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In this paper, a quantitative study of acoustic-to-articulatory inversion for vowel speech sounds by

analysis-by-synthesis using the Maeda articulatory model is performed. For chain matrix calcula-

tion of vocal tract (VT) acoustics, the chain matrix derivatives with respect to area function are cal-

culated and used in a quasi-Newton method for optimizing articulatory trajectories. The cost

function includes a distance measure between natural and synthesized first three formants, and pa-

rameter regularization and continuity terms. Calibration of the Maeda model to two speakers, one

male and one female, from the University of Wisconsin x-ray microbeam (XRMB) database, using

a cost function, is discussed. Model adaptation includes scaling the overall VT and the pharyngeal

region and modifying the outer VT outline using measured palate and pharyngeal traces. The inver-

sion optimization is initialized by a fast search of an articulatory codebook, which was pruned using

XRMB data to improve inversion results. Good agreement between estimated midsagittal VT out-

lines and measured XRMB tongue pellet positions was achieved for several vowels and diphthongs

for the male speaker, with average pellet-VT outline distances around 0.15 cm, smooth articulatory

trajectories, and less than 1% average error in the first three formants.
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I. INTRODUCTION AND REVIEW OF PREVIOUS WORK

Acoustic-to-articulatory inversion or speech inversion is

the problem of recovering the vocal tract (VT) shapes that

produced a given speech signal. Potential benefits of suc-

cessful inversion include the use of estimated articulatory

parameters for efficient speech coding and improved speech

recognition, computer-aided language learning using recov-

ered VT outlines, and improved understanding of speech

production, e.g., coarticulation.

Data-driven methods based on artificial neural networks

(such as mixture density networks), Kalman filters, hidden

Markov models, and other techniques have become popular

in recent years.1–8 Here, we focus instead on analysis-

by-synthesis methods where inversion is performed by

adjusting the parameters of an articulatory synthesizer to

match acoustic features computed from the input speech,9–12

as shown in the block diagram in Fig. 1. Such methods would

lead to a better understanding of the speech process and

improved speech production models. Discussions of several

techniques may be found in Refs. 12–14.

The main challenges faced in inversion by analysis-by-

synthesis are as follows:

(1) Complexity of speech production models: Since the

articulatory-to-acoustic or forward mapping in the loop

of Fig. 1 is computationally expensive, efficient techni-

ques need to be developed for optimizing articulatory

parameters.

(2) Inherent non-uniqueness of the inverse mapping and

local optima of the cost function: It is known from per-

turbation theory that for a lossless acoustic tube, both the

poles and zeros of the input impedance are needed to

determine the area function. Since only poles (formant

frequencies) can be estimated from the speech signal of

a vowel, for a theoretical, lossless VT, an infinite number

of different VT area functions can result in a given set of

formant frequencies.15,16 Even for a lossy VT, it is a

mathematical fact that an infinite number of different

area functions exist that can produce the same first few

formant frequencies and amplitudes, if the area function

space is of higher dimension than the space of the first

few formant frequencies and amplitudes.9 In an empiri-

cal study using simultaneously measured acoustic and

articulatory x-ray microbeam (XRMB) data (discussed

later) of one speaker, it was found that the set of articula-

tory configurations producing similar acoustics was

unimodal/unique for most speech sounds, but multimo-

dal/non-unique for a few (/r/,/l/, and /w/).17 The use of

articulatory models to constrain the VT area function,

regularization and continuity terms in the cost function,

and initialization using articulatory codebooks helps to

resolve the non-uniqueness and local optima issues in

analysis-by-synthesis.9,11–14,18

(3) Incomplete knowledge about the shape and dynamics of

the VT for a given speaker.

(4) Insufficient data to learn from or to evaluate inversion

results.

Therefore, the main issues are choice of acoustic fea-

tures, the articulatory-to-acoustic mapping, the cost function

to be optimized, construction and search of articulatory
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codebooks to initialize the optimization, the optimization

techniques used, and evaluation of results.

The VT resonances are important for characterizing VT

acoustics and for perception and are closely related to the

VT shape. For vowels, acoustic distance measures between

natural and synthesized formant frequencies are, therefore,

often minimized.18,19 Cepstral distance measures are also

useful and very flexible11,20,21 and will be discussed below

in Sec. II E.

Articulatory models decrease non-uniqueness by constrain-

ing the area function to be similar to those from human talkers.

The Mermelstein22 and Maeda23 models describe the VT mid-

sagittal outline and area function using a relatively small num-

ber of parameters (ten for the Mermelstein model and seven for

the Maeda model) which control the shapes and positions of

articulators such as the jaw, tongue, lips, and larynx.

The non-uniqueness of the inverse solution can also be

resolved by including regularization and continuity terms in

the optimization cost function.11,13,18,19 The regularization

term is designed to discourage VT configurations farther from

the mean or neutral position and usually takes the form of the

sum of squares of articulatory parameters minus their nominal

values.18,19 The continuity term can be the “geometric” dis-

tance from the articulatory parameters of the previous frame

in a frame-wise optimization13 or sum of squares of the first

time-derivatives of articulatory parameters over several

frames for global optimization over the speech segment.19

The continuity terms also result in smoother estimated articu-

latory trajectories, which are desirable since human articula-

tion is controlled by muscles of finite power, and therefore,

human articulatory trajectories are necessarily smooth.

An articulatory codebook is used to initialize the optimi-

zation because of the computationally intensive forward map-

ping and local optima of the cost function.9,12–14 The

codebook consists of articulatory vectors and corresponding

computed acoustic vectors and is designed to cover both the

articulatory and acoustic spaces with low redundancy. There

is, hence, a trade-off between codebook size and resolutions

in articulatory and acoustic spaces. The issues involved in the

design and search of the codebooks are discussed in greater

detail in Refs. 13 and 14. Codebooks specially constructed by

dividing articulatory space into hypercubes within which the

articulatory-acoustic mapping is approximately linear have

also been used to obtain inverse solutions.19 Since the cost

function includes continuity terms, dynamic programming

(DP) is used to perform codebook search efficiently.13,19

Techniques that have been used for more refined optimi-

zation of the cost function include direct search methods like

the Hooke–Jeeves and coordinate descent methods, which

do not require the gradient of the cost function,10,13,18

gradient-based methods,11 and iterative solutions of varia-

tional equations.19 A finite difference approximation may be

used for the gradient of the formants with respect to articula-

tory parameters,19 and gradients may be precomputed at

each codevector in the case of the hypercube codebook in

Ref. 19. Genetic algorithms that do not use a codebook have

also been used.24

VT outlines estimated by inversion for static vowels and

fricatives have been compared against XRMB measurements

of gold pellets placed on the tongue,18,25 and VT outlines

estimated for static vowels have been compared against real

VT shapes from the x-ray images.26 Simultaneously

recorded articulatory and acoustic data that are publicly

available include the XRMB speech production database

from the University of Wisconsin, Madison,27 and the Edin-

burgh multi-channel articulatory (MOCHA) database.28 In

the XRMB database, articulatory data are available in the

form of XRMB measurements of gold pellets placed on the

tongue, teeth/jaw, and lips, along with simultaneously

recorded acoustic data, for several speakers uttering a series

of tasks. In the MOCHA database, similar articulatory data

are available from electromagnetic articulography (EMA).

In both databases, no information is available in the pharyn-

geal region, since all XRMB pellets or EMA coils were

placed either in the oral cavity or on the face. However,

except for the larynx, some information is available on the

positions of all the other important articulators (jaw, tongue

body and tip, and lips). A reasonable geometric error mea-

sure for inversion can, therefore, be obtained by comparing

estimated VT outlines against measured positions of tongue

and lip XRMB pellets. The available geometric information

may also give clues as to the weights or constraints that need

to be placed on the displacements of different articulators in

order to more accurately recover the VT shape for a particu-

lar speaker and speech sound.

In this paper, we perform a systematic study of acoustic-

to-articulatory inversion for non-nasalized vowel sounds by

analysis-by-synthesis using the Maeda articulatory model

and the XRMB database. We use the first three formants as

acoustic features and develop efficient algorithms for code-

book search and subsequent convex optimization. Calibra-

tion and adaptation of the Maeda model are discussed in

detail for two speakers, one male and one female, from the

XRMB database. Adaptation of the model includes scaling

the overall VT and the pharyngeal region separately, modify-

ing the model outer VT outline using measured palate and

pharyngeal wall traces. XRMB dynamic articulatory data

were also used to prune the codebook and improve inversion

results. Inversion results are presented for the male speaker,

and after quantifying both acoustic and geometric errors in

inversion, error analysis is performed.

Sections II to V B of this paper are organized around the

block diagram in Fig. 1, and the details of the different quan-

tities and blocks in the figure are described. The articulatory-

to-acoustic mapping, including the Maeda articulatory

FIG. 1. Acoustic-to-articulatory inversion using analysis-by-synthesis.
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model, chain matrix (CM) acoustic simulation, computation

of cepstra and formants, and choice of acoustic features, is

described in Sec. II. The inversion cost function is given in

Sec. III and its minimization using an articulatory codebook

for initialization and subsequent convex optimization are

described in Secs. IV and V. Calibration and adaptation of

the Maeda model are addressed in Sec. VI. Inversion results

and error analysis are presented in Sec. VII and discussed in

Sec. VIII.

II. THE ARTICULATORY-TO-ACOUSTIC MAPPING

Figure 2 shows the block diagram of the articulatory-to-

acoustic mapping used in our work.

A. The Maeda articulatory model

In the Maeda articulatory model,23 the outer midsagittal

VT outline consisting of the hard and soft palates (velum)

and rear pharyngeal wall is fixed for a speaker (except for

larynx height). The dependence of the inner midsagittal VT

outline on parameters is shown in Fig. 3. The inner VT out-

line is controlled by seven parameters: Jaw position, tongue

body position and shape, tongue tip position, lip height and

protrusion, and larynx height. The VT outlines are described

using a system of semi-polar grid lines, and the offsets, v, of
the inner VT outline along the grid lines are obtained as a

linear combination of basis offset vectors,

v ¼ Vpþmv; (1)

where p is the articulatory parameter vector, V is the matrix

containing the basis offset vectors, and mv is the mean offset

vector. V and mv were obtained from a factor analysis of

tongue shapes. The parameters, pi, 1 � i � 7, are normalized

by mean and standard deviation and vary in the range

[�3, 3].

Midsagittal widths, d(x), along the length of the tract x

are converted to areas using the heuristic formula:23,29

AðxÞ ¼ aðxÞdðxÞbðxÞ; (2)

where a(x) and b(x) are ad hoc coefficients that vary along

the tract. Using the semi-polar grid, the area function is

obtained as a sequence of varying areas and lengths of 29

uniform tubes. The lengths of the tube sections in the area

function are the distances between the midpoints of consecu-

tive midsagittal grid line segments between the outer and

inner VT outlines.

B. CM computation of VT acoustic response

The CM method is one of the preferred approaches for

computing the acoustic response of the VT given its area

function.13,30 Here, the pressure, P, and volume velocity, U,

at the input and output of an acoustic tube, for a linear wave,

are related in the frequency domain by

Pout

Uout

� �

¼
A B
C D

� �

Pin

Uin

� �

; (3)

where the subscripts in and out denote the input and the out-

put of the tube, respectively. A, B, C, and D are referred to

as the chain parameters of the tube, and the matrix formed is

called the CM.

If the VT for a non-nasalized vowel sound is approxi-

mated as a series of N uniform tubes starting at the glottis

and ending at the lips, the overall CM, K, is just the product

of the individual CMs:

K ¼ KN � KN�1 � � � � � K1; (4)

where Kn is the CM of the nth tube. The transfer function of

the VT for a non-nasalized vowel sound may then be shown

to be

H ¼
UL

UG

¼
1

ðA � CZLÞ
; (5)

where UG and UL are the volume velocities at the glottis and

lips, respectively, A and C are the elements of the CM of the

overall VT, and ZL is the radiation impedance at the lips of-

ten approximated by that of a pulsating disk of air at the

FIG. 2. Articulatory-to-acoustic map-

ping, computation of formants.

FIG. 3. Maeda articulatory model (Ref. 23): Dependence of inner midsagittal

VT outline on parameters (reprinted with permission from Ref. 19, Copyright

2005, Acoustical Society of America). The parameters are as follows: P1, jaw

(up/down); P2, tongue body position (front/back); P3, tongue body shape

(arched/flat); P4, tongue tip position (up/down); P5, lip height (up/down); P6,

lip protrusion (front/back); and P7, larynx height (up/down).
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mouth opening.31 The CM method may also be extended to

compute VT transfer functions for other speech sounds such

as nasals, nasalized vowels, fricatives, and laterals.13,30–33

C. CM for the Sondhi–Schroeter model of the VT

In our work, we follow the Sondhi–Schroeter model for

wave propagation in a VT used in Refs. 12, 13, 30, and 34,

where frequency dependent losses due to air viscosity, heat

conduction, and yielding tract walls are taken into account.

For this model, the CM parameters of a uniform lossy cylin-

drical tube of area A (not to be confused with the CM param-

eter A) and length L at angular frequency x are given by30

An ¼ cosh
rLn

c
; Bn ¼ �

qcc

An

sinh
rLn

c
; (6)

Cn ¼ �
An

qcc
sinh

rLn

c
; Dn ¼ cosh

rLn

c
; (7)

where q is the density of air, and c is the speed of sound in

air. Details on the values of the different parameters and the

formulae for calculating c and r are given in Ref. 30. The

important thing to be noted is that c and r are only functions

of frequency and do not depend on the area or the length of

the tube.

The CM and the transfer function are typically com-

puted for a set of equally spaced frequencies, and then used

to compute quantities of interest like cepstra, the all-pole lin-

ear predictive coding (LPC) spectral envelope, and formant

frequencies.

D. Computation of formants

The steps involved in the computation of formants for

given Maeda model parameters p are shown in Fig. 2. First

the VT area function is obtained as a series of N uniform

tubes of varying areas and lengths: fA,Lg, A ¼ [A1,A2,… ,

AN] and L ¼ [L1,L2,… ,LN]. The CM method is then used to

compute the VT transfer function [H, Eq. (5)]. The magni-

tude of the VT transfer function is

Tð f Þ ¼ jHð f Þj ¼
1

jA � CZLj
; (8)

where A and C are the elements of the overall CM of the

VT, and ZL is the radiation impedance at the lips. T( f ) is

computed at frequencies fi ¼ i � ðFmax=Nf Þ; 0 � i � Nf ,

where (Nf þ1) is the number of frequency samples, and Fmax

¼ fs=2, where fs is the speech sampling frequency, for com-

parison with natural acoustic features.

The formant frequencies can then be computed from the

roots of the denominator polynomial of an all-pole envelope

fitted to Tð fiÞ; fi ¼ i � ðFmax=Nf Þ; 0 � i � Nf using spectral

linear prediction.36

The most computationally intensive step in Fig. 2 is the

calculation of the VT CM using Eqs. (4)–(7), since there

may be up to N ¼ 30 sections in the area function, and T( f )

may be desired at Nf ¼ 30 or more frequency points depend-

ing on the sampling rate and frequency resolution.

E. Choice of acoustic features

The formants have a close relationship with the VT

shape, and the first three formants are, therefore, often used

as acoustic features for inversion of vowels.18,19 However,

formant estimation can be difficult for high-pitched talkers,

consonants, and semi-vowels.

As described in Sec. II B, the acoustic quantity that is cal-

culated first during articulatory synthesis is the VT transfer

function. The calculation of formants involves finding the

roots of an all-pole model fitted to samples of the transfer

function at a set of uniformly spaced frequencies. It would,

therefore, be computationally simpler to match the computed

VT transfer function with natural speech signal spectra than

matching computed and natural formants. Matching spectra

would also effectively result in matching the formant spectral

peaks, and explicit formant estimation would not be necessary.

However, it is difficult to directly compare computed

spectral magnitude values with estimated natural values. The

natural spectrum first needs to be smoothed, the voice source

spectral tilt needs to be removed, and sensitivity to formant

bandwidths needs to be decreased due to inaccuracies in the

speech production model. The raised sine lifter introduced in

Ref. 20 may be used to decrease the spectral tilt resulting

from the voice source and to emphasize the formant peaks.

Mel frequency warping is also used to account for the fact

that perturbations of the logarithm of the area function more

linearly affect the logarithms of the formant frequencies (as

a first order approximation).15 These operations are all per-

formed more conveniently in the cepstral domain and cap-

tured in a linear weighting matrix on cepstra.11,21,35,37

However, in this paper, we first explore formants as acoustic

features for analysis-by-synthesis and quantify and study the

resulting inversion errors. A comparison of analysis-by-synthesis

using cepstra and formants is a topic for future work.

III. THE OPTIMIZATION COST FUNCTION

As discussed in Sec. I, the objective function to be mini-

mized (E) is the sum of acoustic (Eacou), regularization

(Ereg), and geometric continuity (Egeo) terms12,18,19

E ¼ Eacou þ cregEreg þ cgeoEgeo; (9)

where creg and cgeo are weights, and

Ereg ¼
X

T

t¼1

jjpðtÞjj2; (10)

Egeo ¼
X

T�1

t¼1

jjpðtþ 1Þ � pðtÞjj2; (11)

where fp(t), 1 � t � Tg is the articulatory vector sequence,

and the Euclidean norm is used. The acoustic term Eacou is

discussed below. Note that the entire articulatory parameter

sequence is simultaneously optimized. The way in which the

weights creg and cgeo are chosen to achieve the occasionally

competing goals of acoustic match, realistic VT shapes, and

smooth articulatory trajectories are discussed in Sec. VII.
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The cost function of Eq. (9) is computed in the “convex

optimization” block of Fig. 1.

A. Acoustic cost with formants

We first explored formants as acoustic features for

analysis-by-synthesis, with the acoustic term in the cost

function being

Eacou ¼
X

T

t¼1

X

3

n¼1

logFnðtÞ � log �FnðtÞð Þ
2
; (12)

where Fn(t) and �FnðtÞ are, respectively, the computed and

natural nth formants for the frame at time t. It is well known

that

j logF� log �Fj �
jF� �Fj

�F
: (13)

for small values of the right hand side therefore, Eq. (12)

approximately measures the sum of the squares of the rela-

tive errors in the formants, with the approximation becoming

increasingly accurate as the relative errors decrease. The

error in the left hand side (LHS) is less than 2.5% when the

right hand side (RHS) is 0.05, and the error in the LHS is

less than 0.5% when the RHS is 0.01.

The limitation in the number of formants used is mainly

due to the loss in accuracy of the speech production acoustic

model at higher frequencies. At frequencies above around

3 kHz (e.g., see Ref. 38), the assumption of plane-wave

propagation starts to break down, and the effect of transverse

modes in the VT becomes more significant. Other possible

sources of error in computed acoustics include inaccurate

modeling of losses, zeros due to side branches such as piri-

form sinuses, etc. With a more accurate acoustic model, a

larger spectral frequency range including the fourth and

higher formants could help reduce inversion ambiguity and

needs to be investigated. But, it is still of interest to see how

successful inversion can be with limited acoustic informa-

tion using a commonly used acoustic model.

IV. CONSTRUCTION AND EFFICIENT SEARCH OF
THE ARTICULATORY CODEBOOK

As discussed in Sec. I, a codebook is needed to initialize

the analysis-by-synthesis because of the computationally in-

tensive forward mapping, local optima, and the non-unique-

ness of the inverse mapping.

A. Codebook construction and pruning
using XRMB data

We followed the method of codebook construction

using log formant bins described in Ref. 21. Formant vectors

are conveniently lower dimensional and also important for

characterizing VT acoustics.

We first obtained 2 � 106 random articulatory configu-

rations with a minimum area along the VT greater than

0.05 cm2, and total VT length between 14 and 19 cm (the

VT length for the nominal configuration of the Maeda model

is around 16.3 cm). These ranges of area and length are wide

for vowels, which usually have minimum areas greater than

0.15 cm2, and areas smaller than 0.1 cm2 typically result in

frication.14 The corresponding acoustic vectors were calcu-

lated for the random samples. With a log formant bin width

corresponding to 15% relative error and an1-norm of 0.8 in

articulatory space, the codebook size was around 230 000

vectors. Constraining the minimum area to be greater than

0.15 cm2, we obtained a pruned codebook of around 180 000

vectors.

This large codebook still contains many unrealistic

articulatory configurations, which may hinder the retrieval of

realistic articulatory trajectories for an input acoustic vector

sequence. While the Maeda model imposes some realistic

constraints on VT shapes, combinations of extreme values of

Maeda parameters often result in unrealistic configurations.

Some of these could be eliminated with more information

about VT geometry during speech.

We developed a novel method to further prune the code-

book using the tongue and lip pellet positions measured in

the XRMB database. First, the Maeda model VT outlines

were shifted (and scaled if necessary for a given speaker) so

that the model and measured palate positions behind the

teeth are aligned (as in Figs. 11–16 in Sec. VII). The speech

utterances of the speaker in the XRMB database were seg-

mented using a simple energy-based endpoint-detector. Each

XRMB measurement frame includes the positions of four

pellets on the tongue and two lip pellets (except for errors

such as pellet detachment). Lip pellets were shifted verti-

cally by the approximate height between them during a token

of /m/ for the speaker, for comparison with the lip height

from the model. Cubic spline interpolation was used to

obtain a partial tongue outline from the tongue pellets. From

the intersections of the partial tongue outline with the grid

lines used in the Maeda model, the offsets along some (typi-

cally around 12) of the grid lines may be obtained.

For one out of every five XRMB frames (i.e., approxi-

mately every 34.5 ms), “measured” lip height and partial

tongue grid offsets were determined, and the distances d

from corresponding tongue grid offsets and lip heights for all

codebook vectors were determined. By eliminating all code-

vectors sufficiently distant (i.e., with d greater than a thresh-

old) from any of the measured configurations, the codebook

size was greatly reduced. Taking d to be the maximum mag-

nitude difference, for a threshold of 0.15 cm, the codebook

size was around 43 000.

B. Codebook search

The bin structure of the codebook in the formant domain

can also be exploited for efficient search. First, the bin con-

taining an input formant vector is identified, and the search

at time t then continues only in it and neighboring bins.

For dynamic speech segments, since the cost function

includes the geometric distance, the search for the optimal

codevector sequence involves DP.12 For the DP search, we

used two kinds of pruning. At each time t, from the identified

formant bins, only the best n1 codevectors according to Eacou
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þ Ereg were considered for the DP iteration, and after the

iteration, only n2 codevectors were retained for the next iter-

ation. Good search results were obtained even with n1 ¼ 200

and n2 ¼ 20, for a fraction of the original search time. The

DP search may be further improved by using distance beams

to prune paths instead of n1-best and n2-best sorting.

V. CONVEX OPTIMIZATION OF THE COST FUNCTION

A. Broyden-Fletcher-Goldfarb-Shanno (BFGS)
quasi-Newton method and derivatives
of the cost function

Further optimization is needed after codebook initializa-

tion to obtain both a better acoustic match with the input

speech and smoother articulatory trajectories.

We developed an efficient way of calculating the deriva-

tive of the CM of the VT with respect to the area function,

since the computation of the VT CM is the most expensive

step in synthesis as noted at the end of Sec. II. This was then

used in the BFGS39 quasi-Newton method to optimize the

cost function of Eq. (9). The BFGS method has better (super-

linear) asymptotic convergence than some other methods

used in the past for optimization of area functions. The direct

search methods of Refs. 12 and 18 and the iteration in the

variational approach of Ref. 19, which appears to be a type of

fixed point method, have linear convergence.

The BFGS method requires @E=@p, the gradient of the

cost function with respect to articulatory parameters.

Although the articulatory parameter trajectory is simultane-

ously optimized, here we ignore time dependence for the sake

of clarity. @Ereg=@p and @Egeo=@p can easily be calculated

from Eqs. (10) and (11). Details may be found in Ref. 37. The

functional dependencies in computing Eacou are (see Fig. 2)

p ! fA;Lg ! T ! BðzÞ ! z ! F ! Eacou; (14)

where z are roots of B(z), and F are formants. @Eacou=@p can

be computed by applying the chain rule for derivatives.

@Eacou=@F is relatively straightforward to calculate from Eq.

(12), as is @F/@z from zi ¼ ej2pFi/fs (where the notation @x=@y
is used to denote the matrix of partial derivatives

[@x(i)=@y(j)] when x and y are both vectors). Calculation of

@z=@T involves calculating derivatives of the roots of a

polynomial with respect to its coefficients and derivatives of

the auto-correlation sequence calculated from T with respect

to T (involved in the LPC spectral fit).36 @A=@p and @L=@p
can be calculated from the equations of the Maeda articula-

tory model, which were discussed in Sec. II A.

We focus on the step fA,Lg ! T, i.e., the CM calcula-

tion of the VT transfer function, which is the most computa-

tionally intensive step.

B. CM derivatives with respect to the area function

By Eq. (8), T depends on the CM parameters A and C of

the VT and the radiation impedance ZL. Therefore, to com-

pute @T=@A and @T=@L, we need to compute the derivatives

of A and C, which are given by Eqs. (4)–(7), with respect to

fA,Lg. Note that A and C are elements of the matrix K in

Eq. (4). The details of the calculation of @T=@A and @T=@L
from @K=@A and @K=@L may be found in Ref. 37.

We first calculate @K=@An. Observe from Eqs. (6) and

(7) that the CM of each section depends only on its own area

and length and not on those of other sections. This simplifies

the derivative calculation from Eq. (4):

@K

@An

¼ KN � � �Knþ1½ � �
@Kn

@An

� Kn�1 � � �K1½ �: (15)

If we define

Pn ¼ Kn�1Kn�2 � � �K1; 2 � n � N; (16)

Qn ¼ KNKN�1 � � �Knþ1; 1 � n � N � 1; (17)

and let

P1 ¼ QN ¼ I ¼
1 0

0 1

� �

; (18)

then

@KðA;LÞ

@An

¼ Qn �
@Kn

@An

� Pn; 1 � n � N: (19)

From Eqs. (6) and (7), we can show

@An

@An

¼ 0;
@Bn

@An

¼ �
1

An

� Bn; (20)

@Cn
@An

¼
1

An

� Cn;
@Dn

@An

¼ 0: (21)

Therefore, @Kn=@An is very easily obtained from An and

the elements of Kn.

The partial derivatives with respect to the lengths of the

area function can also similarly be calculated in an efficient

way without much extra calculation.

VI. CALIBRATION OF THE MAEDA MODELTOA
SPEAKER

A. Calibration cost function and method

For analysis-by-synthesis to be able to recover accurate

VT shapes for a given speaker, the Maeda articulatory model

first needs to be calibrated to the speaker. That is, we need to

verify that acoustic features (e.g., formants) computed from

measured VT shapes for the speaker match simultaneously

measured natural acoustic features. Measured XRMB pellet

positions need, therefore, to be fitted by VT outlines from

which acoustic features can be computed. The task of cali-

bration is made more difficult by the fact that the XRMB

pellets do not give any information on the tongue shape in

the pharyngeal region. Fitting VT outlines to XRMB pellets,

therefore, involves both interpolation of the tongue shape

between pellets in the oral region and extrapolation of the

tongue shape into the pharyngeal region of the VT. While

only four model grid offsets along the tongue are needed to
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uniquely recover the jaw and three tongue parameters (see

Sec. II A), this could result in parameters outside the nomi-

nal range, discontinuity across frames, and errors at other

grid points, especially, in the pharyngeal region due to mis-

match of the model with the speaker.

Toutios et al.40 used constrained quadratic programming

with variational regularization to obtain continuous Maeda

tongue parameter trajectories within the nominal range of

[�3, 3], fitting four measured EMA sensors on the tongue.

Cubic spline interpolation was used to obtain tongue offsets

between sensor positions. After fitting VT shapes to measured

sensor positions, they verified that measured natural formants

lay within the range of variation of computed formants, when

the larynx height parameter was varied within [�3,3].

For calibration of the Maeda model to a speaker, it is nec-

essary to verify that there exist articulatory parameters within

the nominal range of [�3,3], such that geometric perpendicu-

lar distances between VT shapes and measured pellet posi-

tions and acoustic distances between computed and measured

acoustic features are both simultaneously small for a set of

calibration frames. A general calibration method may, there-

fore, be developed by including an acoustic distance term in

the cost function used to fit VT shapes to measured pellet

positions in Ref. 40. This is equivalent to adding an extra term

to the cost function for inversion [Eq. (9)] that measures the

distance between VT shapes and known pellet positions.

The cost function of interest for calibration is

Ecalðp;HÞ ¼ Eacou þ cfitEfit þ cregEreg þ cgeoEgeo; (22)

where Eacou is as in Eq. (12), creg, Ereg, cgeo, and Egeo are as

in Eqs. (9)–(11), cfit is a weight, and Efit measures the error

in the fit between the tongue pellets and the VT outline:

Efit ¼
X

T

t¼1

jjVpðtÞ þmv � vðtÞjj2; (23)

where v(t) are the interpolated tongue offsets along model

grid lines in the oral region, V is the matrix of corresponding

basis offset vectors, and mv is the corresponding mean offset

values [see Eq. (1)].

H in Eq. (22) consists of different various parameters

and “constants” of the Maeda model that could vary with

speaker, including41

(1) overall geometric (length) scaling factor or separate scal-

ing factors for the oral and pharyngeal portions of the VT,

(2) the outer VT outline,

(3) V and mv [Eqs. (1) and (23)], and

(4) the coefficients used to convert midsagittal widths to

cross-sectional areas [a(x) and b(x) in Eq. (2)].

For fixed H, codebook search and BFGS optimization

can be used to optimize Ecal(p,H) only as a function of p as

in Secs. IV B and V for inversion. After optimization, low

values for Efit and Eacou would indicate that the model is cali-

brated for the chosen vowel sounds for the speaker. If it is

not possible to make Efit and Eacou simultaneously small,

then the Maeda model (i.e., H) would have to be adapted to

better fit the speaker.

The optimization approach we have developed in this

paper has the advantage that it can be modified or extended

without much difficulty to adapt all these different parame-

ters in H. For example, when only a partial outer VT outline

is available, as in the XRMB database, we can fix all other

parameters in H, fix the Maeda parameters p to fit measured

pellets for a set of calibration vowel frames (i.e., obtain a

low value of Efit), and then optimize Ecal(p,H) only as a

function of the outer VT outline to improve the acoustic

match and the calibration.

We used the first three formants of the cardinal vowels

/a/, /i/, and /u/ to perform calibration. Since these three cardi-

nal vowels capture to some extent the range of variation of

VT shapes and formants for a speaker, a match for these

would be a minimum requirement from a calibration

method. In total, six frames from Task 14 were used, two for

each cardinal vowel. The formant-based cost function of Eq.

(12) was used for Eacou. Since we use static vowel frames,

cgeo ¼ 0 in Eq. (22). We also take creg ¼ 0 unless resulting

parameters lie outside the nominal range.

The following steps are used for calibration:

(1) We first obtained tongue shapes in the oral region by an

average of cubic spline (used in Ref. 40) and Hermite

cubic polynomial interpolation between XRMB pellets.

Cubic spline interpolation sometimes results in over-

shoot of the interpolated tongue shape over the palate in

some cases when pellets were very close to the palate as

in /i/. Hermite polynomial interpolation maintains

monotonicity of the interpolated shape between samples,

and averaging the two polynomials gave a trade-off

between smoothness and monotonicity. To obtain tongue

grid offsets, Maeda model VT outlines were shifted so

that the model and measured palate positions behind the

teeth are aligned. Lip pellets were shifted vertically by

the approximate height between them during a token of

/m/ for the speaker and horizontally averaged and shifted

by an ad hoc speaker-specific distance.

(2) Then, the Maeda model outline was scaled so that the

rear pharyngeal wall outline of the model is approxi-

mately aligned with that of the speaker by a visual match.

This gives a VT length scaling factor. In our work, the

overall VT scaling factor was applied with respect to the

reference female speaker of the Maeda model.

(3) The outer outline of the model is modified using the par-

tial palate and pharyngeal traces available for the speaker

from the XRMB database. There is an important point to

be noted while modifying the pharyngeal portions of the

model’s outer VT outline to match the measured pharyn-

geal trace for the speaker. The pharyngeal trace provided

in the XRMB database extends, for some speakers, from

a point in the laryngo-pharynx or oro-pharynx to a point

in the naso-pharynx as can be seen from the example Fig.

5.9 in the XRMB database manual.27 Since the naso-

pharynx is not used for vowel production, the upper point

of the pharyngeal trace provided for the speaker in the

XRMB database cannot be used to adapt the Maeda

model pharyngeal outline for these speakers. Only the

lower portion of the provided pharyngeal trace may be
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reliable for the purpose of model adaptation. Also, as

noted in Ref. 27, the XRMB pharyngeal traces are only

coarse approximations derived from VT images that are

not very sharp.

The unknown portions of the outer VT outline are initial-

ized to the corresponding portions of the nominal model

outline.

(4) A large number (e.g., 2 � 105) of random parameter

combinations are obtained, uniformly distributed in the

nominal range.

(5) The random set of parameters above is pruned to elimi-

nate those articulatory vectors with outlines that extend

beyond the partial palate and pharyngeal traces available

for the speaker from the XRMB database. For the pruned

random codebook, acoustic vectors (first three formants)

are computed.

(6) For each calibration analysis frame, the adaptation code-

book is searched using Eacou þ cfitEfit, with the value of

cfit chosen large enough (we used 0.01) to emphasize the

fit of the VT outline to the measured pellets more than

the acoustic match. The acoustics computed from the pa-

rameters may not be very accurate due to model mis-

match, sparseness of codebook sampling, or due to the

unknown portions of the speaker’s actual outer VT out-

line being very different from the model’s nominal outer

VT outline. However, the inclusion of acoustic distance

in the codebook search serves to regularize the geometric

fit, and the parameters obtained by codebook search will

be in the nominal range, approximately fit the measured

tongue pellets and shifted lip pellets, and also be such

that the computed acoustic features match measured

acoustic features approximately.

(7) The unknown portion of the outer VT outline and the lar-

ynx height parameter (P7 in Fig. 3) for each frame are

simultaneously adjusted using all calibration analysis

frames to minimize Eacou. Since the outer VT outline is

fixed in the Maeda model, adjusting it will affect the acous-

tics of all sounds. Therefore, the outer VT outline needs to

be adapted using all calibration frames together. We also

combined the adaptation of the outer VT outline with the

optimization of P7 for each frame as P7 is left free by

the tongue pellet data and needs to be determined using the

acoustics. A continuity/smoothness cost on the optimized

outer VT outline is also included. The parameters P1 to P6

obtained via the codebook search in the previous step are

kept fixed, as they determine the fit of the inner VT outline

to the measured tongue and shifted lip pellets.

(8) One parameter to adapt at this point is the pharyngeal

scaling factor. An indication that this needs to be adapted

will be given by out-of-range values of P7 in the optimi-

zation above or by errors in the computed third formant

of /u/ and the second formant of /i/ which depend upon

the pharyngeal cavity. The range of pharyngeal sections

to scale would be decided by the lowest point of the pha-

ryngeal outline trace provided in the XRMB database.

An optimal pharyngeal scaling may be chosen from a

discrete set of values (for example, from 0.7 to 1.3 with

spacing of 0.01) so that the average error in the third

formant of /u/ and the second formant of /i/ is mini-

mized. The pharyngeal scaling factor was applied over

the overall VT scaling factor chosen in step 2 above.

(9) Finally, the calibration cost function Eacou þ cfitEfit is opti-

mized with respect to the articulatory parameters, keeping

the outer VT outline fixed. If the resultant parameters lie out-

side the nominal range, the regularization cost Ereg is also

included. The weight creg can be varied to satisfy the param-

eter limits while reducing Eacou and Efit as much as possible.

After this, both Eacou and Efit should be sufficiently

small, for example, with less than 3% error in the first three

formants, and less than 0.1 cm average error in offsets, and

the optimized parameters should be within the nominal

range, to indicate that calibration is verified.

The steps involving the codebook formation and search

are there for taking into account the acoustic cost. These can

be skipped to simplify the process, if parameters obtained by

optimizing just Efit (if necessary with parameter range con-

straints) already satisfy the calibration requirements of small

Eacou and Efit. A simple way to force parameters to lie in the

nominal range is using the regularization cost Ereg in addi-

tion to Efit, with the resulting optimization just a regularized

least squares problem.

In the calibration steps above, changing either the articula-

tory parameters or the model speaker-dependent parameters

such as the other VT outline and the pharyngeal scaling factor

will affect the acoustic match and/or the fit of the model out-

lines to the measured pellets. Some iteration of steps 5–9 may,

therefore, be needed to achieve calibration by this method.

If the calibration requirements of small Eacou and Efit are

not satisfied, then the model is not satisfactorily calibrated.

The above calibration steps considered adaptation of the

Maeda model using length scaling factors for oral and pha-

ryngeal regions and modification of the outer VT outline,

optimizing its unknown portions. Failure to calibrate the

model by adapting these parameters indicates that some

other basic aspect of the model needs to be adapted, such as

the range of allowable parameters, or the basis offset vectors

or the coefficients a(x) and b(x) used to compute area func-

tions from midsagittal widths. Rotation of the model to bet-

ter fit the speaker’s articulatory data should also be

considered.

We evaluated the inversion method on two XRMB

speakers, one female (“JW46”) and one male (“JW11”). The

two speakers were selected for this initial study based on the

fact that their measured palatal outlines are similar to that of

the Maeda nominal palatal outline (after the palate positions

behind the teeth are aligned). However, the calibration steps

would be the same for other speakers since the model’s outer

VT would be adapted if necessary. We next discuss the cali-

bration of the Maeda model for the two speakers using the

above calibration procedure.

B. Calibration for speaker JW46

For JW46, the best scaling factor for the model shapes

to fit the palate and pharyngeal traces is found to be approxi-

mately 0.94, by a visual match.

Following all the calibration steps listed above, including

the construction and search of the calibration codebook,
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calibration was successful for /i/ and /u/, with parameters

within nominal ranges, less than 3% error in the first three for-

mants, and less than 0.1 cm average distance between tongue

pellets and model outline. A separate pharyngeal scaling fac-

tor was not found to be necessary or useful for speaker JW46.

However, it was difficult to calibrate /a/ for speaker

JW46, as can be seen from Fig. 4. While either the acoustic

or the geometric fit can be improved, it was not possible to

obtain simultaneously, small values for both Eacou and Efit.

From the failure to calibrate /a/ for JW46, it is not clear that

the optimized outer VT outline is even necessary or appro-

priate for the speaker.

One aim of calibration is essentially to verify that the

extrapolation of known tongue shapes in the oral region into

the pharyngeal region performed by the model is appropriate

for the speaker, taking into account the measured acoustic

features for different vowels. For /a/, the acoustic match is

typically obtained with pharyngeal areas being smaller with

respect to oral areas. It seems clear that the model extrapola-

tion into the pharyngeal region is not satisfactory, when the

fit of the outline to tongue pellets is good. This could be due

to the slight raising of the tongue tip for this speaker’s /a/. A

known issue with Maeda model is that changing the tongue

tip parameter also changes areas in the laryngeal region.23

The Maeda model basis vectors could be modified, for

example, by scaling the pharyngeal portions of the basis vec-

tors, without modifying them in the oral region. Also, the de-

pendence of laryngeal areas on the tongue tip parameter could

be removed. This could provide good fit to tongue pellets as

with the unadapted model and also provide satisfactory extrap-

olation in the pharyngeal region to match measured acoustics.

A detailed systematic study of this is beyond the scope of this

paper.

Since the model could not be satisfactorily calibrated

for /a/ of speaker JW46, no inversion results are presented

for this speaker. In earlier work using a speaker independent

codebook, we obtained generally realistic estimated VT

shapes that approximately fit measured pellet positions for

some diphthongs and vowel sequences.37

C. Calibration for speaker JW11

For speaker JW11, with an overall scaling factor of

1.19, a pharyngeal scaling factor of 0.83, and a modified and

optimized outer VT outline, calibration for the three cardinal

vowels was successful with parameters within nominal

ranges, less than 3% error in the first three formants, and

around 0.1 cm average distances between tongue pellets and

model outlines. As mentioned earlier, the overall VT scaling

factor given above is with respect to the reference female

speaker in the Maeda model, and the pharyngeal scaling fac-

tor is applied over the overall VT scaling.

For /i/, tongue outlines are slightly further away from

the palate than measured pellets. We suspect that these errors

may be reduced by adapting the coefficients [a(x) and b(x) in

Eq. (2)] used to convert midsagittal widths to cross-sectional

areas in this region of the palate.

For /u/, it was observed that for model tongue outlines

to fit the measured pellets, the tongue body shape parameter

(P3 in Fig. 3) had to be slightly outside the nominal range.

There was still some acoustic mismatch when the model

tongue outlines did fit the measured pellets, which could

again perhaps be reduced by adapting a(x) and b(x).

Investigation of these issues will be the focus of future

work.

A speaker-specific codebook was constructed for JW11.

VII. RESULTS OF INVERSION EXPERIMENTS

The inversion method was evaluated for speaker JW11

on vowels, diphthongs, and vowel sequences from utterance

Tasks 13–15 of the XRMB database.27 From Task 13, which

consists of words of the form /sVd/, where V is a vowel/diph-

thong, we use the diphthongs /aI/, /OI/, /aU/, and /eI/ from the

words/nonwords “side, soid, sowd, and sayed,” respectively.

From Task 14, we use separately articulated vowels, a list of

FIG. 4. Model VT shapes for /a/ of JW46, after optimization of the outer

VT outline and optimization of Eq. (22) with respect to articulatory parame-

ters. (a) Average pellet-to-VT outline distance is less than 0.1 cm, but the

average formant error is 14.7%; and (b) average formant error is 5.7%, but

average tongue pellet-to-VT outline distance is close to 0.3 cm.
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which may be found in Table I. From Task 15, we use the

vowel sequences /iu/, /iA/, /uA/, /Au/, /Ai/, and /ui/.

We downsampled speech signals to 8 kHz and manually

extracted formants from the LPC analysis of the speech sig-

nals for Tasks 13–15. Frames were centered around times at

which XRMB pellet positions were measured, with a frame

rate of around 146 Hz. A lower frame rate would probably

suffice and will be explored in the future.

A. Codebook search results

The goals of inversion using analysis-by-synthesis are to

obtain a good match between input and synthetic acoustic

features (i.e., low Eacou), realistic estimated VT shape

sequences (related to Ereg), and smooth articulatory trajecto-

ries (low Egeo). The values of creg and cgeo in the cost func-

tion may need to be carefully chosen, as discussed in Sec.

III, to achieve a balance between these three simultaneous

goals. The acoustic and geometric error measures used to

evaluate inversion results are, respectively, the average per-

centage error in the first three formants and the average per-

pendicular distances from measured tongue pellet positions

to the estimated VT outlines (i.e., the corresponding nearest

line segments of the VT outline). Since the lip pellets need

to be translated by ad hoc distances before comparison with

the model lip outline, only a visual match is used here.

For the vowels, diphthongs and vowel sequences from

Tasks 13 to 15, we investigated whether it was possible to

get low acoustic and geometric errors for any combination

of creg and cgeo, for both the unpruned codebook with

184 819 vectors, and the XRMB data-pruned codebook with

43 806 vectors, which were discussed in Sec. IV A.

The results of formant-based codebook search with

varying creg and cgeo are shown in Figs. 5 and 6 for the large

unpruned codebook.

It is seen from Fig. 5(a) that, as expected, the acoustic error

(average percentage error in the first three formants) generally

increases as creg and cgeo are increased. The acoustic error

TABLE I. Task 14 of speaker JW11, inversion errors after codebook search and convex optimization. The vow-

els are arranged in increasing order of average tongue pellet-VT outline distance after optimization. Vowel

labels are given in both Defense Advanced Research Projects Agency (DARPA) and International Phonetic

Alphabet (IPA) formats.

Vowel Average formant error

Average tongue pellet-VT outline

distance

DARPA IPA Codebook (%) Optimized (%) Codebook (cm) Optimized (cm)

OW OU 3.72 2.10 0.14 0.12

EH E 2.20 0.10 0.21 0.17

AH ˆ 2.23 0.12 0.15 0.17

EY eI 1.73 0.22 0.26 0.21

UX u 4.08 0.21 0.27 0.25

IH I 2.14 0.36 0.27 0.30

IY i 1.64 0.07 0.28 0.30

AA A 3.47 0.43 0.22 0.31

AE æ 0.84 0.22 0.38 0.42

AX @ 3.83 1.32 0.35 0.58

AO O 4.31 0.19 0.66 0.65

Average 2.75 0.49 0.29 0.32

FIG. 5. Task 14, codebook search results using unpruned codebook with

184 819 vectors, varying creg and cgeo. (a) Average errors in first three for-

mants; and (b) average distance between tongue pellets and estimated VT

outlines.
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variation for Tasks 13 and 15 is similar to that in Fig. 5(a) for

Task 14. From Fig. 5(b), it is also seen that for Task 14, the geo-

metric errors (average distances between tongue pellet and esti-

mated VT outlines) decrease from higher values to around 0.4

cm and formant errors increase to about 9% as creg is increased.

The geometric errors from codebook search results for Tasks 13

and 15 are shown in Figs. 6(a) and 6(b), respectively.

In inversion by analysis-by-synthesis, the aim is to

improve the geometric fit by reducing the acoustic error,

starting from an initial sequence of articulatory parameters

for which the acoustic and geometric errors are both rela-

tively small. If creg is large, it would not be possible to reduce

the acoustic error much further with convex optimization.

With a well calibrated model, this implies that the geometric

error would also not decrease much. It appears that with the

unpruned codebook, for the selected representative vowels, it

is not possible to obtain values for creg and cgeo that would

give good initial sequences of VT shapes with both acoustic

and geometric errors relatively low, for the three tasks.

The results of formant-based codebook search for vary-

ing creg and cgeo, for the XRMB-pruned codebook of 43 086

vectors, are shown in Figs. 7 and 8.

For the pruned codebook, for Task 14, while the acous-

tic error increases to around 15% as creg is increased over the

same range, the geometric error varies over a smaller range

of between 0.25 and 0.44 cm for the three tasks, for the range

of variation of creg and cgeo. Also, for creg ¼ 0.0001 and cgeo
¼ 0.01, the average geometric error is around 0.20–0.30 cm,

and the average formant error is around 3%. Also note that

the average geometric error is the lowest for both Tasks 13

and 15 for this combination of parameters for the values con-

sidered. This implies that either of these tasks could have

been used to estimate the values of creg and cgeo. The set of

discrete values we have considered here for creg and cgeo is

very sparse, and their values could possibly be more finely

tuned.

B. Results of convex optimization

We fixed creg ¼ 0.0001 and cgeo ¼ 0.01 and performed

convex optimization of the formant-based cost function after

codebook search. The inversion acoustic and geometric

FIG. 6. Codebook search results using unpruned codebook with 184 819

vectors, varying creg and cgeo. Average distance between tongue pellets and

estimated VT outlines for (a) Task 13 and (b) Task 15. FIG. 7. Codebook search results for Task 14 using XRMB data-pruned

codebook with 43 086 vectors, varying creg and cgeo. (a) Average errors in

first three formants and (b) average distance between tongue pellets and esti-

mated VT outlines.
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errors after codebook search and convex optimization are

given in Tables I–III for Tasks 14–15, respectively.

Figure 9 shows an example of articulatory parameters

before (dotted lines) and after (solid lines) optimization for

the vowel sequence /Ai/ from Task 15 of JW11. It can be

seen that the parameters vary more smoothly after optimiza-

tion. Figure 10 shows computed formants after codebook

search and convex optimization compared with natural for-

mants for the same test case.

It is observed from Tables I–III that the formant errors

(related to the acoustic term in the cost function) always

decrease after convex optimization, usually by a significant

amount. Also, articulatory trajectories become smoother af-

ter optimization (related to the continuity term in the cost

function). However, the geometric error between measured

XRMB pellets and estimated VT outlines does not always

decrease after optimization, and in fact the average geomet-

ric error over phonemes increases for both Tasks 14 and 13,

as seen from Tables I and III, respectively. We discuss this

further in Sec. VIII below.

Measured XRMB gold pellet positions are plotted

against the estimated VT outlines and shown for four evenly

spaced frames each from /aI/, /OI/, and /aU/ in Fig. 11, and

for eight evenly spaced frames from /eI/ in Fig. 12, all from

Task 13. For the second half of /aU/, the mouth rounding is

not recovered, and the estimated VT shapes are unrealistic,

with a wide mouth opening. This is not reflected in the geo-

metric error which does not include the error in the estimated

positions of measured lip pellets. Perhaps tighter pruning of

the codebook with XRMB data would eliminate these unre-

alistic shapes for /aU/. For /aI/, while the estimated VT

shapes are realistic and acoustic error is low, the error

between VT shapes and pellets is close to 0.5 cm. The inver-

sion results for /aU/ and /aI/, together with the low acoustic

errors for both, indicate non-uniqueness in the acoustic-to-

articulatory mapping for these cases. Since the inversion

method does not currently handle /s/ and /d/, it does not

FIG. 8. Codebook search results using XRMB data-pruned codebook with

43 086 vectors, varying creg and cgeo. Average distance between tongue pel-

lets and estimated VT outlines for (a) Task 13 and (b) Task 15.

TABLE II. Task 13 of speaker JW11, inversion errors after codebook search and convex optimization. Pho-

neme labels are given in both DARPA and IPA formats. The diphthongs were from the words/nonwords side,

soid, sowd, and sayed, respectively.

Vowel Average formant error

Average tongue pellet-VT

outline distance

DARPA IPA Codebook (%) Optimized (%) Codebook (cm) Optimized (cm)

AY aI 4.08 1.21 0.41 0.49

OY oI 2.64 0.42 0.27 0.33

AW aU 2.87 0.37 0.16 0.26

EY eI 2.38 0.34 0.15 0.12

Average 2.99 0.58 0.25 0.30

TABLE III. Task 15, vowel sequences of speaker JW11, inversion errors af-

ter codebook search and convex optimization.

Vowel

sequence

Average formant error

Average tongue pellet-VT

outline distance

Codebook

(%)

Optimized

(%)

Codebook

(cm)

Optimized

(cm)

iu 3.64 0.16 0.17 0.19

ui 6.20 2.20 0.22 0.26

iA 3.04 0.32 0.13 0.11

Ai 2.28 0.33 0.14 0.10

uA 5.80 1.57 0.28 0.24

Au 5.91 2.43 0.32 0.20

Average 4.48 1.17 0.21 0.18
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capture the context of the diphthongs of Task 14 which were

taken from words/non-words of the form /sVd/. Perhaps the

results could be improved with dynamic information if the

inversion method were extended to fricatives and stops. We

discuss this further below in Sec. VIII. For /eI/, while the error

in recovered tongue shape is small (0.12 cm average tongue

pellet-VT outline distance), there is some error in the recovered

lip pellets. It must be recalled that the lip pellets are shifted by

ad hoc distances and plotted, which inherently has some error.

For /oU/ of Task 14, the average distance between

tongue pellets and estimated VT outline is 0.12 cm, with the

average formant error being 2.12%. Since the constriction

for /oU/ is in the soft palate region where the outer VT out-

line is not really available, there is some acoustic mismatch

after inversion. Inclusion of data from /oU/ in calibration

might improve the acoustic error after inversion for /oU/.

The low inversion errors for /eI/ and /oU/ suggest that

the inversion method is capable of recovering finer articula-

tory contrasts in some cases.

Estimated VT shapes and measured pellets are plotted

for one frame each from nine relatively static vowels from

Task 14 in Fig. 13. Figures 14–16 show the results of inver-

sion of vowel sequences /Ai/, /Au/, and /ui/ of speaker JW11.

These are in increasing order of geometric errors (see Table

III). While the estimated VT shapes for vowel sequences /Ai/

and /iA/ in Task 15 had low geometric error of around 0.10

cm (see Fig. 14 and Table III), the estimated VT shapes for

vowels /A/ and /i/ in static context in Task 14 have larger

errors of around 0.30 cm (see Table I and Fig. 13). The

acoustic errors were low in both the static and dynamic cases.

This seems to imply that trajectory information is useful for

recovering the VT shape also for cardinal vowels such as /A/

and /i/. Inversion results are very poor for /@/ and /O/ in Task

14, again probably due to non-uniqueness in VT shapes for

their formant values, which is discussed in Sec VIII.

VIII. DISCUSSION

As noted above, it is seen from Tables I to III that the

acoustic error always decreases after the convex optimiza-

tion. This is expected since the acoustic error is the main

component of the optimization cost function in analysis-by-

synthesis. The hope in performing analysis-by-synthesis is

FIG. 9. Example of articulatory pa-

rameters before (dashed lines) and af-

ter (solid lines) optimization. /Ai/

from Task 15 of speaker JW11 (see

corresponding formants in Fig. 10

and VT shapes in Fig. 14). In each

subfigure, the value of the corre-

sponding articulatory parameter is

plotted along the y-axis which is lim-

ited approximately to the range

[�3 , 3], the nominal range of the

Maeda model parameters.

FIG. 10. Natural (circles), codebook (crosses), and optimized (lines) for-

mants for /Ai/ from Task 15 of speaker JW11 (see corresponding parameters

in Fig. 9 and VT shapes in Fig. 14).
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that the geometric error would also decrease as the acoustic

error decreases. However, it is seen that the geometric inver-

sion error does not always decrease after convex optimiza-

tion and in fact increases for many phonemes. Also, the

geometric error is high for many phonemes.

By optimizing the calibration cost function [Eq. (22)]

using codebook search and convex optimization, we verified

that the model was well calibrated for all the test phonemes

in Tables I–III. That is, for each test phoneme, it was verified

that there exist articulatory parameter sequences with low

acoustic error between calculated and measured formants

(<3%) and low geometric errors between calculated VT out-

lines and measured formant XRMB pellet positions (<0.10

cm). Therefore, poor calibration was not to blame for high

geometric inversion errors.

As discussed in Sec. I, it is well known that for many

phonemes, due to the non-uniqueness of the acoustic-to-

articulatory inverse mapping, the analysis-by-synthesis cost

function has multiple local optima. If the initial codebook

sequence of VT shapes is not near the actual sequence of VT

shapes but rather near one of the other non-unique inverse

solutions, then optimizing the cost function will converge to

the corresponding local optimum, with improved acoustic fit

but possibly larger pellet-to-VT outline distances. This is

particularly observed for phonemes /I/ through /O/ in Table I

and phonemes /aI/ through /aU/ in Table II.

The effect of the non-uniqueness of the acoustic-to-

articulatory mapping may also be observed in the results

with the unpruned codebook (Fig. 5) compared to that with

the pruned codebook (Fig. 7). For creg ¼ cgeo ¼ 0, while the

acoustic error is lower (around 1.5% average formant error)

for the unpruned codebook than for the pruned codebook,

(around 2.5%) the geometric error is much higher (0.6 cm

compared to 0.32 cm). This is to be expected since the crite-

rion optimized is the acoustic distance which is indeed lower

with the unpruned codebook at the price of using unrealistic

articulatory shapes.

From the above discussion, it is clear that the initial

articulatory sequence obtained from codebook search is cru-

cial for the success of inversion by analysis-by-synthesis.

This was one of the reasons why the codebook was pruned

using XRMB data for the speaker to eliminate unrealistic

VT shapes that result from a naive sampling of the articula-

tory space within the nominal range. Even with the pruned

codebook, the non-uniqueness is a serious problem for sev-

eral phonemes such as /æ/, /@/, and /O/ of Task 14 and /aI/ of

FIG. 11. Speaker JW11, Task 13 (a) /aI/ from “side,” (b) /OI/ from “soid,” and (c) /aU/ from “sowd”—Measured XRMB tongue (solid circles) and shifted lip

(empty circles) pellet positions plotted against estimated VT outlines (solid lines). Vowel labels above figures are given in DARPA format. For the three diph-

thongs, average formant errors are 1.21%, 0.42% and 0.37%, respectively, and average distances between tongue pellets and estimated VT outlines are 0.49,

0.33, and 0.26 cm, respectively.
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Task 13, where the geometric inversion errors are high. The

current codebook search and inversion cost function do not

always yield a good initial parameter sequence for optimiza-

tion. Alternate cost functions and codebook search strategies

may perhaps work better and need to be investigated.

It is generally thought that the dynamic information in

speech helps to reduce the effect of the non-uniqueness prob-

lem in inversion. Since the regularization and continuity

terms in the optimization cost function resolve the non-

uniqueness in analysis-by-synthesis, it is plausible that the

FIG. 12. Speaker JW11, Task 13, /eI/—Measured XRMB tongue (solid circles) and shifted lip (empty circles) pellet positions plotted against estimated VT

outlines (solid lines). Vowel labels above figures are given in DARPA format. The average formant error is 0.34%, and the average distance between tongue

pellets and estimated VT outline is 0.12 cm.

FIG. 13. Speaker JW11, Task 14,

representative frames from relatively

static vowels—Measured XRMB

tongue (solid circles) and shifted lip

(empty circles) pellet positions plot-

ted against estimated VT outlines

(solid lines). Vowel labels above fig-

ures are given in DARPA format.

See Table I for the equivalent IPA

labels, average formant errors, and

the average distance between tongue

pellets and estimated VT outlines.
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non-uniqueness for a given phoneme or part of a dynamic

phoneme could be correctly resolved by estimation of cor-

rect VT shapes for the left and right phonetic contexts.

Comparing the results of inversion for Tasks 14 and 13

in Tables I and II, respectively, we see that several static

vowels produced in isolated contexts in Task 14 have lower

geometric errors than the diphthongs in Task 13, which seem

to have more dynamic information. Also, a greater propor-

tion (five out of 11) of the static vowels studied seem to

show improvement in geometric error after optimization

compared to the diphthongs (one out of four).

However, it should be noted that the diphthongs of Task

13 were from contexts of the form /sVd/, where V is the

diphthong. Since the inversion method does not, currently,

handle fricatives and stops like /s/ and /d/, the left and right

contexts of the diphthongs were not taken into account in the

inversion, and there is actually missing dynamic information

for the diphthongs compared to the static vowels of Task 14.

Combined with the non-uniqueness of the inverse mapping

(since calibration was verified for all test phonemes), the

larger geometric errors for the diphthongs studied are, there-

fore, better explained and support the hypothesis that

dynamic/contextual information are needed for accurate re-

covery of VT shapes. It seems likely that the results for the

diphthongs in Task 13 could be improved if the inversion

method could handle /s/ and /d/, and inversion was per-

formed on the entire utterance with all phonemes

simultaneously.

FIG. 14. Speaker JW11, /Ai/—Measured XRMB tongue (solid circles) and shifted lip (empty circles) pellet positions plotted against estimated VT outlines

(solid lines). The average formant error is 0.33% and the average distance between tongue pellets and estimated VT outline is 0.10 cm.

FIG. 15. Speaker JW11, /Au/—Measured XRMB tongue (solid circles) and shifted lip (empty circles) pellet positions plotted against estimated VT outlines

(solid lines). The average formant error is 2.43%, and the average distance between tongue pellets and estimated VT outline is 0.20 cm.
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The methods of analysis-by-synthesis that we have used

are mostly “standard”; use of a codebook, the general form

of the cost function, and use of optimization algorithms are

all generally found in the literature. One of the contributions

of our paper is a better evaluation of the standard techniques

of analysis-by-synthesis for inversion, by comparing esti-

mated VT shapes against measured XRMB pellets. Our pa-

per is, as far as we know, essentially the first one to do so for

dynamic vowel sounds; Refs. 18, 25, and 26 only studied

static vowels. We have also quantified the geometric error

using the average perpendicular distance from pellets to esti-

mated VT outline. Previous papers in the past have generally

used acoustic criteria alone to judge results (the acoustic

match is expected to be good in analysis-by-synthesis) or

have used phonetic/linguistic human judgment to evaluate

how realistic the results are.19 We have also outlined a sys-

tematic procedure for adaptation/calibration of the Maeda

model to a new speaker, which makes inversion by analysis-

by-synthesis possible.

The inversion method used in this paper is, however,

highly speaker-dependent: The Maeda model is adapted to

the speaker using a measured (partial) outer VT outline for

the speaker and some calibration data; a speaker-specific

codebook needs to be constructed, and some dynamic articu-

latory data from the speaker are needed to prune the code-

book and improve inversion results. While some data are also

needed to estimate appropriate values for coefficients creg and

cgeo in the cost function, these estimates are more likely to

work well for different speakers, if the codebooks are well-

pruned. Our error analysis of results for Tasks 13–15 with the

XRMB data-pruned codebook showed that either Task 13 or

15 (containing dynamic diphthongs and vowel sequences)

could be used to estimate reasonable values of creg and cgeo.

Note that the “test set” utterances of Tasks 13–15 were not

used in the codebook pruning. However, due to paucity of

appropriate analyzed data, we currently use six analysis

frames (two each of /a/, /i/, and /u/) from the test utterances

to calibrate the Maeda model to the speaker. Frames from

other utterances should serve equally well for this purpose.

The need for extensive articulatory data to perform the

codebook pruning for each speaker is a drawback. There are

many articulatory configurations, with articulatory parameters

inside the nominal range of [�3,3], that are probably never

assumed for any speaker and any sound in a given language

(e.g., high jaw and tongue, but wide open lips), which are,

however, present in a codebook naively constructed by sam-

pling the articulatory space. Pruning using XRMB data utilizes

parameter correlations to eliminate these unlikely configura-

tions from the codebook, resulting in decreased inversion

errors and also reducing the size of the codebook and improv-

ing the efficiency of codebook search. It remains to be deter-

mined whether articulatory data from a set of training speakers

can be used to prune a codebook for a new test speaker.

Also, while some articulatory data from a given speaker

appear to be unavoidably necessary for accurate recovery of

VT shapes from speech sounds, generally reasonable shapes

could still possibly be recovered using a nominal/standard

articulatory model. Useful information that could be inferred

may include constriction location along the tongue, and si-

multaneous articulatory gestures needed to produce certain

sounds. Earlier results with a speaker independent codebook

for speaker JW46 indicate that this is indeed possible, at

least for some vowels and diphthongs.37 However, we need

to first study whether accurate recovery is possible at all

with current methods, even with sufficient articulatory data

available. This is where our paper’s contributions lie.

For applications like language learning, one could also

use articulatory data from non-native speakers to improve

the codebook. Patterns of speech production in speakers can

be studied offline, and fine phonetic contrasts that may be

common could be learned and used to help speakers of one

language learn another.

FIG. 16. Speaker JW11, /ui/—Measured XRMB tongue (solid circles) and shifted lip (empty circles) pellet positions plotted against estimated VT outlines

(solid lines). The average formant error is 2.20%, and the average distance between tongue pellets and estimated VT outline is 0.26 cm.
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In Sec. I, we listed the main challenges faced in inversion:

(1) Complexity of speech production models, (2) inherent non-

uniqueness of the inverse mapping and local optima of the cost

function, (3) incomplete knowledge about the shape and dy-

namics of the VT for a given speaker, and (4) insufficient data

to learn from or to evaluate the inversion results.

It is clear that all the four factors remain big challenges

in inversion. We developed efficient codebook search and

optimization techniques to deal with the complexity of the

articulatory-to-acoustic mapping. As explained earlier, the

primary reason for the poor results for some vowels or diph-

thongs is the non-uniqueness of the acoustic-to-articulatory

mapping. For these sounds, there exist several competing

VT shape sequences in the codebook that produce the same

formants, even after codebook pruning using XRMB data.

The current codebook search using the inversion cost func-

tion does not always pick a good initial parameter sequence

from the candidates. Alternate codebook search strategies

and cost functions need to be investigated. For dynamic in-

formation to be more useful in resolving the non-uniqueness,

the inversion method should be extended to other speech

sounds such as fricatives and stops.

Other factors that could contribute to the inversion error

are the limitation of the articulatory model and data to the

midsagittal plane, the possible speaker-dependence of the

coefficients a(x) and b(x) used to convert midsagittal widths

to cross-sectional areas [Eq. (2)], and variation of a(x) and

b(x) with the midsagittal width itself.

Restricting the articulatory model (and the articulatory

data) to the midsagittal plane has both advantages and limita-

tions. One advantage is that the number of parameters that

control the VT shape and, thereby, the area function are

reduced. An articulatory space of smaller dimension would

likely give fewer possibilities to achieve a given set of acous-

tic features and possibly reduce the non-uniqueness problem

of the acoustic-to-articulatory mapping. However, since the

tongue can in reality move in three dimensions, many differ-

ent three-dimensional (3-D) VT shapes could map to the

same two-dimensional (2-D) midsagittal outline as the VT

moves between different phonemes for dynamic speech

sounds. The error in the mapping from the midsagittal outline

to the area function could be large in such cases. Also, the

same midsagittal VT shape could also map to different acous-

tic features. These factors would cause inversion errors.

The purely midsagittal description of the VT would also

be a serious limitation of the model for some sounds such as

the lateral /l/. During the production of /l/, there could be a

lateral occlusion in the midsagittal plane which would result

in zero areas in the area function computed using a(x) and

b(x). But the area function is actually not zero due to the

presence of lateral channels along the side of the occlusion.

Asymmetric lateral channels would also lead to zeros in the

speech signal, which is not captured by a midsagittal model.

The inversion of laterals using a midsagittal model would,

therefore, be very unreliable. Inversion errors for vowels and

diphthongs could also be higher in lateral contexts.

In this paper, we have considered limited types of adap-

tation of the Maeda model to the speaker—only VT length

scaling and modification of the outer VT outline. Results

could be improved with more information about the VT ge-

ometry for the given speaker, mainly the entire outer VT out-

line consisting of the hard and soft palates and rear

pharyngeal wall extending down to the laryngeal region. The

XRMB database does not include information on the soft

palate (velum) and on the laryngeal region, which are limit-

ing factors in our experiments, since the velum outline had

to be interpolated, and the length of the pharyngeal region

was adapted in an ad hoc manner based on the acoustic

match during calibration. By optimizing the calibration cost

function [Eq. (22)] using codebook search and convex opti-

mization, we verified that the adapted model was well cali-

brated for all the test phonemes of speaker JW11.

However, our unsuccessful attempt at calibrating the

Maeda model for speaker JW46 indicated that superficial ad-

aptation of the Maeda model was insufficient for this

speaker. The coefficients a(x) and b(x) and the VT outline

basis vectors (deformation modes) of the Maeda model vary

with speaker and can cause large inversion errors for some

speakers if they are not adapted. The parameters used in cal-

culating the CM of a tube section may also be adapted. The

approach we have developed in this paper has the advantage

that it can be extended without much difficulty to optimize

all these different parameters. This is a topic of future work.

The mapping from midsagittal widths to areas using the

coefficients a(x) and b(x) and Eq. (2) is ad hoc, and inaccura-

cies are possible at different ranges of midsagittal widths, for

example, at very small and very large midsagittal widths.

The shift of the measured XRMB lip pellets for comparison

with estimated VT is also ad hoc. While it is only used for a

visual comparison and not for quantitative evaluation in Sec.

VII of the paper, the error in the lip height and protrusion is

included in the calibration cost function. Since the lip open-

ing affects the lip aperture and radiation impedance and,

therefore, the computed formants, this may also be a source

of error in the inversion results. Investigation of these issues

will also be a topic of future work.

A mapping from XRMB pellet positions to Maeda articu-

latory parameters would be very useful in learning correlations

between articulatory parameters and better articulatory con-

straints, perhaps also across speakers. With such a mapping,

estimated articulatory parameter trajectories could also be

compared with actual ones. The optimization-based method in

Toutios et al.40 could give such a mapping, provided the model

is well calibrated to the speaker, as discussed in Sec. VI.

We have not used any a priori model of articulatory dy-

namics and used only the constraints provided by the articu-

latory model and the regularization and continuity terms in

the cost function. The inversion could be improved by using

a model of articulatory dynamics such as the task dynamic

model from gestural phonology, where the fundamental units

of speech production are taken to be gestures, which are the

coordinated action of articulators.42

In summary, the methods that we have proposed and

discussed in the paper provide an improved understanding of

speech production, of the limitations of articulatory and

acoustic models, and of inversion by analysis-by-synthesis.

We proposed a systematic framework for calibration and ad-

aptation of the Maeda model to new speakers with XRMB

J. Acoust. Soc. Am., Vol. 129, No. 4, April 2011 S. Panchapagesan and A. Alwan: Speech inversion by formant matching 2161



data by optimizing a novel cost function. The optimizations

for model adaptation and inversion by analysis-by-synthesis

used an elegant and efficient calculation of the derivatives of

the CM of a tube with respect to its area. A quantitative

study of inversion of vowels and diphthongs was performed,

and the results were significantly improved by codebook

pruning. Good match between estimated midsagittal VT out-

lines and measured XRMB tongue pellet positions was

achieved for several vowels and diphthongs, with average

pellet-VT outline distances around 0.15 cm.
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