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Fingerprint Biometrics
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Abstract— Thanks to Mr. James Bond, we are aware that
diamonds are forever but, are fingerprints? It is well known that
biometrics brings to the security field a new paradigm; unlike
traditional systems, individuals are not identified by something
that they have or they know, but by what they are. While
such an approach entails some clear advantages, an important
question remains: is what we are today the same as what we
will be tomorrow? This paper addresses such a key problem
in the fingerprint modality based on a database of over 400K
impressions coming from more than 250K different fingers. The
database was acquired under real operational conditions and
contains fingerprints from subjects aged 0–25 and 65–98 years.
Fingerprint pairs were collected with a time difference that
ranges between 0 and 7 years. Such a unique set of data has
allowed us to analyze both the age and ageing effects, shedding
some new light into issues, such as fingerprint permanence and

fingerprint quality.

Index Terms— Biometrics, fingerprint recognition, ageing, chil-
dren, elderly, fingerprint quality.

I. INTRODUCTION

“Every single cell in the human body replaces itself over a

period of seven years. That means there’s not even the

smallest part of you now that was part of you seven years

ago.” - Steven Hall, The Raw Shark Texts.

Y
OU are your own key. Behind this catchy principle bio-

metrics have become an attractive alternative to traditional

identification methods such as tokens or passwords. However,

what would happen if this new natural in-built key changed

over time? Would it still open the door it was designed for?

To answer these legitimate questions, there is the need to

analyse the way in which time affects biometric characteristics

and the effect that such changes have on the performance

of automatic biometric recognition systems. In particular,

the present paper focuses on the study of fingerprints and time.

In order to understand how fingerprint recognition systems

are affected by time, it is important to notice that each user

is acquired at two separate points, during the enrolment of

its reference template and during the collection of the probe
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sample. This double interaction with the system produces two

different (but linked) time effects: the age effect and the ageing

effect.

• Age effect. This effect accounts for the variations in

accuracy between different user groups according to their

age, such as, for example, children, adults and elderly.

In this case, assuming a short time difference between

the reference and probe acquisitions, the question being

addressed is: How does the performance of fingerprints

vary through life? Can we expect the same performance

from fingerprint recognition systems for 3-year old chil-

dren, than for 25-year old adults, than for 90-year old

elders? This effect is mainly related to the collectability

of fingerprints which has a direct impact on their quality.

• Ageing effect. This effect accounts for the variations

in accuracy due to the increase of the time difference

between the reference sample and the probe sample [1].

Accordingly, the question being addressed in this case is:

Can we expect the same Genuine Matching Score (GMS)

distribution when the time difference between the refer-

ence and probe samples is 1 year, 5 years or 10 years?

Furthermore, is this effect dependent on the age of

the reference sample? Ageing is mainly related to the

permanence of fingerprints, or rather, to the lack of it.

Note that, in the present article, fingerprint permanence

(also fingerprint persistence) does not refer to the ridge

structure anatomy of the fingertip, but to the ability to

reliably acquire and recognise in the digital domain this

ridge structure over time. That is, it does not refer to

the physical world, but to changes in the digital images

captured with current live-scan touch-based technology.

Theoretically, fingertips may withstand the passing of

time. However, in practice, if the images acquired for

recognition change, eventually, the fingertips may be

unusable to automatically discern individuals apart.

In summary, the present article does not address the

theoretical immutability of physical fingertips, but their

practical usability for recognition purposes over time.

The same “digital” interpretation of fingerprint per-

manence has been used in previous studies from the

literature [2].

Compared to the other factors such as the universal-

ity or uniqueness of fingerprints [3]–[5], a clear gap exists

in terms of research effort with respect to the previous two

time effects. How does time affect fingerprints performance?

Do these changes affect automatic fingerprint recognition

systems? Are there any age limits for the use of finger-

prints with current technology? When is the time difference

1556-6013 © 2018 EU

https://orcid.org/0000-0002-2009-0256


1352 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 5, MAY 2019

between two samples of the same user too large to trust

their matching? How does fingerprint quality evolve through a

lifetime? Although some valuable efforts have been conducted

to address these and other similar issues (see Sect. II for

a review of the state of the art), there is still not enough

consistent evidence to be able to provide reliable answers to

the questions above.

The lack of large comprehensive studies addressing the

effect of time on fingerprint-based technology is mostly

explained by two factors: 1) On the one hand, the acquisition

of fingerprints with the new generation of live-scan devices,

instead of the traditional ink-and-paper method, is quite recent.

As such, long-term data with which to carry out such studies

is scarce. 2) On the other hand, large datasets of fingerprint

images acquired in real operational conditions are, rightly so,

secured under data protection regulations that severely restrict

the access to these data, even for research purposes.

This situation of data scarcity has forced researchers to

conduct their time-related studies on limited sets of finger-

prints, in many cases acquired under controlled laboratory-

like conditions for the purpose of the experiments [6]–[8].

While the results of these works are certainly valid to point out

general trends and to formulate hypotheses, further analysis is

required on larger, more comprehensive and realistic sets of

data in order to confirm those results and to provide more

consistent evidence that supports the findings.

The present research study is an attempt to bridge this

existing gap and to shed some further light into the prob-

lem of fingerprints and time. To that end, the study has

been conducted on a database of fingerprints captured under

real operational conditions for the issuing of passports. The

database contains almost half a million fingerprints of ages

between 0 and 98, with a time separation between samples of

the same finger of 0 to 7 years. Based on this unique set of

data, the main contributions of the work are:

• First comprehensive study of fingerprint quality for the

whole age range of human life (from 0 to 25 and from

65 to 98 years of age).

• First comprehensive study of fingerprint matching

through the whole age range of human life (from 0 to

25 and from 65 to 98 years of age).

• First comparative study of the effect of ageing for differ-

ent age-groups (e.g., children, adults, elderly).

• First comprehensive study of the possible limitations

on the interaction of elders with fingerprint recognition

systems.

The rest of the work is structured as follows. A review of

the main works dealing with age-related factors in fingerprint

recognition is given in Sect. II. Sect. III describes the key char-

acteristics of the database used in the work. The experimental

protocol, divided into age- and ageing-related experiments,

is presented in Sect. IV. The results obtained following this

protocol, as well as some partial findings, are given in Sect. V.

Final conclusions are drawn in Sect. VI.

II. RELATED WORKS

The effect of time on biometric technology has been lately

the focus of books [9], surveys [1] and specific publications

in biometric characteristics such as fingerprint [2], face [10],

iris [11], [12], hand [13], or signature [14]. In the present

section we will only consider the most relevant works pub-

lished in the field of fingerprint-based technology.

Two of the pioneers in the development of fingerprint

recognition, Sir William Herschel and Francis Galton, in two

of their first articles, already considered the problem of fin-

gerprint permanence [15], [16]. Both research studies were

very limited: three fingerprints of one person (his son) taken

at 7, 17 and 40 years of age in the case of Herschel and six

subjects in the case of Galton, with time gaps between the

two collections of 11 to 31 years. However, these early works

already showed the importance of the permanence issue and

they set the basis for other larger studies that came afterwards.

In more recent times, several small-scale studies performed

on live-scanned data have shown that the ageing effect on

fingerprints can be perceived for a time difference as short

as three to four years [17]–[19]. While these works were

valuable to alert on the potential problems posed by ageing,

they were carried out on limited sets of data that prevented

from extracting conclusive findings.

The most comprehensive study to date focused on the per-

manence of fingerprints was published in 2015 by researchers

from Michigan State University [2]. While the works by

Galton and Herschel focused on analysing the variability (or

invariability) of the physical ridge structure, MSU’s study

concentrates on the impact that changes in the digital repre-

sentation of the ridge structure (i.e., fingerprint images) may

have on the genuine matching scores of automatic recognition

systems working with current live-scan imaging technology

(i.e., ageing). This “digital” interpretation of fingerprints per-

manence is the same considered in the present article.

The database used in [2] was acquired in real operational

conditions for law-enforcement purposes and contains an

average of 10-print cards of 15K subjects. The average time

difference between the first and last acquisition for each

individual is 9 years. The main limitation of the database is

that the vast majority of individuals are adults, belonging to the

age-range 15-40. This way, while the dataset is well suited to

perform ageing-effect experiments, it does not allow analysing

the age-effect derived from possible differences between age

groups, e.g., differences between children, adults and elders.

The age effect which was not covered in [2] due to the

lack of a suitable database, has been addressed in different

previous articles [6]–[8], [20]–[24]. The main limitation of all

these works is the significantly low-scale datasets used, which

did not exceed 5,000 samples. This way, while the general

methodology followed is correct and some interesting trends

can be observed regarding the differences between age-groups,

further tests are required on more comprehensive sets of data

to confirm the conclusions drawn in those studies.

Furthermore, the literature on the age effect focuses almost

completely on the differences between adults and children

fingerprints. However, very little research has been carried out

on such an important demographic group as the elderly. Unlike

children, especially of young ages, elders have a significantly

higher degree of autonomy both from a legal and an economic

perspective. This freedom entails that they are more prone to
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interact on a daily basis with biometric systems in order to

access the ever growing range of activities, applications and

benefits secured by this technology. It is also important to

highlight that we live in a society where the elderly are the

fastest growing demographic [25]. Therefore, it should become

a top priority for the biometric community to understand what

are the challenges faced by biometrics when dealing with

data coming from this segment of the population, in order to

prevent potential situations of age-based discrimination [26].

III. THE DATASET

The dataset used in the experiments was provided under

strict security and data protection measures by the Por-

tuguese authorities. It contains real fingerprint operational data

acquired for the issuing of passports. The data was acquired

at multiple locations but in all cases optical live-scan readers

working at 500 dpi were used. The acquisition process was

supervised by governmental civil servants (not law-enforcers)

with general knowledge about biometrics.

In total, the database contains fingerprint impressions

from 265,321 different fingers which have produced a total

421,388 images. These data can be divided in three main

groups according to the age of the fingers at the time of

the first acquisition: children (ages 0-17), adults (ages 18-25)

and elderly (ages 65-98). The dataset contains no fingerprints

in the age range 26-64. The fingerprints distribution per

age is shown in Fig. 1. Following the experimental protocol

that will be explained in Sect. IV, the children group has

been further divided into three sub-groups: children1 0-4,

children2 5-12 and children3 13-17; and the elderly

group into four sub-groups: elderly1 65-69, elderly2 70-74,

elderly3 75-79, elderly4 80-98.

As can be seen in Table I, the fingers in the database

present one or two samples. For the 156,067 fingers with two

acquisitions, the separation between samples is 0 to 7 years.

Table II shows the number of fingerprint pairs for each time

separation and for each age-group. For a detailed year-by-year

distribution of the fingerprint pairs in the database we refer the

reader to Annex A, provided as accompanying material of the

present article.

As a side note to the database description, the reader should

be aware that, due to reasons beyond the authors’ control,

the database generously provided by the Portuguese authorities

under an agreement with DG JRC, unfortunately did not

contain any fingerprint data in the age range 26-64 years.

Therefore, as will be explained in the experimental sections of

this article, only estimations of the behaviour of fingerprints

in these ages could be made. However, we do believe that the

experiments performed on the data received (0-25 and 65-98)

strongly support the estimations made.

IV. EXPERIMENTAL PROTOCOL

As mentioned in the introduction, the way time affects the

accuracy of fingerprint recognition systems can be seen from

two different angles, depending on whether the focus is 1)

on the age of the individual at the time of the acquisition of

the reference template (age effect) or whether it is 2) on the

Fig. 1. Fingerprint distributions in the database according to the age.

TABLE I

NUMBER OF FINGERS IN THE DATABASE WITH 1 AND 2 SAMPLES,
DIVIDED BY AGE-GROUPS: CHILDREN (0-17),

ADULTS (18-25) AND ELDERLY (65-98)

time difference between the reference template and the probe

template (ageing effect). A diagram summarizing these two

effects in the experimental database is depicted in Fig. 2.

It should be noted that, although ultimately it is the vari-

ability of systems accuracy that we are interested in, age

and ageing are two phenomenons mostly related to genuine

matching scores (i.e., matching scores between samples of the

same finger). This is why, in some cases, typical accuracy
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TABLE II

NUMBER OF FINGERPRINT PAIRS IN THE EXPERIMENTAL DATASET

ACCORDING TO: i ) THE TIME DIFFERENCE BETWEEN THE FIRST

AND SECOND SAMPLES (COLUMNS) AND ii ) THE

AGE-GROUP (ROWS). THE YEAR-BY-YEAR DISTRIBUTION

OF THE FINGERPRINT PAIRS CAN BE CONSULTED IN

ANNEX A, PROVIDED AS ACCOMPANYING

MATERIAL OF THE PRESENT ARTICLE

Fig. 2. Diagram depicting the age-effect and the ageing-effect in the
experimental database.

metrics such as the FAR and the FRR (False Acceptance and

False Rejection Rates) may not tell the whole story about these

effects. Therefore, following previous related works [14], [2],

in the present article in addition to the traditional DET curves

(Detection Error Trade-off), we also analyse the changes

suffered directly by the genuine score distribution over time.

It is also important to highlight that, the effects of age and

ageing are not independent. For example, ageing may impact

differently children, adults and elderly. However, studying

both effects in experiments as decoupled from each other as

possible can help to better understand the way time affects

fingerprint-based systems and, eventually, to minimize its

effects whenever possible.

Following this rationale, the experimental protocol has been

divided in two main sets of experiments: 1) experiments

directed to analyse the age effect (described in Sect. IV-A);

and 2) experiments focused on analysing the ageing effect

(described in Sect. IV-B).

In these two sets of experiments two different publicly

available software tools, one matcher and one quality metric,

have been used:

• Matcher: VeriFinger. VeriFinger (Version 10.0 of the

Neurotechnology feature extraction and matching algo-

rithms), based on the MegaMatcher identification engine

and compliant with NIST MINEX [27]. This system

obtained state-of-the-art results in the Fingerprint Ven-

dor Technology Evaluation (FpVTE) organised by NIST

in 2012 and has been regularly updated since [28]. The

feature extraction and matching algorithms use minutiae

points and other non specified proprietary algorithmic

solutions, which enhance the performance and reliability

of the system. The system is available under different

charged licensing possibilities through the Neurotechnol-

ogy webpage.1

• Quality metric: NFIQ2. The development of NFIQ2 was

driven by the advances in fingerprint quality estima-

tion since the original version of NFIQ was published

in 2004 [29]. It was initiated in 2011 by the US NIST,

who leaded a team of different partners coming from

law-enforcement and research. The major differences

in comparison with the original NFIQ are: 1) modular

design; 2) possibility to be retrained to adapt to specific

contexts (e.g., latent fingerprints); 3) increased speed;

4) increased accuracy in the estimation of fingerprint

quality; 5) increased sensitivity range to 0-100. Further-

more, NFIQ2 quality features are being formally stan-

dardized as part of ISO/IEC 29794-4 Biometric Sample

Quality [30]. Alike the original NFIQ, NFIQ2 is also

supplied as an open-source platform through the NIST

portal,2

It should be noted that the distributable version of

NIFQ2 has been pre-trained using solely: adult fingerprint

data, acquired with live-scan optical sensors at 500 dpi.

As such, if the test data differs significantly from these

characteristics, results can be inaccurate.

The experimental protocol described in the following

subsections for VeriFinger and NFIQ2, was replicated for

another matcher (NIST NBIS) and two other quality metrics

(NFIQ1 and VERIQ). Due to limitations of space, the results

obtained with those tools, as well as their description, can

be consulted in Annex A, provided as accompanying material

of the present article. In brief, those results provide further

confirmation of the findings and conclusions extracted in the

main text.

A. Experimental Protocol: Age Effect

The objective of this set of experiments is to determine if

the age of the individual can play a role in the performance of

biometric systems. The age effect is studied from two linked

points of view: 1) influence on the fingerprint image quality

and 2) influence on the system accuracy.

Since biometric quality and biometric accuracy are closely

interdependent, the goal of the matching experiments is to

1http://www.neurotechnology.com/
2https://www.nist.gov/services-resources/software/development-nfiq-20
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determine to what extent quality metrics are capable of reflect-

ing the variations in the accuracy of fingerprint recognition

systems due to age.

1) Age Effect: Quality Experiments: The quality scores of

all the 421,388 samples present in the experimental dataset are

extracted using the NFIQ2 metric.

Quality distributions for each of the three main groups

(i.e., children, adults and elderly) are computed as well as

for each of the children and elderly sub-groups.

The mean quality value per age of acquisition is also

computed (i.e, mean quality value for ages 0-25 and 65-98).

2) Age Effect: Matching Experiments: The accuracy of the

systems will be evaluated based on the DET (Detection Error

Trade-off) curves for the VeriFinger matcher. In order to

extract these curves two sets of matching scores are needed,

commonly referred to in the biometric literature as genuine

and impostor3:

• Genuine scores. To compute these scores, only those

fingers with two samples in the database are considered

(see Table I). The age of the pair is determined by the

first sample. Genuine scores are produced by matching

the reference sample of each finger (first sample) to its

respective probe sample (second sample).

In order to analyse only the age effect, dissociating it

to the largest extent possible from the ageing effect,

it is preferable to use fingerprint pairs with the smallest

time difference between the reference and probe samples.

However, taking only pairs (reference-probe) that were

acquired, for instance, on the same year, would reduce

drastically the available data and reduce the statistical

relevance of the results. As such, a compromise had

to be reached between: 1) the temporal proximity of

the reference and probe samples and 2) the amount

of available data. Following this necessary compromise,

87,011 fingerprint pairs (i.e., genuine matching scores)

were selected for the experiments (47,782 pairs coming

from children, 33,725 from adults and 5,504 from elders).

• Impostor scores. The population of impostors is taken

from those fingers that have just one sample in the

database (see Table I). One impostor fingerprint, the one

with the highest quality value, is selected for each age

between 0-25 and between 65-90, which results in a total

of 52 impostor fingerprints. Impostor scores are computed

matching the 52 impostor fingerprints to the each of the

reference samples used to compute the genuine scores.

This way, the number of impostor scores is 52 times the

number of genuine scores.

Please note that impostor scores are needed in order to

properly evaluate the accuracy of fingerprint recognition

systems. However, both the age and ageing effects are

intrinsically linked to genuine scores (as explained at the

beginning of Sect. IV). Therefore, in order to avoid that

the two analyzed effects are concealed due to uncon-

trolled changes in the impostor scores, the protocol has

been designed in order to minimize eventual variability

3Defined as mated and non-mated matching scores in the Harmonized
Biometric Vocabulary contained in the standard ISO/IEC 2382-37

factors that can affect the impostor score distribution.

That is why, in the present study: 1) the same 52 impostor

samples are used in all scenarios; 2) impostors of all ages

are equally represented (one fingerprint per age); 3) the

highest quality fingerprints for each age are selected in

order to reduce the potential effect that quality may have

on the impostor score distribution, as a certain correlation

(much lower than in the case of genuine scores) has been

reported in some works [31].

Finally, the mean genuine matching score value per age of

acquisition is also computed (i.e, mean genuine score value

for ages 0-25 and 65-98).

The full age-effect protocol, including both the quality

and matching experiments, is depicted in Fig. 3. Results are

presented in Sect. V-A.

B. Experimental Protocol: Ageing Effect

The objective of these experiments is threefold: 1) determine

if ageing has an effect on the accuracy (DET curves) of

fingerprint recognition systems for the time gap represented

in the experimental database between the reference and probe

samples (i.e., 7 years); 2) estimate the variation of the genuine

matching scores (GMS) distribution when the time difference

between the reference and the probe fingerprints increases;

and 3) determine whether the variation in accuracy and in the

GMS differs depending on the age of the individual at the

enrolment of the reference sample.

The experiments are carried out on all 156,067 fingers with

two samples in the dataset. The fingerprint impression acquired

at a younger age is used as the reference sample and the one

captured at an older age as the probe sample. Genuine scores

are produced by matching the reference sample of each finger

to its respective probe sample.

As in the case of the age-effect experiments, eight different

age-groups are considered and each finger is assigned to

one of the groups according to the age at which the first

fingerprint sample was enrolled to the system: children1 0-4,

children2 5-12, children3 13-17, adults 18-25, elderly1 65-69,

elderly2 70-74, elderly3 75-79 and elderly4 80-98.

Each of these eight age-groups is then further divided into

eight sub-groups according to the time difference between the

reference and the probe sample: 0-1 years, 1-2 years, 2-3 years,

3-4 years, 4-5 years, 5-6 years, 6-7 years and 7-8 years.

Accordingly, a total of 8 × 8 = 64 sub-sets are considered.

The result of the complete set of experiments is constituted

by 156,067 genuine scores. These scores are divided among

each of the 64 sub-sets as specified in Table II. Impostor scores

for the 64 sub-sets are computed as described for the age

experiments in Sect. IV-A.

A diagram summarizing the experimental protocol for the

ageing experiments is shown in Fig. 4. The main results are

presented in Sect. V-B.

V. RESULTS

This section presents the results that have been obtained

following the protocol defined in Sect. IV. Throughout

this section the reader will find a number of FINDINGS

and HYPOTHESES that are derived from the experiments.
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Fig. 3. Diagram depicting the protocol followed to analyse the age effect. The evaluation metrics used for the analysis of the age effect are specified to the
left of the age groups (i.e., quality distributions, DET curves, mean value of quality scores genuine matching scores). The figures after ‘Q:’ and ‘M:’ indicate
respectively, the number of quality scores and the number of genuine matching scores computed for each age-group. This same protocol was replicated also
for the NFIQ1 and VERIQ quality metrics and results are presented in Annex A (provided as accompanying material of this article).

Fig. 4. Diagram depicting the protocol followed to analyse the ageing effect. The evaluation metrics used for the analysis of the ageing effect are specified
to the left of the age groups (i.e., DET curves, mean value of genuine scores). The figures after ‘M:’ indicate the number of fingerprint pairs (i.e., genuine
scores) for each age group. See Table II for the number of fingerprint pairs available for each time separation (0, 1, 2,…7 years) for the different age-groups.
This same protocol was replicated also for the NIST matcher and results are presented in Annex A (provided as accompanying material of this article).

By FINDINGS we refer to observations for which some

level of support is provided by the results obtained, even if,

in some cases, further experimentation is required in order

to fully confirm them. On the other hand, we use the term

HYPOTHESIS to refer to a reasonable conjecture based on the

results presented in this article, but for which no experiments

have been carried out either to confirm or invalidate it.

A. Results: Age Effect

The results presented in this section have been obtained

following the experimental protocol described in Sect. IV-A

(see Fig. 3).

1) Results Age Effect: Quality Experiments: Fig. 5 shows in

the top chart the comparison of the NFIQ2 fingerprint quality

distributions corresponding to the three overall age groups in
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Fig. 5. (Top) NFIQ2 quality distributions of the fingerprints belonging to
each of the three main age-groups represented in the experimental dataset:
children (0-17), adults (18-25) and elderly (65-98). (Bottom left) Qual-
ity distributions of the three children sub-groups: Children1 (0-4),
children2 (5-12), children3 (13-17). (Bottom right) Quality distributions
corresponding to the four elderly sub-groups: elderly1 65-69, elderly2
70-74, elderly3 75-79 and elderly4 80-98. In the two bottom charts the adults
quality distribution is also given for reference. These same distributions for
the NFIQ1 and VERIQ quality metrics are shown in Figs. 1 and 2 of Annex A
(provided as accompanying material of the present article).

the experimental dataset: children, adults and elderly. The chil-

dren and elderly distributions have been further subdivided in

the bottom charts. The left chart shows the quality distributions

corresponding to the three children sub-groups, while the right

chart shows the quality distribution of the four elderly sub-

groups. In the two bottom charts the adults distribution is also

given for reference (in green).

Given that the fingerprints in the experimental dataset are

not uniformly distributed age-wise (see Fig. 1), the quality

distributions shown in Fig. 5 should not be taken as a per-

fect reflection of reality. However, given the amount of data

considered, these distributions do reflect the general trend that

can be expected from fingerprint data in these large three age-

groups (children, adults and elderly). As such, we believe it

is safe to extract the next conclusion from the results shown

in Fig. 5:

• FINDING 1. In terms of general fingerprint quality

(see Fig. 5 top), the most challenging age-group is the

elderly (65 years of age and above), which presents an

overall quality significantly lower than that of children

(0-17 years of age). As could be expected, adults clearly

present the highest fingerprint quality.

• FINDING 2. For children (see Fig. 5 bottom left),

clearly the most problematic group is 0-4. For ages 5-12

fingerprint quality is already acceptable, while for 13-17 it

is equivalent to that of adults.

• FINDING 3. For the elderly (see Fig. 5 bottom right),

there is a gradual degradation of fingerprint quality from

group 65-69 to group 81-98. However, unlike children,

where a big difference in fingerprint quality could be seen

Fig. 6. Lifetime evolution of the NFIQ2 mean quality value. The 90%
confidence intervals are shown in vertical red lines. Values for ages 26-64 have
been estimated using two linear fits (shown with dashed red lines). Analogous
plots for the NFIQ1 and VERIQ quality metrics are shown in Figs. 3 and 4 of
Annex A (provided as accompanying material of the present article).

among groups, in the case of the elderly, for all four

groups the quality level is similarly low (in between that

of children 0-4 and 5-12).

Fig. 6 shows the year-by-year evolution of the mean fin-

gerprint image quality in the experimental dataset. The 90%

confidence intervals for the mean values are shown as vertical

red lines.

For those ages not present in the dataset, that is, ages

between 26 and 64 (plotted in light grey in Fig. 6), the mean

fingerprint quality has been estimated using values for ages

18-25 and 65-90 as described below. In the description, X

represents the theoretical age at which fingerprint quality starts

decreasing from adulthood to old-age:

• Mean quality estimation: ages 26-X . The estimation has

been done following the hypothesis that during adult life,

fingerprint quality does not vary significantly. Given that

only eight mean quality values are available for adults

(ages 18-25), the mean quality for ages 26-X has been

estimated as the average of the mean quality values for

18-25. This estimate corresponds to the horizontal red

dashed line in Fig. 6.

• Mean quality estimation: ages X-26. For ages X-64,

the mean quality values have been estimated with a linear

regression fit using the mean quality values from ages

65-90. Mean quality values corresponding to ages 91-98

have not been considered due to the low amount of

fingerprint impressions available in the database. This

estimate corresponds to the diagonal red dashed line

in Fig. 6.

The age X is defined by the intersection of both linear fits

intersect (i.e., horizontal dashed red line and diagonal dashed

red line). As mentioned above, it represents an estimation of

the point in the fingerprint lifetime at which its quality starts

degrading after peaking during adulthood.

The age-wise evolution of fingerprint quality shown in Fig. 6

allows us to conclude that:

• FINDING 4. Quality of children fingerprint impressions

increases between 0 and 12 years of age. This increase is
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very fast between 0 and 4 years of age while it reduces

its rate between 5 and 12. From 12 years old until 17,

fingerprint quality stabilizes and can be considered equal

to that of adults (18-25).

• FINDING 5. For adults, fingerprint quality is quite sta-

ble, with an almost negligible decreasing slope between

18 and 25 years. Given the limited amount of data avail-

able for adults from an age-wise perspective, covering

only ages 18-25, this invariable behaviour of fingerprint

quality should still be confirmed.

• FINDING 6. For elders in the range 65-90, fingerprint

image quality decreases linearly with age. According to

the estimation made in the study, this linear decrease

starts at around X = 40-45 years of age. It is interesting

to underline that for subjects 70 years old, fingerprint

quality is equivalent to that of 4-5 years old children.

2) Results Age Effect: Matching Experiments: As men-

tioned in the description of the experimental protocol in

Sect. IV-A, the matching tests were performed to confirm, or to

complement if necessary, the observations made in the quality-

related results presented above.

Matching results have been obtained on approximately one

fifth of the data of the quality results as explained in the gen-

eral experimental protocol in Sect. IV-A: 421,388 fingerprint

samples for the quality experiments with respect to 87,011 fin-

gerprint pairs for the matching experiments (see Fig. 3). This

means that, from a statistical perspective, matching results are

somewhat less reliable (as will be shown in the results by the

larger 90% confidence intervals). However, we believe that the

amount of data remains significant and offers the possibility

to extract valid conclusions.

Fig. 7 (top) shows the comparison of the DET curves

for the three main age groups in the experimental dataset:

children, adults and elderly (please see Sect. IV-A for a

description of the computation of the genuine and impostor

score distributions). As in the case of quality, given the

non-uniformly age distribution of the experimental dataset,

these DET curves should be taken as a general indication of

matching performance and not as a perfect representation of

reality.

The FINDING 1 extracted from the quality experiments

is not fully confirmed by the matching error rates. While

children presented a better overall quality than the elderly,

results presented in Fig. 7 show that:

• FINDING 7. Fingerprint impressions of the elderly per-

form, in general (Fig. 7 top), better than those of children.

As such, better quality in this case does not directly

translate into better accuracy.

• FINDING 8. The FINDING 2 of the quality experiments

is confirmed by the accuracy results shown for the differ-

ent children sub-groups in Fig. 7 (bottom left). The worst

overall performing age-group (including the elderly) are

children between 0 and 4. Children 5-12 present accept-

able error rates, while children 13-17 can be considered

as adults in terms of fingerprint accuracy.

• FINDING 9. Regarding the accuracy of the four elderly

sub-groups (shown in Fig. 7, bottom right), it can be seen

that, as happened with quality (FINDING 3), there is

Fig. 7. (Top) DET curves for the three main age-groups represented in
the experimental dataset: children (0-17), adults (18-25) and elderly (65-98).
(Bottom left) DET curves for the three children sub-groups: Children1 (0-4),
children2 (5-12), children3 (13-17). (Bottom right) DET curves corre-
sponding to the four elderly sub-groups: elderly1 65-69, elderly2 70-74,
elderly3 75-79 and elderly4 80-98. In the two bottom charts the adults DET is
also given for reference (in green). An analogous plot for the NIST matcher
is presented in Fig. 5 of Annex A.

a gradual deteriorations from group 65-69 to group 80-98.

Interestingly, the performance of elderly 65-69 is almost

equal to children 5-12. The accuracy of the other three

elderly groups (70-74, 75-79 and 80-98), is in between

children 5-12 and children 0-4.

This apparent incongruity between FINDING 1 (quality)

and FINDING 7 (matching) may have two possible explana-

tions derived from the type of data commonly used to train

and test fingerprint matching algorithms and quality metrics:

• As explained in Sect. IV, the NFIQ2 quality metric used

in this study was exclusively trained on adults data.

This is the case for the vast majority of quality metrics

proposed in the literature. Accordingly quality metrics

designed for adult fingerprints may be inaccurate when

predicting the matching performance of children data.

Depending on the age range of the adults fingerprints

used for their training, the discrepancy between quality

scores and matching scores could also be applicable to

elderly fingerprints (e.g., if training data does not take into

consideration fingerprints above, for instance, 50 years

of age).

• Similarly to quality metrics, fingerprint matching algo-

rithms are typically trained and tested on adults data.

As such, they may be inefficient at exploiting the discrim-

inative information conveyed by children’s fingerprints

even if these are of sufficient quality.

Following the quality experiments, Fig. 8 shows the year-

by-year evolution of the mean genuine matching score value.

The 90% confidence intervals for each of the mean values are
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Fig. 8. Lifetime evolution of the mean GMS value. The 90% confidence
intervals are shown as vertical red lines. Values for ages 26-64 have been
estimated using two linear fits (shown with dashed red lines). The thresholds
for FAR = [0.1%, 0.01%, 0.001%] computed on the adults data are given for
reference as dotted horizontal lines. An analogous plot for the NIST matcher
is presented in Fig. 6 of Annex A.

shown as vertical red lines. For some ages, these confidence

intervals are noticeable since they have been obtained on

around a fifth of the data used in the quality-related protocol

(see the specific numbers under ‘Q:’ and ‘M:’ in Fig. 3). Even

if their statistical reliability is smaller, they do help to show

the overall trends of fingerprint matching performance with

respect to age and they complement what was observed in the

quality-based experiments. The thresholds for FAR = [0.1%,

0.01%, 0.001%] computed on the adults data are given for

reference as dotted horizontal lines.

For those ages not present in the experimental dataset, that

is, ages between 26 and 64 (plotted in light grey in Fig. 8),

the mean genuine matching scores (GMS) have been estimated

following the same process as in the quality experiments. That

is: A) the horizontal red dashed line represents the linear

estimate for ages 26-X and it has been computed as the

average of the mean GMS values for ages 18-25; B) the

diagonal red dashed line represent the linear estimate for ages

X-64 and it has been computed as the linear regression fit

of the mean GMS values for ages 65-85 (mean GMS values

corresponding to ages 85-98 have not been considered due

to the insufficient quantity of GMS available for those ages).

In the description above, X represents the estimated age at

which GMS start degrading from adulthood to old-age. For

further details on the rationale to use these linear fits please

see Sect. V-A.1.

The matching results shown in Fig. 8 are consistent with

the equivalent quality-related results presented in Fig. 6. This

way, the conclusions drawn from the quality experiments are

confirmed with small variations:

• FINDING 10. Genuine matching scores of children

increase between 0 and 18 years of age. This increase

is linear and very rapid between 0 and 12 years of age

while it considerably reduces its rate between 12 and 17.

• FINDING 11. For adults, although a certain increasing

trend can be observed between 18 and 25 years of age,

considering the range of the 90% confidence intervals,

it is not possible to confirm such improvement. Rather,

based on FINDING 5 of the quality experiments, it is

more reasonable to assume that matching scores during

adulthood should be fairly constant. However, given the

limited amount of data available for adults from an

age-wise perspective, covering ages 18-25 (i.e., eight

points), this assumption regarding the stable behaviour

of fingerprint genuine matching performance for adults

should still be confirmed on a set of data covering the

age range 25-64.

• FINDING 12. For elderly in the range 65-84, finger-

print genuine matching scores decrease linearly with age.

According to the estimation made in the study, this linear

decrease starts at around 40-45 years of age (which

is consistent with the estimation made in the quality

experiments). The mean value of genuine matching scores

of 70-year olds is similar to that of children close to

5 years old (as was already observed in FINDING 6 of

the quality experiments).

The results presented in this section, summarized in

FINDINGS 1-12, have shown the big challenge posed to fin-

gerprint recognition systems by very young children (0-4) and,

to a lesser extent, also by the elderly (especially above 70).

Based on these findings and on previous experience gained in

the field of fingerprint biometrics, we present here plausible

explanations for this poor performance and we put forward

two hypotheses on how to improve the interaction of these

problematic age-groups with fingerprint-based technology.

The size of fingerprints and the frequency (width) of ridges

and valleys are two of the major parameters that are taken

into account in the development of quality metrics and feature

extraction algorithms. These parameters are typically adapted

to the average size and ridge width of adults fingerprints.

As such, the small overall size and narrow ridge structure

of fingerprints belonging to very young children (0-4 years

of age) is likely to be one of the main reasons for their low

quality and poor matching performance.

• HYPOTHESIS 1. Developing specific quality metrics

and matching algorithms adapted to the reduced size

of children fingerprints could significantly improve both

their image quality scores and their overall accuracy.

Following the previous hypothesis, some vendors already

include a juvenile option in their recognition systems in order

to adapt certain parameters of the embedded algorithms to the

specific size particularities of children fingerprints. However,

still further research is required to fully assess with experimen-

tal results the improvement offered by these children-tailored

solutions.

For the elderly, as for adults, fingerprints size and ridge

width remains basically invariable with age. However, the skin

condition changes as we grow older, gradually losing its

elasticity, firmness and becoming drier, mostly due to the

decrease of collagen [32]. These variations, together with other

possible medical sufferings typical of old age such as arthritis,

hinder the acquisition of fingerprints with current live-scan

touch-based scanners, which entails a decrease in their overall

image quality.
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Fig. 9. Evolution of the DET curves (i.e., system accuracy) as the time difference between the reference and the probe samples increases from 0 years
to 7 years. The plots are given for: children 5-12 (left), adults 18-25 (center) and elderly 70-74 (right). Adults DET curve for a time difference of 0 years
between reference and probe (Adu. 0y) is provided as reference in the children and elderly plots (in green). Find a similar plot but for the NIST matcher in
Fig. 7 of Annex A.

• HYPOTHESIS 2. From a technological perspective, new

touchless acquisition devices could improve the quality

and, therefore, the matching performance of elderly fin-

gerprints.

From a pure procedural perspective, with current touch-

based technology, moisturizing the fingertip skin prior to the

acquisition can also help to obtain images with better quality

(improving this way the matching scores).

B. Results: Ageing Effect

The results presented in this section have been obtained

following the experimental protocol described in Sect. IV-B

(see Fig. 4).

Fig. 9 shows the evolution of the system accuracy in terms

of the DET curves when the time difference between the

reference and probe samples increases from 0 to 7 years.

As illustrative examples, results are given for age groups:

children2 (5-12), adults (18-25) and elderly2 (70-74).

From these plots it seems that the largest ageing effect

happens for the children group, where the DET curves present

a gradual degradation from 0 years (darkest shade of blue)

to 7 years (lightest shade of blue). For adults and elderly,

the effect is not as clear, although it does appear that lighter

shades of the DET curves tend to be higher up in the plot

(larger error rates).

The DET plots presented in Fig. 9 are enough to show

that the accuracy of systems can suffer a certain degradation,

especially for the case of children, in the 7-year time-gap

considered. However, based on these accuracy metrics it is

difficult to quantify, either visually or numerically, the ageing

effect. In addition, the DET curves do not allow for a clear

comparison of ageing among age-groups.

For the reasons expressed above, DET curves are not the

best suited tools for the analysis of ageing. As explained in

the introduction of Sect. IV, ageing is a phenomenon mostly

related to genuine matching scores. Therefore, the fairly

consistent False Acceptance and False Rejection error rates

(FAR and FRR) shown in Fig. 9 for adults and elderly, does not

necessarily imply that there is no ageing, as the genuine score

distribution may have started to drift towards the impostor

score distribution which, eventually, will result in a decrease

of the system accuracy.

According to this rationale, also applied in previous stud-

ies [2], in the following ageing is further analysed based on

the variation of the mean value of the genuine matching score

distributions.

Fig. 10 shows the evolution of the mean genuine scores

when the time difference between the reference and probe

samples increases from 0 to 7 years. Results are given for

age group categories: 1) Top row: children1 (0-4), children2

(5-12), children3 (13-17) 2) elderly1 (65-69), elderly2 (70-74),

elderly3 (75-79), elderly4 (80-98). Adults (18-25), is plotted

in green in both cases as reference.

The left plots in Fig. 10 show the evolution of the mean

absolute values. The right plots show the normalized mean

values. The normalization is such that, for all age groups,

the mean genuine score for a time difference of 0-1 years

represents 100%. This way it is possible to visualize the

variation in percentage of the mean value, where a steeper

slope implies a larger ageing effect. For each point, the 90%

confidence interval is given as a vertical bar.

The graphs given in Fig. 10 allow for a better analysis of

ageing than the DET curves of Fig. 9. The main conclusions

that may be extracted from the children results (top row) are:

• FINDING 13. Looking at the absolute values of the

genuine matching scores (i.e., top row left in Fig. 10),

the results obtained in the age-effect experiments pre-

sented in Sect. V-A are confirmed: children fingerprints

in the range 0-4 show lower genuine matching scores

(GMS) than children fingerprints in the range 5-12, while

GMS for children 13-17 and adults are very similar.

• FINDING 14. For all groups, a larger time differ-

ence between the reference and probe samples implies

a decrease in the performance of the genuine match-

ing scores. The ageing effect is therefore confirmed.

This loss of matching performance is (see Fig. 10,

top row, right plot): 1) around 15% in the case of
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Fig. 10. Evolution of the mean genuine score as the time difference between the reference and the probe samples increases from 0 years to 7 years. The right
column shows the same results as the left, but normalized so that the first point represents in all cases 100%. The plots are given for: 1) the three children
sub-groups (top row); 2) the four elderly sub-groups (bottom row). Adults are given as reference (in green). The evolution of the mean impostor score is also
plotted in red as reference (left column). Fig. 8 in Annex A shows the same results obtained with the NIST matcher.

adults and children 13-17; 2) around 50% in the case of

children 5-12 and 0-4. Note that, given the 90% confi-

dence intervals, this loss has a tolerance of around ±3%.

• FINDING 15. For adults and children 13-17, the total

15% decrease in the GMS is almost linear between

0 and 7-years difference, i.e., there is around a 2%

loss with each additional year between the reference and

probe samples. On the contrary, for children 0-4 and 5-12,

the biggest ageing effect occurs when the time difference

between the reference and probe samples increases from

2 to 4 years (steepest slope in the right plots). In this

2-year gap there is a 30%-40% loss in the GMS (out

of the total 50% over 7 years). Note that, given the

90% confidence intervals, such performance loss has

a tolerance of around ±5 −±16%, depending on the age

group.

The following set of conclusions may be drawn from the

results presented in Fig. 10 for the elderly (bottom row):

• FINDING 16. Looking at the absolute GMS values, i.e.,

left plot, the results obtained in the age-effect experiments

presented in Sect. V-A are confirmed: elderly fingerprints

perform worse as the age of the reference template

increases, that is, age group 65-69 performs better than

70-74, which performs better than 75-79, which performs

better than 80-98.

• FINDING 17. For all groups, a larger time difference

between the reference and probe samples implies a loss

in the GMS mean value. Therefore, ageing is confirmed.

This decrease of the genuine matching scores is very

similar for all groups around 15% (similar to that of

adults).

• FINDING 18. For all groups, the total 15% GMS

decrease is almost linear between 0 and 6-years differ-

ence, i.e., there is around a 2-3% loss with each additional

year difference between the reference and probe samples

(similar to adults).

In summary, it can be stated that ageing between 13 and

98 years of age happens in a very similar way, while this

effect is significantly larger between 0 and 12 years.

As a coarse way of quantifying together age and ageing,

Fig. 11 shows the estimation of the time difference required

in order for the mean value of the genuine scores to become

equal to the mean value of the impostor scores, assuming a

linear degradation of the genuine scores for all age groups.

The thresholds for FAR = [0.1%, 0.01%, 0.001%] computed

on adults data are also given for reference. This figure can

be interpreted as a conjecture of how the curves given in

the left column of Fig. 10 may evolve with time. As can

be seen, for children 0-12, in around 10 years time from the

acquisition of the reference sample, the system would become
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Fig. 11. Estimation of the time difference in which the mean genuine score value eventually becomes equal to the mean impostor score value, assuming
linear ageing over time for all age groups. The thresholds for FAR = [0.1%, 0.01%, 0.001%] computed on adults data are given for reference. An analogous
plot is shown in Fig. 9 of Annex A.

completely unusable (i.e., overlapped genuine and impostor

scores distributions). This time gap increases to 20-30 years

for the elderly groups and goes beyond 30 years for sub-

jects of ages between 13 and 25 (adults). These figures can

be useful in order to define a policy for template update

depending on the age of the user (e.g., validity period for

passports).

As mentioned above, the previous findings have shown that

the population segment most affected by ageing are children

between 0 and 12 years of age. This is the age range where

individuals grow at the fastest rate. From our perspective,

the displacement of the minutiae points due to this rapid

growth is the most probable cause for the larger ageing in

this group. Based on this rationale, we can state that:

• HYPOTHESIS 3. From an algorithmic perspective, the

development of a reliable growth model for fingerprints

between 0 and 12 years could help to predict the new

position of minutiae points and other discriminative fea-

tures at a certain point in the future, with respect to the

reference template, helping this way to reduce the ageing

effect in young children.

An early work has already provided some initial experimen-

tal support to the previous hypothesis, under the assumption

of the isotropic displacement of minutiae points [33].

From a pure procedural perspective, ageing can also be

prevented by reducing the validity of the reference templates

(e.g., in the case of travel documents this would entail a shorter

expiry period).

VI. CONCLUSIONS

According to folk wisdom “nothing is immutable” (except

for death and taxes).4 If that is so, can we trust biometrics as

a mean for personal authentication?

The present article has addressed this difficult issue in the

field of fingerprint recognition, presenting some new insights

into the way time affects fingerprint-based technology. The

main goal has been to produce valuable results that can

4Paraphrase of a famous quote usually attributed to Benjamin Franklin: “In

this world, nothing can be said to be certain except death and taxes”

help researchers, vendors and users to further understand the

level of reliability of automatic fingerprint recognition systems

depending on the age of the subject and the time difference

between the reference and probe samples.

To reach this objective, we have used a unique database

of over 400K fingerprints which contains fingers ranging

between 0-25 years and between 65-98 years, with a time

difference between samples of the same finger of 0 to 7 years.

This dataset has allowed us to study the effect of time

on fingerprint recognition systems from two linked perspec-

tives: age and ageing. These two effects have been eval-

uated considering both fingerprint quality and fingerprint

matching.

The analysis of the results has generated a number of

findings highlighted throughout the text. These findings are

summarised in the next set of wrap-up conclusions which

either: 1) confirm similar results reached in previous works

(usually over significantly less amount of data); 2) challenge

conclusions reached in previous works; 3) constitute new

knowledge in the field.
• CONCLUSION 1. From a quality point of view, children

fingerprint impressions show better quality than those

of the elderly. However, from an accuracy perspective,

elderly fingerprint images show somewhat lower error

rates than those of children. Both from a quality and a

matching perspective adults fingerprints are clearly those

that present the best behaviour.

This comparison of the three main age-groups

(i.e., children, adults and elderly) from a quality

and matching perspective is a new contribution from this

work. However, some similar trends had already been

pointed out in previous low-scale works considering

only children [7], [23], [24].

• CONCLUSION 2. Fingerprints quality and genuine

matching scores: 1) increase very rapidly between 0 and

12 years of age, where they stabilise; 2) both remain

fairly constant during adulthood until 40-45 years of age;

3) at 40-45 both start to decrease linearly. Please recall

that, both the stable behaviour during adulthood and the

age at which the scores begin to decrease linearly, are
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Fig. 12. Diagram showing the different age zones in which the fingerprints
lifetime can be divided according to their quality/matching and the ageing
effect (following the results presented in Sect. V). Numbers indicate age in
years.

estimations that still need to be confirmed on a database

with fingerprint images in the age range 26-64.

This result challenges previous conclusions presented

in [2] where it was claimed that both genuine match-

ing scores and fingerprint quality continuously decrease

between 0 and 80 years of age.

• CONCLUSION 3. Ageing occurs for all age groups: the

larger the time difference between the reference and the

probe samples, the larger the matching performance loss

of the genuine scores. This happens for a time difference

as small as 1-2 years.

This result confirms the conclusions reached in the pre-

vious large-scale ageing study [2].

• CONCLUSION 4. Ageing is larger for children whose

fingerprint reference sample has been enrolled to the

system at 0 to 12 years old. In this age range, for a

time difference of 7 years the genuine matching scores

decrease by around 50%. For the age range between

13 and 98 years of age, ageing is very similar. It occurs

linearly with a drop in genuine matching performance of

around 1.5%-3% every increase of 1 year between the

reference and probe samples.

Ageing had been studied for adults in [2], where similar

conclusions were reached. However, the present work

adds information regarding the comparison of ageing

through different age-groups.

The findings reached in the work, summarised in the four

previous conclusions, can be used to identify four different

age zones for fingerprints, depending on the level of the age

effect and the ageing effect. This four age zones are depicted

in Fig. 12. Please note that, the ages given as limits between

zones, should not be taken as precise and definitive markers

but as general guidelines with some tolerance, that can help

to comprise the evolution of fingerprints through life.

The results have also led us to put forward a number

of hypotheses (highlighted in the text), which give probable

explanations to the effects observed in each of these four

age zones, at the same time that possible solutions are pro-

posed to reduce these effects. The hypotheses need to be

confirmed/refuted through further development and experi-

mentation, opening paths for future research.

The four fingerprint age zones that can be identified thanks

to the conclusions of the work are:

• Very young children, 0-4. This age-group is the most

challenging of all the analysed ones. It is character-

ized by: 1) poor fingerprint image quality; 2) poor accu-

racy; 3) a pronounced ageing effect. Specific fingerprint

algorithms/procedures could be conceived for this

segment of the population.

As expressed in HYPOTHESIS 1, new quality and fea-

ture extraction algorithms may be developed, specifically

adapted to the small size of these fingerprints and to their

narrow ridges and valleys.

In addition, following HYPOTHESIS 3, the development

of a reliable growth model for the displacement of minu-

tiae points through childhood could be a powerful tool to

counteract the effect of ageing.

From a procedural perspective, shorter validity periods

for the reference templates could also be an advisable

measure to put in place for this age group.

• Children, 5-12. For this age group, while quality and

matching performance clearly improve with respect to

children 0-4 and get closer to adults, the ageing effect

is still significantly higher. Therefore, analogue mea-

sures to those described in HYPOTHESIS 3 for very

young children (0-4) could be followed to minimise this

effect.

• Teenagers, adults and young-elders, 13-69. For this

population segment it can be safely stated that fingerprint

recognition systems work, approximately, as evaluated on

adults.

It is true that 40-45 years has been estimated as the age

at which both fingerprint quality and genuine matching

scores start to linearly degrade. While this degradation

will eventually affect the overall accuracy of fingerprint

systems, based on the results for elders, we believe that,

until approximately 70 years of age, this performance loss

will not be significant enough.

It is also important to notice that, to fully validate the

previous statements, further experiments on real data

are required in order to accurately model the age and

ageing effects for the age range 26-64 (missing in the

dataset). Those results could show some variations with

respect to the estimations made in the article. However,

all the evidence presented in this work indicates that

it is unlikely that the behaviour of fingerprints between

26-64 may differ significantly from that of either adults

(18-25) or the first elderly group (65-69).

• Elders, 70+. The quality degradation of the fingerprint

impressions for this part of the population is quite sig-

nificant, to the point that their quality is the lowest of

all age groups considered, including children 0-4. This

very low quality is not fully reflected on the accuracy of

the systems which is comparable to that of children 5-12.

As stated in HYPOTHESIS 2, new touchless acquisition

technology could help to improve the fingerprint quality

for these users and, therefore, also the final accuracy of

systems.

From a procedural perspective, practical acquisition mea-

sures such as moisturizing the skin prior to the scanning

can also help to obtain better quality fingerprints for this

age group.

Lastly, we would like to highlight that, as pointed out

in some of the findings of the study, the elderly can pose

a significant challenge to fingerprint recognition systems,
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comparable, or even bigger, than children in the age

range 5-12. This fact can have big practical implications.

We should not forget that Europe has stated a commitment

to “the rights of the elderly to lead a life of dignity and inde-

pendence and to participate in social and cultural life” [34].

This implies to take the necessary measures to ensure the

inclusion of elders in every day life and to guarantee their

access to services available to the general population. The

results presented in the article have shown that, given the

quality deterioration of fingerprints at advanced points in life,

there is a potential risk of age-based discrimination against

elders due to increased rates of failure-to-capture or failure-

to-enrol. We believe that this should be an important issue to

be considered in the design of fingerprint recognition systems

in order to avoid possible inter-generational inequality [26].

A good practical illustrative example of the situation

described above can be found in the field of border man-

agement and travel control. Elders are, unlike children, fully

autonomous to cross borders and, in general, have the eco-

nomic resources to do so. Therefore, all automatic systems

put in place to supervise and regulate the flow of travelers,

such as the ePassport or ABC gates, should take into account

the biometric particularities of elders. For instance, the results

presented in the article can help to define important policies

like: 1) setting different validity periods for travel documents

depending on the age of the holder or 2) setting different

quality thresholds for fingerprint samples according to the

age-group.
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