.1
.0
.6
.3
.7
.1
.9
.5
.5
.5
.3
.5
.7
.8

.860
1.071
1.130
1.351
.980
1.900
1.028
1.456
1.374
1.837
1.589
1.602
1.636
2.114
1.335
3.397
1.005
1.403
3.182
1.335
1.543
1.918
1.837
2.397
2.044
3.958
1.468
2.093
1.900
3.044
1.843
3.958
1.827
1.663
3.686
2.245
2.686
2.834
3.830
2.562
3.958
3.258
3.643 8-4.

1.	
.3	1.
.4	1.
.0	1.
.7	.
.4	1.
.8	1.
7	.
3	1.2
1	.9
5	1.8
7	1.7
0	1.6
5	1.4
7	1.2
3	1.8
4	3.3
0	.7
8	1.4
3	1.6
8	1.5
3	2.1
8	1.4
1	2.4
4	2.0
4	1.8
7	2.2
6	1.6
8	1.3
5	1.7
3	1.5
7	2.26
4	2.4
3	3.0
6	1.7
7	1.9
0	2.5
5	2.6
9	2.6
1	3.0
0	3.7

 .873
\qquad .309
-.159 $1.186-.801$ 12.

BIBLIOGRAPHY

1. Barber, F. D. "Fundamental considerations in the reorganization of high school science". School Review 34:734-734. 1916.
2. Bell, J. C. "Study of the attainments of high sohool pupils in first-year Chemiatry". School Soience \& Mathematios 18:425-432. 1918.
3. Caldwell, 0.W. "The Gary public schools: seience teaching". The General Education Board, N.Y. 1919.
4. Camp, H.L. "Soales for measuring results of Physios teaching". Univ. of Iowa studies in Eduoation. Vol.2,\#2. pp. 50.
5. Cardinal Prinoiples of Secondary Education, U.S. Bureau of Education Bulletin, 1918, No. 35
6. Chapman, J.C. "The measurement of Physios information". School Review 27:748-49. 1919.
7. Conover, L. "Course in Nature Study". Board of Education. Detroit Public Schools, 1922.
8. Cossman, L.M. "Biology". University of Oregon.
9. Crecelius, P. "A report on objectives of General Soience teaching". School Soience \& Mathematios 23: 313-319. 1923.
10. Downing, E.R. "What standard tests in soienoe should do". School Solence \& Mathematios 19:651-654. 1818.
11. Downing, E.B. "A range of information test in soience". School Science \& Mathematios 19:228-283. 1918.
12. Eikenberry, W.L. "Faots about the General Soience situation". Sohool Review 23:181-181. 1915.
13. Fisher, G. "See Jr. of Ed. Psy. Vol. 4, pp 551-. A quotation from The Mrusetm, a Quarterly Magazine of Education, Literature, and Science, Vol.3. 1864".
14. Foley, A.L.
15. Gerry, H.L. "Trial test in General Chemistry". Graduate School of Education, Harvard University.
16. Grier, N.M. "Range of information test in Biology". Jr. of Ed. Pay. $9: 210-16,388-93$. AprilSeptember, 1918.
17. Hessler, J.O. "General Solence in the first year". Sohool Science \& Kathematios 16:407-411, 1916.
18. Herring, J.P. "Measurements in scientific thinking". Jr. of Ed. Psy. 9:535-58. 1819.
19. Henmon, V.A.C.
20. Jones, F.T.
21. MCCall, W.A.
22. Posey -
23. Powers, S.R.
24. Randall, Chapman \& Sutton
25. Rice, J.M.
26. Pivett, B.J.
27. Ruch, G.M.
28. Ruch, G.M.
29. Fuch, G.M.
30. Staroh, D.
31. Powers, S.R. "Chemistry test". Published by Morld Book Co.
"Some limitations of educational tests". Jr. of Ed. Research.Vo1.7. No.3. pp.185-198, 1923.
"Practice exeroises in Physios and Chemistry". School Review 26: 341-48. 1918.
"How to measure in Education". The Maomillan Co. N.Y. 1922. pp. 398-407.
"Posey-Van Wagenen Geography Soale". Public Sohool Publishing Co. Bldomington, Illinois.
"A History of the teaching of Chemistry in the secondary sohools of the United States previous to $1850^{\prime \prime}$. Research Publioations of the University of Minnesota. No.13, p.16.
"The plage of the numerioal problem in high school Physios". School Review 26:39-43.1918.
"The futility of the spelling grind". The Forum 23:163-172, 409-419, 1897.
"Testing results in Chemistry". Sohool Solence \& Mathematios. 19:742-745. 1919.
"A range of information test in General soience". General Solence Quarterly 4:357-62. 1919.
"A range of information test in General Science: preliminary data on standards." General science Quarterly 5:15-18. 1920.
"A new test in General Soience". General Soience Quarterly 7:188-197. 1923.
"Educational Measurements". The Macmillan Co. N.Y. 1916.
32. Trabue, M.R. "Completion Test Language Soalas". Teaohers College Contributions to Education $\$ 77$. Columbla University, 1916.
33. Thurstone, L.L. "Test V. Physios". Carnegie Institute of Technology, P1ttaburgh.
34. Twiss, G.R. "A taxtbook in the prinoiples of soienoe teaching". The Kaomillan Co. II.Y. 1921. pp. 411-435.
35. Webb, H.A. "Quantitative analysis of General Solence", Sohool Soience \& Kathematios 17:534-45. 1917.
36. Webb, H.A.
37. Webb, H.A.
38. Woody, C. Measurementa of some aohlevements in arithmetio". Teachera College Contributions to Education \#80. 1916.
39. U.S. Bureau of Eduoation
"General Soience instruation in the grades". George Peabody Collage for Teachera. Contributions to Eduastion H. Mashvilie, Tenn. 1921.
"A preliminary test in Chemiatry". Jr. of Ed. Psy. 10:36-43. 1918.
"Cardinal Prinoiples of Secondary Education". Builetin, 1918, Wo. 35.
40. Ullrioh, F.T. "Tests in agrioulture". State Hormal Sohools Platteville, Fisconsin.
41. Van Wagenen, M.J. "English Compoaition Soale". Publiahed by the Torld Book Company.
42. Van Wagenen, M.J. "Posey-Van Tagenen Geography Soale", Publiahad by Publio Sohool Publishing Company, Bloomington, Illinois.

[^0]: * See Appendix I
 **See Appendix II

 1. Cardinal Principles of Secondary Education. U. S. Bureau of Education Bulletin, 1918, No. 35.
[^1]: *Standard deviation on first test.
 **Standard deviation on retest.

[^2]: *Numerical basis for awarding scholarship honors.

[^3]: *Adapted from the Posey-Van Wagenen Geography Scale Scoring and Instruction Sheet.

[^4]: *Adapted from the Pesey-Van Wagenen Geography Scale Scoring and
 Instruction Sheet.

[^5]: * These marks were in percents, not letters.

[^6]: * Unpublished data.

[^7]: 188

