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Abstract

The stability of an aircraft on the runway is dependent on many factors. In this

thesis, a mathematical model is developed that allows the ground stability and lateral

dynamics of an aircraft to be analyzed while it is in the process of taking off or landing.

Only two degrees-of-freedom will be considered: lateral displacement and angular

rotation. Equations of motion for the model are developed using Newtonian mechanics.

The major components of the aircraft that are included in the model are the main landing

gear, the vertical tail, and the tail wheel. The model is developed into both linear and

non-linear forms.

Comparisons are made between a tricycle gear aircraft and a taildragger.

Simulations for both the linear and non-linear model are performed to better understand

stability. The results of these simulations are used to comment on the applicability of the

linear model.

in



Table of Contents

Disclosure Statement ii

Abstract iii

Table of Contents iv

List of Tables vi

List of Figures vii

List of Symbols xi

Chapter 1 Introduction 1

Chapter 2 Literature Review 7

Chapter 3 Tire Model 1 1

3.1 Introduction 1 1

3.2 Lateral Force 12

3.3 Linear Tire Model forMain Landing Gear 16

3.4 Non-Linear Tire Model for Main Landing Gear 16

3.5 Tire Model for Tail Wheel 26

Chapter 4 Two Degree-of-Freedom Aircraft Model 28

4.1 Introduction 28

4.2 Description ofModel 29

4.2.1 Assumptions 31

4.2.2 Aircraft Parameters 32

4.2.3 Free Body Diagram 33

4.3 Derivation of Equations ofMotion 35

4.4 Derivation of Tire Slip Angles & Vertical Tail Angle 38

4.5 Linear Model 41

4.5.1 Aircraft Sideslip Angle 42

4.5.2 Tire Slip Angle 43

4.5.3 Tail Incidence Angle 43

iv



Table of Contents

4.5.4 External Forces andMoments 44
4.5.5 Linearized Equations ofMotion 46
4.5.6 Simulation ofMain Landing Gear Only 47
4.5.7 Simulation ofMain Landing Gear & Vertical Tail Only .. 56
4.5.8 Simulation of the Main Landing Gear, Vertical Tail,

& Tail Wheel 69

4.6 Non-Linear Model 76
4.6.1 Non-LinearModel Equations 76
4.6.2 Simulation ofMain Landing Gear Only 77
4.6.3 Simulation ofMain Landing Gear & Vertical Tail Only .. 82
4.6.4 Simulation ofMain Landing Gear, Vertical Tail,

& TailWheel 87

4.7 Summary 89

Chapter 5 Conclusion 93

References 95

Appendix A MATLAB Script Files 97
A.l MAGICFIT.m 97
A.2 MAGICERROR.m 98
A.3 NLTIRE.m 99
A.4 DOF2CONT.m 100

A.5 DOF2PARA.m 101

A.6 DOF2DEPA.m 103

A.7 DOF2LSIM.m 104

A.8 DOF2LDE.m 107

A.9 DOF2NLSI.m 108

A.10 DOF2NLDE.m Ill



List of Tables

Table 3.1: Experimental Tire Data 19

Table 3.2: NonLinear TireModel Parameters 22

Table 4.1 : Aircraft Parameters 33

Table 4.2: Linear Tire Model Parameter 44

Table 4.3: Main Landing Gear Simulation Configurations 57

Table 4.4: Results ofLinear Simulation ofMain Gear Only 52

Table 4.5: Main Landing Gear & Vertical Tail Simulation Configurations 57

Table 4.6: Results ofLinear Simulation ofMain Gear & Vertical Tail Only 60

Table 4.7: Main Gear & Tail Wheel Cornering Stiffness for Simulating
Main Gear, Vertical Tail, & Tail Wheel 70

Table 4.8: Results ofLinear Simulation ofMain Gear, Vertical Tail &
Tail Wheel 71

Table 4.9: Results ofNon-Linear Simulation ofMain Gear Only 80

Table 4.10: Results ofNon-Linear Simulation ofMain Gear &
Vertical Tail Only 83

Table 4.1 1: Results ofNon-Linear Simulation ofMain Gear,
Vertical Tail, & Tail Wheel 88

vi



List of Figures

Figure 3.1: Tire Slip Angle 14

Figure 3.2: Tire Lateral Force versus Slip Angle 14

Figure 3.3: Experimental Tire Data 19

Figure 3.4: Tire Cornering Coefficient 21

Figure 3.5: Tire Lateral Friction Coefficient. 21

Figure 3.6: Tire Normalized Lateral Force 23

Figure 3.7: Reconstructed Tire Lateral Force 25

Figure 3.8: Tail Wheel Cornering Stiffness 27

Figure 4.1: BicycleModelfor a TaildraggerAircraft 30

Figure 4.2: Free Body Diagram 34

Figure 4.3: Kinematic Diagram 39

Figure 4.4: Tricycle Gear Configuration 48

Figure 4.5: Linear Lateral Displacement Response forMain Gear at CG,
Main Gear Only 53

Figure 4.6: LinearAngular Rotation Responsefor Main Gear at CG,
Main Gear Only 53

Figure 4. 7: Linear Lateral Displacement Response for Main Gear 0.5 m
in Front ofCG, Main Gear Only 54

Figure 4.8: LinearAngular Rotation ResponseforMain Gear 0.5 m

in Front ofCG, Main Gear Only 54

Figure 4.9: LinearLateralDisplacement Response forMain Gear Position

-0.5 m & Forward CG Limit, Main Gear & Vertical Tail Only 61

Figure 4.10: LinearAngular Rotation ResponseforMain Gear Position

-0.5 m & Forward CG Limit, Main Gear & Vertical Tail Only 61

vu



List of Fieures

Figure 4.11: Linear LateralDisplacement ResponseforMain Gear Position
-0.5m&AftCG Limit, Main Gear & Vertical Tail Only 62

Figure 4.12: LinearAngularRotation ResponseforMain Gear Position
-0.5m&AftCG Limit, Main Gear & Vertical Tail Only 62

Figure 4.13: Linear LateralDisplacement ResponseforMain Gear Position
at CG & Forward CG Limit, Main Gear & Vertical Tail Only 63

Figure 4.14: LinearAngular Rotation ResponseforMain Gear Position
at CG & Forward CG Limit, Main Gear & Vertical Tail Only 63

Figure 4.15: Linear Lateral Displacement ResponseforMain Gear Position
at CG & Aft CG Limit, Main Gear & Vertical Tail Only 64

Figure 4.16: LinearAngular Rotation Response for Main Gear Position
at CG & Aft CG Limit, Main Gear & Vertical Tail Only 64

Figure 4. 1 7: Linear Lateral Displacement Response for Main Gear Position
0.5 m in Front ofCG & Forward CG Limit, Main Gear &
Vertical Tail Only 65

Figure 4.18: LinearAngular Rotation Responsefor Main Gear Position 0.5 m
in Front ofCG &Forward CG Limit, Main Gear &
Vertical Tail Only 65

Figure 4.19: Linear Lateral Displacement ResponseforMain Gear Position
0.5 m in Front ofCG &Aft CG Limit, Main Gear &
Vertical Tail Only 66

Figure 4.20: LinearAngular Rotation ResponseforMain Gear Position
0.5 m in Front ofCG &Aft CG Limit, Main Gear &
Vertical Tail Only 66

Figure 4.21: Frequency versusMain Gear Location, Main Gear &
Vertical Tail Only 68

Figure 4.22: Damping Ratio versusMain Gear Location, Main Gear &
Vertical Tail Only 68

Figure 4.23: Linear LateralDisplacement Response with Main Gear at

Full-Static Load, Main Gear, Vertical Tail & Tail Wheel 72

vm



List of Figures

Figure 4.24: LinearAngular Rotation Response with Main Gear at
Full-Static Load, Main Gear, Vertical Tail & Tail Wheel 72

Figure 4.25: Linear LateralDisplacement Response with Main Gear at
Half-Static Load, Main Gear, Vertical Tail & Tail Wheel 73

Figure 4.26: Linear Angular Rotation Response with Main Gear at
Half-Static Load, Main Gear, Vertical Tail & Tail Wheel 73

Figure 4.27: Frequency versus Tail Wheel Cornering Stiffness, Main Gear,
Vertical Tail & Tail Wheel 75

Figure 4.28: Damping Ratio versus Tail Wheel Cornering Stiffness, Main Gear,
Vertical Tail & Tail Wheel 75

Figure 4.29: Non-Linear LateralDisplacement Response forMain Gear at CG,
Main Gear Only 80

Figure 4.30: Non-LinearAngular Rotation Responsefor Main Gear at CG,
Main Gear Only 57

Figure 4.31: Non-Linear Lateral Displacement Response for Main Gear

0.5 m in Front of CG, Main Gear Only 81

Figure 4.32: Non-Linear Angular Rotation ResponseforMain Gear

0.5 m in Front ofCG, Main Gear Only 82

Figure 4.33: Non-Linear Lateral Displacement Response forMain Gear

Position -0.5 m, Main Gear & Vertical Tail Only 84

Figure 4.34: Non-LinearAngularRotation Responsefor Main Gear

Position -0.5 m, Main Gear & Vertical Tail Only 84

Figure 4.35: Non-Linear Lateral Displacement ResponseforMain Gear

Position Om, Main Gear & Vertical Tail Only 85

Figure 4.36: Non-Linear Angular Rotation Response forMain Gear

Position 0 m, Main Gear & Vertical Tail Only 85

Figure 4.37: Non-Linear Lateral Displacement ResponseforMain Gear

Position 0.5 m, Main Gear & Vertical Tail Only 86

Figure 4.38: Non-Linear AngularRotation Response forMain Gear

Position 0.5 m, Main Gear & Vertical Tail Only 86

IX



List of Figures

Figure 4.39: Non-Linear Lateral Displacement Response with Main Gear at
Full-Static Load, Main Gear, Vertical Tail & Tail Wheel 88

Figure 4.40: Non-LinearAngular Rotation Response with Main Gear at
Full-Static Load, Main Gear, Vertical Tail & Tail Wheel 89

Figure 4.41: Front Tire Slip Angle Resultfrom Non-Linear Model 97

Figure 4.42: LateralDisplacement versus ForwardMotion 92



List of Symbols*

a Front tire normalized slip angle

Fy Normalized tire lateral force

6 Magic Formula intermediate variable

W Magic Formula intermediate variable

O Angular velocity of aircraft-fixed coordinate system [rad/sec]

tt Front tire slip angle [deg or rad]

/? Aircraft sideslip angle [deg or rad]

S Difference between peaks in responses

y Angle of incidence on vertical tail [deg or rad]

fly Tire lateral friction coefficient

p Density of air [kg/m3]

Damping ratio

Q.z Angular velocity of aircraft-fixed coordinate system about z-axis [rad/sec]

Clz Time derivative of angular velocity

a Distance from mass center to main landing gear [m]

a0 Acceleration of the origin of the vehicle-fixed coordinate system

*By convention, scalar variables are italicized and vectors are boldfaced

xi



List of Symbols

Ap Planform area of vertical tail [m2]

ay Acceleration of vehicle mass center in y-direction [m/sec2]

b Distance from mass center to aerodynamic center of vertical tail [m]

Bi Magic Formula curve fit parameter

B3 Tire cornering coefficient intercept

B5 Tire lateral friction coefficient intercept

Cj Magic Formula curve fit parameter

C3 Tire cornering coefficient slope

Cs Tire lateral friction coefficient slope

Cc Tire cornering coefficient

C/ Front tire cornering stiffness - two tires [N/rad]

Cf.,aii Tail wheel cornering stiffness [N/rad]

Cly Coefficient of lift of the vertical tail [1/deg]

Ca Tire cornering stiffness [N/rad]

Dj Magic Formula curve fit parameter

E] Magic Formula curve fit parameter

/ fraction of weight on main landing gear

F External force [N]

Fy Tire lateral force [N]

Fy_disturbance Side force disturbance [N]

Fyjront-tire Front tire lateral force - two tires [N]

Fy_,aii Vertical tail aerodynamic force [N]

xn



List of Symbols

Fyjaii-wheei Tail wheel lateral force [N]

Fz Tire vertical load [N]

g Acceleration due to gravity [m/sec2]

G Linear momentum

H Angular momentum (about mass center)

i Unit vector in x-direction of aircraft-fixed coordinate system

Izz Total aircraft yaw mass moment of intertia [kg-m2]

j Unit vector in y-direction of aircraft-fixed coordinate system

k Unit vector in z-direction of aircraft-fixed coordinate system

L Wheel base [m]

M External moment (about mass center)

m Total aircraft mass [kg]

Mz Moment about z-axis of aircraft fixed coordinate system

r Yaw velocity [rad/sec]

Rf Position vector from aircraft mass center to main landing gear [m]

Rr Position vector from aircraft mass center to tail wheel [m]

u Forward velocity [m/sec]

u Time derivative of forward velocity [m/sec2]

v Lateral velocity [m/sec]

v Time derivative of lateral velocity [m/sec ]

V Magnitude of aircraft velocity [m/sec]

Vf Velocity of front tire [m/sec]

xm



List of Symbols

V0 Velocity of aircraft fixed-coordinate system [m/sec]

Vtaii Velocity of vertical tail [m/sec]

Vx Component of velocity in x-direction [m/sec]

Vy Component of velocity in x-direction [m/sec]

xiv



1 Introduction

In 1903, theWright brothers built their first airplane, which they named the Flyer.

It was a biplane (two-wing plane) with a 12-horsepower (9-kilowatt) gasoline engine.

The wings, which measured 40 feet 4 inches (12.29 meters) from tip to tip, were wooden

frames covered with cotton cloth. The pilot lay in the middle of the lower wing. The

engine, which was mounted to the pilot's right, turned two wooden propellers located

behind the wings. The plane had wooden runners that were guided by rails during take

off and used to skid across the ground during a successful landing. The Brother's had

very little control of the airplane while in flight. As a result, they crashed many times

before they were able to perfect their flying technique. Throughout their attempts to build

a flying machine they considered many different designs. They knew that certain

components were necessary to fly, and the details of these components were important to

maintaining controlled
flight.1

There have been many significant improvements in aviation and aircraft

construction since the days of cloth covered wings and wooden runners. Most aircraft are

now very well designed and pilot friendly. Maintaining control while in flight is hardly a

concern any more, except in extreme conditions. Pilots can even take their hands off of

the wheel or stick and still maintain stable flight. Today, the hardest part about flying is

taking off and landing. The interaction between the wheels of the landing gears and the

runway produces forces that act simultaneously with the aerodynamic lift and drag forces

that an aircraft generates. In fact, during the take-off, landing, and taxiing portions of
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flight an aircraft is essentially a cross between a ground vehicle and a flying machine.

Like any type of vehicle, it is desirable to maintain control at all times.

This thesis focuses on aircraft stability. However, unlike most studies involving

aircraft, this is a study of the aircraft while it is still on the runway and when it is just

beginning to take-off or just starting to land, rather than when it is in the air. The

dynamics of the aircraft are looked at from the point of view of a ground vehicle. Since

the goal of an aircraft is to fly, there has been little concern with the dynamic behavior of

the aircraft while it is still on the runway. Nonetheless, there are safety concerns linked to

maneuvering an aircraft while it is still on the ground. Thus, it is important to fully

understand aircraft ground stability in an effort to maintain control and prevent accidents

from occurring. Directly related to this issue are the landing gears. The location of the

landing gears influence aircraft stability. Yet despite this, determination of landing gear

location is governed by the geometry of the aircraft rather than the stability.

An aircraft on the runway has three basic modes of performance. Vertical

dynamics refers to the vertical response of the aircraft to runway disturbances such as

slopes or bumps. Longitudinal dynamics is concerned with the straight-line motion of the

aircraft. Factors such as acceleration, braking, and drag play a role in this type of

performance. Finally, lateral dynamics is the study of the turning or sideslipping behavior

of the aircraft. Tire and aerodynamic forces are the major items of interest in lateral

dynamics. Although each of these modes is important, this thesis will only focus on the

lateral dynamics of the aircraft since this is the major concern of pilots. It is an

undesirable effect to have the aircraft moving left or right and yawing when a pilot is
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taking off or landing. The goal of this thesis is to maximize the lateral performance of the

aircraft by minimizing these unwanted effects.

The major influence on lateral dynamics is the configuration of the aircraft. Is the

aircraft a taildragger, which has the main landing gear in front of the center of gravity and

tail wheel behind the CG? Or is the aircraft a tricycle gear design, where the main

landing gear is behind the CG and a nose wheel is present? Recent aircraft designs

provide increased reliability, comfort, and are easier to fly than their predecessors. In

terms of many design enhancements, the tricycle landing gear is perhaps the most

noteworthy. During the landing exercise, the pilot can make a number ofmistakes when

manipulating the controls. A tricycle gear aircraft is more forgiving to the pilot. That is,

they are easier to steer on the ground. When one leams to fly in a taildragger, it is a

challenge just to taxi it. The pilot constantly has to be "on the
rudder,"

attempting to

make the airplane go where he wants it to go. Add a little crosswind, and the exercise

sometimes became an adventure. If the nose of the aircraft starts to deviate from the

desired path (yaw), the pilot has to respond with opposite rudder. This does not happen

when one learns to fly in an airplane equipped with a tricycle gear. An airplane with a

tricycle landing gear has an inherent tendency to "go
straight"

when being taxied.

Additionally, most training aircraft today have a wheel-control, not unlike that of an

automobile. Consequently, one may have a natural tendency to attempt to
"drive"

the

airplane. Needless to say, this simply does not work, particularly during gusty, crosswind

landings. It is not uncommon to see a pilot attempt during a landing exercise to correct

for a
"gust-induced"

yaw with opposite aileron. Not only does this not work, but also the
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drag created by the down-aileron exacerbates the yaw while at the same time raising the

wind and, thereby, removing or reducing any required crosswind correction (sideslip).

Although one may get away with this when landing a tricycle gear aircraft, with a

taildragger, a landing incident or accident is highly probable. Most likely, a ground loop

will occur. A ground loop is a directional stability problem where the tail of the aircraft

swings to the front of the plane.

All of these problems are caused in the same basic way. It has to do with the

place where the side loads are reacted out against the ground, and where that is with

respect to the center of gravity and the center of lateral area of the aircraft. Tail wheel

aircraft are not quite as forgiving about sloppy landings as nose wheel aircraft. Part of the

reason for this has to do with the tendency of an irregular object that is passing rapidly

through the air to align itself with the heavy end in front. As a result, the center of gravity

will do its best to get in front of any resistance to the aircraft's motion that is encountered.

There are also some inertial effects here. These tell us that if something is stopped, it

tends to stay stopped, and if something is moving, it prefers to keep moving in the same

direction. It seems apparent then that in order to solve the problem of stability and

ground looping, one must design the aircraft in such a way as to correct itself during

maneuvering, as a tricycle gear aircraft does. If one really wants to fly a taildragger

aircraft, then some parameters must be specified to determine a method for the best

landing gear placement.

Since it is difficult, time consuming, and costly to experiment with these effects

on an actual aircraft, this is going to be a paper study. Mathematical modeling is an
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effective way for engineers to design and develop aircraft that meet performance goals.

This type of study will allow the effects of design changes to be evaluated immediately to

see if they meet the required goals. Furthermore, computer simulation will be effective in

characterizing the model in a controlled, repeatable environment. In addition, simulation

is used to prevent the aircraft and pilot from entering into dangerous situations where

safety is a key concern. In many ways, this study mirrors those that are done when

evaluating aircraft flight characteristics.

As one might expect, the complexity of the mathematical model can vary. For

instance, a model might consider only one mode of performance, be it vertical,

longitudinal, or lateral, or it can be any combination of these modes. For this study of

just the lateral dynamics of the aircraft, a simple two degree-of-freedom model, known as

the bicycle model, is used. Regardless of its simplicity, the two degree-of-freedom model

can be very useful in demonstrating the interaction of the major parameters such as tire

properties and center of gravity location.

Chapter 2 is a review of the literature that is available on aircraft stability and

vehicle dynamics, since this study is a combination of both.

Chapter 3 aims to describe the behavior of the tires and the forces they produce.

Also in this chapter are descriptions of the two tire models used in this thesis. Both a

linear tire model and a non-linear tire model are used in this study. The non-linear model

is based on a method called tire data non-dimensionalization, which was developed by

Hugo Radt.
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Chapter 4 deals with the two degree-of-freedom aircraft model. The bicycle

model is described in detail and several simplifying assumptions are made. The

equations of motion are then developed for the entire model. At this point, the model is

broken into pieces to study the effects of each component of the aircraft such as its main

landing gear, vertical tail, and tail wheel. Once the results have been established and

verified, the model is developed in two forms: linear and non-linear. Simulation is

performed for each model for a variety of aircraft component configurations.

Furthermore, these simulations are expanded to include modeling of the aircraft when the

wheels are not entirely in contact with the runway, as during take-off or landing. The

results are then compared and conclusions are made regarding the suitability and quality

of the linear model. Attempts are also made to stabilize the aircraft given certain

parameters, and suggestions for future designs are given.



2 Literature Review

Aircraft have been studied extensively since those first days when theWright

Brothers flew. Since then, they have been studied in every possible way to improve their

performance and handling characteristics while in flight. Many mathematical simulations

have been done as well as experimental testing in wind tunnels and actual flight. The

interaction between the aircraft and the surrounding air in conjunction with the control

surfaces is usually the main focus of these studies. As of yet, there has been little

concern with the ground handling capability and performance of aircraft. The interaction

between the runway and the tires along with the control surfaces is not as well known as

the interaction in flight. Performance on the ground is just not as important as

performance in the air. After all, aircraft spend only a small percentage of their time on a

runway. As such, the topic of this thesis is a relatively new concept.

Because there is no direct literature on the ground handling capability of aircraft,

three different topics were researched and brought together to create this study. The first

topic is aircraft flight stability. Some aspects of the aircraft's performance in flight can

be carried over to ground performance. The second topic of interest is vehicle dynamics.

An aircraft on the runway exhibits behaviors that are in some ways similar to ground

vehicles such as cars or trucks. The final topic of interest deals with tire forces and

modeling of tire behavior.

One of the problems that was beyond the grasp of aeronautical engineers in the

early
20th

century was the lack of understanding of the relationship between stability and

control, as well as the influence of the pilot on the pilot-machine system. It was not
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uncommon for experiments to be done with uncontrolled hand-launched gliders.

Through these experiments, investigators discovered that a glider had to be inherently

stable to fly successfully. A few of the early pioneers that contributed to the stability

theory were Albert Zahm from the United States, Alphonse Penaud from France, and

Frederick Lanchester from England. Zahm presented a paper in 1893 that correctly

outlined the requirements for static stability. He studied an airplane descending at

constant speed to analyze the conditions necessary for obtaining a stable equilibrium.

Zahm's conclusion was that the center of gravity had to be in front of the aerodynamic

force.2

Otto Lilienthal of Germany, and Octave Chanute and Samuel Pierpont Langley of

the United States made other significant contributions to aircraft performance. Lilienthal

was known for his work on human-carrying gliders. He mainly dealt with the properties

of camber in wings. His designs were statically stable but had very little control

capability. As a result, Lilienthal died in a glider crash. Octave Chanute experimented

with biplane and multiplane wings. He also incorporated a vertical tail for steering and

controls to adjust the wings to maintain equilibrium. Langley, a secretary at the

Smithsonian Institution, was the first one to experiment with heavier-than-air powered

flight. His initial work consisted of collecting and examining aerodynamic data.

Finally, theWright Brothers made history in 1903. These earlier aviators

influenced much of theWright's work. The Wright's designs, on the other hand, were

statically unstable but very maneuverable. Their work was mostly directed towards

improving control.
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Aircraft stability is a rapidly growing field of study. The introduction of new

control surfaces, automatic controls, and radical geometry makes it difficult to get a

complete picture of exactly what transpires in the air. However, there are sources that

allow the reader to get a general understanding of flight stability. One such book was

written by a professor from the University ofNotre Dame's Department of Aerospace

andMechanical Engineering. Flight Stability andAutomatic
Control,2

by Dr. Robert C.

Nelson, was originally written in 1989 and has since been revised. Nelson's work covers

static stability, aircraft equations ofmotion, dynamic stability, flying or handling

qualities, and automatic control theory. Another good source for analysis of aircraft is

Airplane Flight Dynamics andAutomatic Flight Controls by Jan
Roskam.3 Roskam

develops the mathematical models for the aerodynamic and thrust forces and moments

that act on an airplane. He also reviews the properties of lifting surfaces before

developing the steady state equations ofmotion of airplanes. Finally, the perturbed

equations of motion are discussed.

Several other books have been written that cover the subject of aircraft stability.

Among these areAirplane Stability and Control: A History of the Technologies That

Made Aviation Possible (Abzug,
1997),4

AircraftDynamic Stability and Response

(Babister,
1986),5 Dynamics ofFlight: Stability and Control (Etkin,

1996),6 Flight

Stability and Control (Hacker,
1970),7 Performance and Stability ofAircraft (Russell,

1996),8

and Introduction toAircraft Flight Dynamics (Schmidt,
1998).9

Vehicle dynamics research has been going on since the early 1900's. William

Lanchester wrote one of the first papers concerning road vehicle lateral dynamics in
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1908. Another early pioneer in this field was Maurice Olley. His paper "Suspension

and
Handling"

covers the research of vehicle dynamics up to 1937.
' '
During the early

1960's, Olley summarized his vast knowledge of suspension systems and handling in a

series of papers now known as "Olley's Notes".12, 13

The Millikens, William and Douglas, did some more recent work in the field of

vehicle dynamics. In their book, Race Car Vehicle Dynamics,14 they cover everything

from tire behavior to suspensions in regards to vehicle stability and control. They even

state in the preface that aircraft engineering has been the key to understanding vehicle

dynamics.

The Society ofAutomotive Engineers published a number of papers in Car

Suspension Systems and Vehicle Dynamics
(SP-878)}5

that cover suspension designs and

steering systems. They also discuss analysis techniques and effective test methods.

Another good reference for both tire behavior and vehicle dynamics is JY.

Wong's Theory ofGround Vehicles} Wong discusses the mechanics of pneumatic tires

and some practical methods for predicting tire behavior. He also deals with the analysis

and prediction of road vehicle performance.

Other references covering the subject of vehicle dynamics include Vehicle

Dynamics (Ellis,
1969),17

Fundamentals ofVehicle Dynamics (Gillespie, 1992),
18

Modeling ofRoad Vehicle Lateral Dynamics (Keifer, 1996),
19
Fundamentals ofVehicle

Dynamics (Mola,
1969),20

and Analysis of Tire Lateral Force and Interpretation of

9 1
Experimental Tire Data (Nordeen, 1967).

10



3 TireModel

3.1 Introduction

Tires play an important role in determining aircraft behavior while it is on the

ground. The tires are the primary source of the forces and torques that provide the control

and stability or handling of the aircraft (handling commonly refers to the directional

stability and controllability of a vehicle). The forces developed by the tire will affect the

aircraft in a number of ways. Clearly, the tires support the aircraft weight in addition to

any other vertical forces that develop such as those due to road banking. The interaction

between the tires and the ground supply the tractive, braking, and cornering forces for

maneuvering. The tires also provide the forces used for controlling and stabilizing the

aircraft and for resisting external disturbances. All of the forces acting on an aircraft are

applied through its tires, with the exception of aerodynamic and gravitational forces.

Therefore, to accurately model the dynamics of an aircraft on the ground, it is necessary

to have an appropriate depiction of tire behavior. This chapter deals with the function of

tires in producing lateral forces.

In this thesis, two tire models are used. A simple linear model is used to lay the

foundation for understanding tire behavior, and then a more precise non-linear model is

used for better accuracy. The non-linear model is also developed because it supports a

wide variety of applications. The requirements of a typical tire model will vary

depending on which aspects of vehicle performance are being modeled and the accuracy

required. In general, there are three force components (longitudinal, lateral, and vertical)
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and three moment components (pitching, yawing, and rolling) acting on a tire due to its

interaction with the ground. If a complete model of aircraft ground dynamics is required,

then all six of these components must be included to accurately model the effect of the

tires on the dynamics of the aircraft. This thesis is only concerned with the lateral

dynamics of the aircraft. Therefore, it will only discuss lateral and rotational degrees of

freedom in the horizontal plane. This will reduce to only forces in the lateral direction

and moments about the vertical axis of the aircraft.

3.2 Lateral Force

According to SAE J670, "Vehicle Dynamics
Terminology",22

a lateral tire force

originates at the
"center"

of tire contact with the road, lies in the horizontal plane, and is

perpendicular to the direction in which the wheel is headed if no inclination or camber

exists. Strictly speaking, the center of tire contact is the origin of the SAE Tire Axis

System, which is the intersection of the wheel center plane with the ground plane and a

point directly below the center of the upright wheel. The mechanics of the lateral force

generation is an elaborate process; so elaborate that a complete discussion of this process

is beyond the scope of this thesis. However, many thorough explanations of the

mechanics of lateral force generation can be found in
literature.14,16'18 The lateral force,

Fy, generated by a pneumatic tire depends on many variables such as road surface

conditions, tire carcass construction, tread design, rubber compound, size, pressure,

temperature, speed, vertical load, longitudinal slip, inclination angle, and slip angle. The

two variables that have the biggest impact on a given tire for dry, unchanging runway

12
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surface conditions are vertical load and slip angle. Thus, these variables are the main

focus of this chapter and this thesis.

The vertical load acting on the tires of an aircraft is a function of the aircraft

weight, the slope of the runway and the lift generated by the airplane. The tire slip angle

is defined by SAE as "the angle between the X' axis and the direction of travel of the

center of tire
contact".22

Simply put, the slip angle is the angle between the direction the

wheel is pointing and the direction it is traveling at any given instant. The tire slip angle

is represented by the symbol a. This definition corresponds to the SAE tire axis

29
system. As stated earlier, the origin of this system is at the center of the tire contact

patch. The X' axis is the intersection of the plane of the wheel and the plane of the

ground and is positive in the forward direction. The Z' axis is perpendicular to the plane

of the road and is positive in the downward direction. The T axis is in the plane of the

road and positive to the right in order to form the right-hand Cartesian coordinate system.

The tire slip angle, lateral force, and tire axis system are shown in Figure 3.1, with a

positive slip angle and lateral force shown.

The lateral force produced by a tire is a non-linear function of vertical load and

slip angle, as well as other variables. Figure 3.2 shows a typical lateral force versus slip

angle curve for a single vertical load. As you can see, at low slip angles the curve is

approximately linear. In this region the lateral forced generated depends primarily on the

tire construction, tread design, and tire pressure. There is little sliding occurring between

the tire and the ground within the contact patch. Lateral force is mainly developed as a

result of deformation of the tire.
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The initial slope of this lateral force versus slip angle curve is called the cornering

stiffness of the tire and denoted by the symbol Ca. The cornering stiffness is often used as

a linear approximation for the relationship between lateral force and slip angle, as you

will see later in this chapter. If the cornering stiffness is normalized by dividing by the

vertical load, a quantity known as the cornering coefficient, Cc, is found. As expected,

both the cornering stiffness and the cornering coefficient are proportional to the vertical

load. In general, the cornering stiffness increases with the vertical load, while the

cornering coefficient decreases. These parameters will be needed as the tire model is

further developed.

As the slip angle increases, the slope of the lateral force curve decreases until the

lateral force reaches a maximum. The maximum lateral force is used to find the tire

lateral friction coefficient, fiy. Dividing the maximum value by the vertical load does this.

Beyond this maximum value, the lateral force itself begins to decrease. In this section of

the curve a larger portion of the contact patch is sliding than at low slip angles. Here the

lateral force produced depends largely upon the road surface, tire rubber compound, and

the interface between the two.

The lateral force versus slip angle curve shown in Figure 3.2 represents
steady-

state tire lateral force characteristics. Due to the elasticity and damping within a

pneumatic tire it is actually a dynamic system within itself. When a change in slip angle

occurs, the change in lateral force lags behind. Although the effects of tire dynamics can

be modeled by including an additional differential equation in the vehicle model for each
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tire, the effects are generally small for low input frequencies. Tire dynamics are

neglected in this model as they are typically used when simulating extreme situations.

3.3 Linear TireModel for Main Landing Gear

As stated in the previous section, the initial slope of the lateral force versus slip

angle curve for a single vertical load is the cornering stiffness, Ca. This constant can be

used as a reasonable representation of tire behavior under certain conditions. Inspection

of Figure 3.2 reveals that at small slip angles the lateral force is nearly linear. Thus, at

sufficiently small slip angles the lateral force produced by a tire can be approximated by

Fy=Ca (3.1)

When this linear approximation is combined with other assumptions regarding the

aircraft, the lateral force versus slip angle relationship allows the aircraft to be modeled as

a linear system. This is very beneficial to the user because some very well developed

analysis techniques exist that allow us to study a linear model and learn a great deal about

aircraft lateral dynamics. The range of applicability of the linear tire model is examined

by comparison to the non-linear model in the next chapter.

3.4 Non-Linear TireModel forMain Landing Gear

As you saw in Figure 3.2, the lateral force versus slip angle curve is no longer

linear at high slip angles, and thus will not accurately predict the tire lateral force. If we

try to use the linear model to predict the lateral force at these high slip angles, we will get
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a force that is greater than the actual tire force. Therefore, it is necessary to develop a

non-linear tire model that will correctly determine the tire lateral force at high slip angles.

Several approaches to modeling tire behavior exist. Some models are purely

empirical, based upon curve fitting of experimentally measured tire data. Other models

are primarily theoretical, with some parameters determined experimentally, such as the

stiffness of the tire. Each type of model has its advantages and disadvantages. Since

experimentally measured aircraft tire data exists for a variety of tires, we will use the first

method to develop the model.

The tire model chosen for this study is called tire data non-dimensionalization,

and was originated by Hugo
Radt.14,23,24

This technique is able to predict tire aligning

moment, longitudinal force, and lateral force for combined lateral slip, camber, and

longitudinal slip. However, only the lateral force due to lateral slip will be used in this

study. The effects of camber on lateral force are being neglected. Also, if we assume the

aircraft has a constant forward velocity then it is not necessary to consider longitudinal

force. Although tire-aligning moments are present, they are considered to have a

negligible effect on the overall dynamics of the aircraft.

The technique you are about to see consists of two main steps. The first step deals

with preprocessing the experimental tire data to determine the parameters for the tire

model. The second step uses these results to calculate the tire lateral force for a given

vertical load and slip angle. In a vehicle dynamics simulation, the first step is typically

done before running the simulation. The second step is then done at each time step

during the simulation based on instantaneous values of tire vertical load and slip angle.
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The tire data used in developing this model was obtained from the Goodyear Tire

& Rubber Company for a standard aircraft tire, model 6.00-6 6PR at 42 psi. The tire data

is given in Table 3.1 and shown in Figure 3.3. Lateral force versus slip angle curves are

available for vertical loads of 1779 N, 2669 N, 3559 N, 4448 N, and 5338 N. The slip

angle for each of these loads varies from 0 to 20. Typically, the lateral force at 0 slip

angle is not zero as might be expected. This is due to conicity and/or ply steer in the tire.

Conicity results from asymmetries in tire construction, while ply steer results from errors

in the angles of the belt cords in the tire. Both of these effects are random in nature and

vary from tire to tire. These effects are not important to this model, and the manufacturer

has adjusted the data accordingly.

Preprocessing the experimental data is done by normalizing the data and then

curve fitting the normalized data. The first step in normalizing the data is to determine

the tire cornering coefficient, Cc, at each load. As previously stated, the cornering

stiffness is the initial slope of the lateral force versus slip angle curve. The cornering

coefficient is then equal to the cornering stiffness divided by the vertical load, which can

be approximated at each load by dividing the lateral force at 1 slip angle by the

corresponding vertical load. Thus, the cornering coefficient at any load is

Cr=^^- (3.2)
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Table 3.1. Experimerital Tire Data

Slip Angle Lateral Force @ Vertical Load (N)
(deg) 1779 2669 3559 4448 5338
0 0 0 0 0 0
1 302 414 454 485 489
2 534 734 823 899 912
3 707 988 1125 1246 1281
4 841 1179 1370 1535 1601

5 939 1334 1575 1784 1882

6 1014 1450 1739 1993 2122
7 1072 1544 1877 2166 2335
8 1112 1615 1988 2313 2518
9 1143 1673 2077 2438 2678
10 1170 1717 2153 2544 2816

11 1188 1748 2215 2633 2936
12 1201 1775 2264 2709 3038

13 1214 1797 2304 2771 3132

14 1219 1810 2340 2825 3212

15 1228 1824 2366 2869 3278

16 1232 1833 2389 2909 3341

17 1237 1842 2406 2940 3390

18 1237 1846 2424 2967 3434

19 1241 1850 2433 2989 3474

20 1241 1855 2447 3011 3510

4000

3500

3000

1779 N

2669 N

3559 N

4448 N

5338 N

8 10 12

Slip Angle (deg)

14 16 18 20

Figure 3.3: Experimental Tire Data
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Figure 3.4 shows the tire cornering coefficient for each load. As you can see, the

relationship between cornering coefficient and vertical load is approximately linear. For

this tire, the cornering coefficient as a function of vertical load can be represented as

CC = B3+C3FZ (3.3)

Values of the constants B3 and C3 are given in Table 3.2. The resulting expression can be

used to predict the cornering coefficient for an arbitrary load during a simulation.

The next step is to find the lateral friction coefficient, juy, at each load. Dividing

the maximum lateral force for a given vertical load by the vertical load itself does this.

Thus, for a single vertical load the lateral friction coefficient is

My=^- (3.4)
r.

The lateral friction coefficients for each load are plotted in Figure 3.5. As with the

cornering coefficients, the relationship between the lateral friction coefficient and the

vertical load is approximately linear for this tire. The lateral friction coefficient can then

be expressed as

jUv=B5 + C5Fz (3.5)

Values of the constants B5 and C5 are given in Table 3.2. This expression can also be

used during simulation to predict the lateral force coefficient for an arbitrary vertical load.
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Table 3.2: Non-Linear Tire Model Parameters
Parameter Symbol Value
Tire cornering coefficient intercept B3 0.2117
Tire cornering coefficient slope C3
Tire lateral friction coefficient intercept B5 0.7221
Tire lateral friction coefficient slope c5
Magic Formula curve fit parameter Bi 0.7947
Magic Formula curve fit parameter c, 0.1901
Magic Formula curve fit parameter Dj 6.1197
Magic Formula curve fit parameter E, 1.0637

Now that the cornering coefficient and lateral friction coefficient are known at

each load, the normalized slip angle, a , can be calculated at each data point from the

formula

_ Ctania)
a=

Similarly, the normalized lateral force, Fy , at each data point is

(3.6)

MVFZ
(3.7)

When the normalized lateral force is plotted against the normalized slip angle for each

vertical load, the results lie on a single curve as shown in Figure 3.6. This normalized

data is then curve fit. There are a number of methods used to fit this data. This model

uses a popular function known as the "magic formula". The magic formula, as you will

see, is a combination of trigonometric functions and has the capability to accurately fit

tire data curves of various shapes such as lateral force, longitudinal force, and aligning

moment.

22



Chapter 3 Tire Model

u

o

03

<U
N

1_
O

1.2

1

0.8

0.6

0.4

0.2

0

?

| ? 1779 N;
OfifiQ M

A 3559 N
x 4448 Nl

X 5338 N

2 3 4

Normalized Slip Angle

Figure 3.6: Tire Normalized Lateral Force

The normalized lateral force is fit to the function

Fy =D,sin(e)

where

6 =C]atan(Bly/)

and

W = (l-E,)a + E^atan{Bxa)
B

(3.8)

(3.9)

(3.10)

The parameters Bj, C],Dj, and E} must be determined to provide the best fit to the

normalized experimental data. The curve fitting is implemented in the MATLAB script

MAGICFIT.m. This script reads the normalized lateral force versus slip angle data from a
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file and uses the MATLAB Optimization Toolbox function LEASTSQ to do a non-linear

least squares fit. The LEASTSQ function calls the functionMAGICERROR.m that

computes the errors between each data point and the curve fit function. The parameters

B\, C\,D\, and E\ are found to minimize the sum of the squares of these errors. The files

MAGICFIT.m andMAGICERROR.m were developed by Joseph Kiefer for use in

Modeling ofRoad Vehicle Lateral Dynamics.19 They are listed in Appendix A.l and

Appendix A.2, respectively. Values for the curve fit parameters are given in Table 3.2,

and the function is plotted in Figure 3.6 along with the normalized data. As you can

clearly see from the plot, an excellent fit to the data had been obtained.

Now that a function for the normalized lateral force in terms of normalized slip

angle is available, the tire lateral force can be calculated for any combination of vertical

load and slip angle. First, the cornering coefficient and lateral friction coefficient are

calculated from the vertical load using Eq. (3.3) and (3.5). Second, the normalized slip

angle is calculated from the slip angle, the cornering coefficient, and the lateral friction

coefficient using Eq. (3.6). Next, the normalized lateral force is calculated from the

normalized slip angle using Eq. (3.10), (3.9), and (3.8) in this order. Finally, the tire

lateral force can then be found from the normalized lateral force, the lateral friction

coefficient, and the vertical load as

F>=FyfiyFz (3-11)

This procedure is implemented in the MATLAB function NLTIRE.m that is listed in

Appendix A.3. The function takes the tire vertical load and slip angle as inputs and
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outputs the lateral force. Plots of lateral force versus slip angle from this function for

vertical loads of 1779 N, 2669N, 3559 N, 4448 N, and 5338 N are shown in Figure 3.7 as

solid lines along with the experimental data points.

The non-linear tire model implemented in this section accurately reproduces the

experimentally determined lateral force versus slip angle relationship of the tire used in

this study. This model is capable of predicting the lateral force produced by the tire at

high slip angles. Thus, the tire model is suitable for inclusion in a model of aircraft

lateral dynamics where high tire slip angles are obtained. While this tire model only

determined lateral force due to slip angle, it can be extended to predict aligning moment

due to slip angle, lateral force and aligning moment due to camber, and longitudinal force

due to longitudinal slip.
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3.5 Tire Model for Tail Wheel

The tail wheel for this study was chosen to be an 8-V2 inch outer diameter by 3-

inch width tire. The inflation pressure is 40 psi. This model was also created from data

provided by Goodyear Tire & Rubber Company. Using the dimensions of the tire, they

were able to calculate the cornering stiffness for a specified load. The data points were

then plotted and a curve fit was applied using theMICROSOFTEXCEL function

TRENDLINE. This function calculates a least squares fit through the data points. A

fourth order polynomial was fit to the data points as shown in Figure 3.8. The equation

EXCEL used to fit the data points is displayed in the figure. Also shown is the R-Squared

value. The R-Squared value can be interpreted as the proportion of the variance in y

attributable to the variance in x. This function returns the Pearson product moment

correlation coefficient, r, which is a dimensionless index that ranges from -1.0 to 1.0

inclusive and reflects the extent of a linear relationship between two data sets. As you

can see, the R-Squared value for this curve fit is exactly 1 . Therefore, the equation shown

represents the best possible fit to the data. The tail wheel model is used in Chapter 4

when calculating tail wheel cornering stiffness based on the fraction of weight on the tail

wheel.
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4 Two Degree-of-FreedomAircraftModel

4.1 Introduction

In this chapter, we will be looking at a simplified mathematical model of an

aircraft. By using a computer generated model we will be able to vary all aspects of the

aircraft. This is extremely useful for this study in which we need to explore the

difference between a tricycle gear aircraft and a taildragger aircraft. This model will

ultimately allow us to develop the basic concepts that govern the response of the aircraft

and control the stability. From these concepts we will be able to predict the motion of the

aircraft as it moves along the runway regardless of its configuration, as well as examine

the stability of the aircraft as it is in the process of taking off or landing.

This simplified representation of the aircraft, referred to as the
"bicycle"

model, is

a two degree-of-freedom model that is often used to examine the lateral response of road

vehicles. The model is altered slightly to reflect the geometry of the aircraft used in this

study. The model is developed in a general form for a taildragger aircraft. Later in this

chapter, you will see that only minor changes to the model are needed to make it into a

tricycle gear aircraft. As you will see, this model greatly simplifies an aircraft. However,

through its use we can investigate the effects ofmajor design and operational parameters

on the yawing and sideslipping motions that determine the path and attitude of the

aircraft. Such parameters include tire properties, inertia properties, center of gravity

location along the wheelbase, and main landing gear location, among others.
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This chapter aims to describe the two degree-of-freedom model in detail. To

accomplish this, each vital component of the aircraft will be studied until the model is

complete. First, we will start with just the main landing gear to see how its location

affects stability. After these results have been established, the vertical tail will be added

on to the model and the change in the response will be examined. Finally, the study will

conclude with the addition of the tail wheel to the model. At this point, we should

understand enough about the effects of each component to be able to make reasonable

suggestions to improve the stability of a taildragger aircraft.

4.2 Description ofModel

The two degree-of-freedom model for the taildragger aircraft used in this study is

shown in Figure 4. 1 . As its name suggests, the model is only concerned with two types of

variable motion: lateral velocity, v, and yawing velocity, r. The forward velocity, u, is

assumed to be constant and shall be chosen by the user. The single tire shown represents

the pair of tires forward of the center of gravity for an aircraft with a taildragger

configuration. The tail wheel shown is allowed to swivel. However, it can be locked into

place to create some stiffness that will result in a lateral tire force. The vertical tail shown

will have a significant contribution to the motion of the aircraft. The longitudinal

alignment of the components of the aircraft show why this is called a
"bicycle"

model.
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T
"--^v

^

Figure 4.1: Bicycle Modelfor a TaildraggerAircraft

On a typical vehicle, the distance from the center of the front tires to the center of

the rear tires is termed the wheelbase, L. This is also the case with an aircraft. For this

particular model of aircraft, the tail wheel is located almost directly below the

aerodynamic center of the vertical tail. Assuming that they are both in the same location

will simplify the model even further. Thus, the distance from the front tires to the

aerodynamic center of the vertical tail is also L. The aircraft has a mass, m, and a yaw
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mass moment of inertia, Iu, with its center of gravity located a distance a from the center

of the front tire and a distance b from the tail wheel and the aerodynamic center of the

vertical tail.

Notice that the front tires on an aircraft are not capable of rotating about the z-axis

as on a car or truck. Therefore, they cannot be considered as control inputs. Again, this

greatly simplifies the model, as we need not concern ourselves with steer angles.

The coordinate system used to describe the motion of the aircraft is the standard

SAE vehicle-fixed x-y-z coordinate system, which translates and rotates with the

aircraft.
~

The x-axis is positive in the forward direction, the y-axis is positive to the

right, and the z-axis is positive down into the page as specified by the right-hand rule.

The origin of the coordinate system is at the center of gravity (CG) of the aircraft.

Motion is only permitted in the x-y plane.

4.2.1 Assumptions

The representation of the aircraft as a
"bicycle"

model takes into account several

simplifying assumptions in addition to those previously mentioned. They are:

Constant aircraft parameters (m, Ia a, b, L)

Constant aircraft forward velocity, u

Motion in x-y plane only (ignore vertical, rolling and pitching motions)

Aircraft is rigid

Aircraft is symmetrical about x-z plane
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Runway surface is smooth

Ignore lateral gravity effects (ignore runway slope in lateral direction)

Ignore longitudinal gravity effects (ignore runway slope in longitudinal direction)

Ignore all longitudinal forces (tire driving/braking forces, tire rolling resistance,

aerodynamic drag)

Ignore front landing gear suspension system kinematics and dynamics

Ignore tire slip angles resulting from lateral tire scrub

Ignore lateral and longitudinal load transfer (vertical tire forces remain constant)

Tire properties are independent of time and forward velocity

Ignore tire lateral forces due to camber, conicity, and ply steer

Ignore tire aligning moments

Ignore effects of longitudinal slip on tire lateral force

Ignore tire dynamics (no delay in lateral force generation)

Ignore tire deflections

4.2.2 Aircraft Parameters

The nominal values of the aircraft parameters used for the two degree-of-freedom

model in this study are given in Table 4. 1 . All parameters were obtained through direct

measurements on the aircraft, except for the mass and the CG location, which can be

found on the aircraft type certificate. For most aircraft, the CG location is referenced

from a specified datum and is usually in the form of a range. The CG range for this plane
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is 13.6-16.8 inches from the datum. As a point of reference for the reader, the forward

most CG position of 13.6 inches from the datum was chosen to measure the center of

gravity parameters, a and b, given in Table 4.1. These distances can then be used to

calculate the fraction of weight on the front axle,/. The SI system of units is used for all

calculations. The unit of length is the meter (m), and the unit of time is the second (s).

Force is measured in the derived unit Newton (N). These parameters are representative of

a production aircraft.

Table 4.1: Vehicle Parameters

Parameter Symbol Value

Aircraft Mass m 748 kg
Yaw Moment of Inertia I- 1760

kg-m2

Wheelbase L 4.52 m

Distance from CG to Front Landing Gear a 0.599 m

Distance from CG to Aerodynamic Center of Vertical Tail

& Tail Wheel
b 3.92 m

Front Landing Gear Weight Fraction f 0.867

CG Limits CG 13.6-16.8 in

Vertical Tail Area K 0.693
m2

Coefficient of Lift on Vertical Tail CLv 0.100/deg

4.2.3 Free Body Diagram

Due to the simplifying assumptions in Section 4.2.1, there are four types of

external forces acting on the aircraft in the x-y plane that are considered in this model:

front tire lateral force, tail wheel lateral force, vertical tail force, and a disturbance input.

The front tire lateral force, Fyjr0nt-tire, occurs due to tire slip angles as does the tail wheel

lateral force, Fy_taii.wfieei- The vertical tail force, Fy_,au, is a function of the relative air

speed squared, the side force coefficient, and a reference area. The disturbance force,
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Fy_disturbance, is an input that acts at the aerodynamic center of the vertical tail, as does the

tail force. The most common disturbance input is a crosswind encountered on the

runway. These forces are shown acting on the vehicle in Figure 4.2 and are considered

positive when acting in the positive y-direction.

T

"^disturbance

t

fc^ia

"y_front-

m*av

y_tail

Figure 4.2: Free Body Diagram

> y
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4.3 Derivation ofEquations ofMotion

The equations ofmotion will be developed for the "bicycle" model. To do this we

use basic principles ofNewtonian mechanics for rigid body motion relative to translating

and rotating coordinate
systems.26

This is a linear model with two degrees-of-freedom

which enables the calculation of the motion variables as a function of the forces and

moments acting on the aircraft. Referring to Figure 4. 1 , the motion variables of interest

are forward velocity, u, lateral velocity, v, and yaw rate, r. Yaw rate, r, is the angular

velocity of the aircraft around a vertical axis passing through the CG. The vector sum of

u and v is the path velocity, V. The x-axis of the aircraft is at a body slip angle, /?, with V

For straight-ahead motion /J = 0. The total side force is Y and the yawing moment about

the CG is N.

The reference axis system (aircraft axis system) is fixed on the aircraft with the

origin at the aircraft CG (refer to section 4.2). The fundamental features of this system

are that changes in the dependent variables are measured relative to inertial space and the

moments and products of inertia are constant. If the actual path of the vehicle relative to

the ground is required, an additional earth-fixed reference system is required.

The rigid body equations are obtained from Newton's Second Law. This states

that the summation of all external forces acting on a body is equal to the time rate of

change of the momentum of the body. Furthermore, the summation of the external

moments acting on the body is equal to the time rate of change of the moment of

momentum (angular momentum). The time rates of change of linear and angular
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momentum are referred to an absolute or inertial reference frame. Newton's Second Law

can be expressed in the following vector equations:

Yf=-g
dt

(4.1)
Ym=-h^ dt

where F andM are the external forces and moments (in vector form) acting about the

center of gravity, and G andH are the linear and angular momenta of the body (also in

vector form). The assumptions of the model allow us to reduce Eq. (4.1) since only

motion in the x-y plane is considered and all longitudinal (x-direction) forces are

neglected. Thus, we are left with

SFv =may^ . (4-2)

Since the x-y-z coordinate system is fixed to the aircraft with its origin at the

aircraft center of gravity, the translational velocity of the aircraft mass center and

rotational velocity of the aircraft are identical to those of the x-y-z system. From Figure

4. 1 , the velocity, V, of the origin of the x-y-z system is

V=m + vj (4.3)

and the angular velocity, Q, is

Q. = rk (4.4)
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Since the x-y-z system is also rotating, the unit vectors are changing with time. Thus, the

acceleration, a, of the origin expressed in an inertial reference frame coincident with the

x-y-z system is

dV
a = +QxV

(4.5)dt

= (u- vr)i + (v +wr)j

Likewise, the angular acceleration of the x-y-z system relative to an inertial reference

frame is

n =
da

dt
xyz

+ Q.XQ.
(4.6)

Thus, because we are only concerned with lateral motion, the acceleration values of

interest are

a =v + ur

(4.7)
n. =r

These values apply to both the aircraft-fixed x-y-z system and to the aircraft center of

gravity.

The external forces acting on the vehicle are shown in Figure 4.2. The sum of the

forces in the y-direction and the sum of the moments about the z-axis can then be written

as

/ ,

"

v
*
y _

front-lire y _
disturbance y_tail y_tail-wheel

(4.8)
V A/f n*F -h*F +h*(F +F )j1Y1

,
" '

y _
front-tire y _

disturbance ^ y_tail y_tail-wheeU
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Substitution of Eq. (4.7) and Eq. (4.8) into Eq (4.2) yields the equations ofmotion

for the two degree-of-freedom taildragger aircraft:

y_ front-lire + y _ disturbance ~^y_tail
~ *'

y_tail-wheei
= m\V + Ur )

a* F h* F A-h* ( F 4- F \ J r
y_front-tire

u L
y _ disturbance

~

u \r
y_ta.il

^ *
y_tail-wheel'

~ l
zz
'

Here u is the vehicle forward velocity and is constant. The state variables are the lateral

velocity, v, and the yaw velocity, r. Fyjront.tire is the front tire lateral force, Fy__isturbance is

the disturbance input, Fy_taa is the vertical tail force, and Fy_tau.wheei is the tail wheel lateral

force.

As stated, the aircraft system derived in Eq. (4.9) is a two degree-of-freedom

system. This is the minimum number of independent coordinates needed to describe the

motion of the system. Furthermore, Eq. (4.9) is a constraint equation. A system in which

the constraints are functions of the coordinates or coordinates and time is called

holonomic. In many cases the constraint equations relate the velocities or the velocities

and coordinates. If these equations can be integrated to yield relations involving

coordinates and time only, the system is still
holonomic.27

However, the system may not

be holonomic in the event of large displacements during integration. Since each

integration step in this study is small, the system remains holonomic.

4.4 Derivation of Tire Slip Angles & Vertical Tail Angle

From Chapter 3, the lateral force produced by a tire depends upon the vertical load

on the tire and the slip angle of the tire, among other things. In this model the vertical

load remains constant. However, the front tire slip angle varies as a function of the lateral
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velocity and angular velocity. For this reason, we must develop an expression for the

front tire slip angle, a, in terms of v and r.

T

a(+) Vf

-~V

Vtail

> y

Figure 4.3: Kinematic Diagram

Figure 4.3 is a kinematic diagram of the vehicle showing the tire velocity vector

and tire slip angle. The slip angle is shown in its positive sense as the angle between the

tire and the tire velocity vector.
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To determine these angles the velocities of the tire must be found first. Since the

translational and rotational velocities of the aircraft-fixed x-y-z coordinate system are

already known from Eq. (4.3) and Eq. (4.4), it is convenient to use the principle of

relative motion to derive the front tire velocity, Vf, as

Vf = V0 +QxRf (4.10)

where Rf is the position vector from the vehicle center of gravity to the front tire:

Rf = ai (4.11)

Thus, the front tire velocity is

Vf = i + (v + ar)] (4.12)

In general, if the velocity of a tire is known, the respective angle is

a = atan

v.
(4.13)

where V*, and Vyi are the x- and y-components of the aircraft component under

observation. Therefore, in its general non-linear form, the front tire slip angle is

a = atan
v + ar

(4.14)
V

"
J

In a similar manner, there is an angle of attack on the vertical tail that must be taken into

consideration for this study. As with the front tire slip angle, we must first find the

velocity of the tail using the same principles of relative motion. The velocity of the tail,

Vtaii, is then

Vtaii = V0 + Q x Rr (4.15)
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where Rr is the position vector from the vehicle center of gravity to the aerodynamic

center of pressure of the tail:

Rr = -M (4.16)

Thus, the tail velocity is

Vtaii = "i + (v - br)j (4.17)

Using the general form, the angle of attack on the tail is

y = atan ^ (4.18)
V

V *' J

where, again, Vxi and Vyi are the x- and y-components of the aircraft component under

observation. Therefore, in its general non-linear form, the vertical tail angle is

'v-br'

y = atan
v

"
J

(4.19)

As stated in section 4.2, the tail wheel is directly below the aerodynamic center of

pressure of the vertical tail. Thus, the velocities of the tail and tail wheel are the same,

which means the angle for the tail and the tail wheel are the same.

4.5 LinearModel

The equations developed in the previous section are in a general form. By using

some additional assumptions to linearize the model at hand, analysis techniques for linear

systems may be used to gain more insight into aircraft lateral dynamics. In this section,

the tire slip angles, vertical tail angle of incidence, and lateral forces are assumed to be

linear functions.
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It is a common practice to use the vehicle sideslip angle, p\ instead of the lateral

velocity, v, to describe lateral motion when studying vehicle dynamics, particularly with

the linear model. In this case, the aircraft sideslip angle, as shown in Figure 4.3 in its

positive sense, is the angle between the aircraft-fixed x-axis and the aircraft vector, V.

Therefore,

[3 = atan- (4.20)
u

Some additional assumptions are made for the linear two degree-of-freedom

model in addition to those listed in Section 4.2.1. They are:

Linear tire lateral force versus slip angle relationship

Small tire slip angle, vehicle sideslip angle, and tail incidence angle

4.5.1 Aircraft Sideslip Angle

With the small angle assumption, Eq. (4.20), the aircraft sideslip angle, becomes

P = - (4.21)
u

However, if the vehicle sideslip angle is small then

cos(/J) = - = 1
u

or (4.22)

w = V
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where V is the magnitude of the aircraft velocity, V0. Now, Eq. (4.21) becomes

0 =^ (4-23)

4.5.2 Tire Slip Angle

With the small angle assumption, the tire slip angle becomes

v + ar
,...,.

a = (4.24)

Furthermore, if the aircraft sideslip angle is used in place of lateral velocity, then the tire

slip angle can be expressed as

a =P+y (4-25)

4.5.3 Tail Incidence Angle

With the small angle assumption, the tail incidence angle becomes

v br
y = (4.26)

u

Likewise, if aircraft sideslip angle is used in place of lateral velocity, then the tail

incidence angle can be expressed as

Y =P-^r (4-27)

43



Chapter 4 Two Degree-of-Freedom Aircraft Model

4.5.4 External Forces andMoments

Referring back to the free-body diagram of the two degree-of-freedom model in

Figure 4.2, we see that the external forces acting on the aircraft are the front tire lateral

force, FyjronMire, the disturbance force, Fy_disturbance, the vertical tail force, Fy_laU, and the

tail wheel lateral force, Fy_taii.whed.

Using the assumptions from Section 4.5, we would like to express the tire lateral

force as a linear function. This was already done for the tire model described in Chapter

3. From Eq. (3.1) the tire lateral force is

Fyjront-tire = Cf CC (4.28)

where Cf is the front tire cornering stiffness and is the effective cornering stiffness of both

tires on a main landing gear. Thus, for example, C/is twice the cornering stiffness of a

single front tire. As a result, Fyjront.lire is the sum of the tire lateral force of both tires on

the main gear. The free body diagram in Figure 4.2 shows that this force is acting in the

negative y-direction. Therefore, the cornering stiffness must be positive in order to

produce the negative lateral force required by the sign convention. For further

explanation of this tire model see Section 3.3. Values for the front tire cornering stiffness

for the aircraft studied were obtained through Eq. (3.3) and are given in Table 4.2.

Table 4.2: Linear Tire Model Parameter

Parameter Symbol Value

Front tire cornering stiffness (two tires) cf 883 N/deg

As mentioned earlier in the chapter, the disturbance force, Fy disturbance, is used to

simulate a crosswind. Airplanes often encounter strong breezes while they are moving
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along the runway in an open field. For this study, we will assume that conditions are

ideal and there is no crosswind (Fydisturbance = 0). However, this term is left in the

equations should the reader wish to input a disturbance force. If this is done, the

simulations shown later in this chapter will shift accordingly, but the stability of the

aircraft will not be affected.

The vertical tail force, Fytaii, is perhaps the most important external force acting

on the aircraft in terms of stability. This force is a function ofmany variables including

aircraft speed, vertical tail area, and the coefficient of lift of the
tail.2

This force is the

same force that produces lift on the wings. However, in this case the orientation is

vertical. As with the wings of an aircraft, the angle of attack on the vertical tail is an

important factor in determining this tail force. The force on the vertical tail can be

expressed as

Fyjati^iVipu2

ApCLy)y (4.29)

where p is the density of air at sea level, u is the forward velocity of the aircraft, Ap is the

reference area, which in this case refers to the projected area of the vertical tail, and C^is

the coefficient of lift of the vertical tail and is a property of the tail geometry. All of these

factors are constants. The values forAp and Cj^for the aircraft used in this study are

given in Table 4. 1 . The force on the vertical tail is also a function of the angle of attack,

y, which is not a constant (see section 4.5.3). The angle of attack will change as the

aircraft tries to regain stability. This force is linear as long as the tail incidence angle is

linear.

45



Chapter 4 Two Degree-of-Freedom Aircraft Model

The tail wheel lateral force, Fy_tai[.wneei, will be similar to that of the front tires in

that there is some cornering stiffness, Cf.tau, which is a parameter of the type of tire and is

a constant. The lateral force is then generated by this stiffness times the slip angle, which

we determined to be y. This force is already linear so there is no modification needed. It

can be expressed as

t'

yjail-viheel Cf-tail / (4.30)

4.5.5 Linearized Equations ofMotion

Now that all of the external forces and angles have been linearized, we can

substitute Eqs. (4.24), (4.26), (4.28), (4.29), and (4.30) into Eq. (4.9) to obtain the

linearized equations of motion. In terms of the aircraft lateral velocity they are:

C,
( v + ar ^

V
"

J
y _

disturbance -pu2ApCLy + Cf_mii
Yv-br

A u
J

- m{y + ur)

-a*C,

v + ar

v
u

J

h* F + h*
u l

y _
disturbance ^ u

1
pu2ApCLy + Cf_

^v-br

A
U

J

(4.31)

V

As stated at the beginning of the chapter, the model in Figure 4.2 is going to be

divided into the different components that act on the aircraft. This is done for the linear

model so that we can get a very basic understanding of what the effects of these

components will be. We will first start with just the main landing gear and its external

force, Fyjront-tire- To this we will add the vertical tail and its external force, Fylaa.

Finally, the model will be completed with the addition of the tail wheel lateral force,
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Fyjaii-wheei- Simulation will be performed at each step of the development so we can see

how each component affects the stability of the aircraft for different configurations.

For this portion of the study, we will be comparing the tricycle gear configuration

to the taildragger configuration. The main difference between these two types of aircraft

is the location of the main landing gear. As you already saw in Figures 4.1, 4.2, and 4.3,

the main landing gear on a taildragger is forward of the center of gravity. For a tricycle

gear aircraft, the main landing gear is behind, or aft, of the center of gravity.

4.5.6 Simulation ofMain Landing Gear Only

In this section, we will be examining the response of the aircraft to just the main

landing gear external force, FyJron,.tire. Therefore, Eq. (4.31) can be reduced to

Cf
fv + ar} /. x

(y + ur)
V " J

-a*Cf
v + ar

m\

(4.32)

) - 1j
\ u

j

Previously we said that these equations were developed for a taildragger aircraft. In

actuality, Eqs. (4.31) and (4.32) can be used for any aircraft configuration. As long as a,

the distance from the CG to the main landing gear, is positive, then these equations

represent a taildragger aircraft. This configuration is shown in Figure 4.2. However,

once a becomes negative the CG moves forward of the main landing gear and we have a

tricycle gear aircraft. By changing the sign, the velocity of the tires changes and so does
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the yawing moment on the aircraft. The lateral force remains in the same direction. The

tricycle gear configuration is shown in Figure 4.4.

m*

1

y_disturbance

y_nose-wheel

urav

y_front-tire

F.y_tail

-> y

Figure 4.4: Tricycle Gear Configuration

Simulation of the model is performed by integrating the differential equations of

motion with respect to time. The result is a graphical prediction of the motion of the

aircraft over the specified time period. Some typical outputs of interest are lateral

displacement and velocity, angular displacement and velocity, aircraft sideslip angle, tire
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slip angle, tail incidence angle, and lateral acceleration. The parameters that are ofmost

interest to a pilot while still on the runway are the lateral displacement response, how far

the aircraft moves left or right, and the angular displacement response, which is the

orientation of the aircraft with respect to the runway. The pilot ideally wants to be able to

take his hands off the control stick or wheel, hands off condition, and have the plane

travel straight down the runway with no yawing.

The simulation that follows was performed using theMATLAB software.

Appendix A contains the files used to input the various aircraft parameters, do the

integration, and output the responses of interest. These files will be referenced

throughout this section.

The simulation is implemented in the script file DOF2LSIM.m that is listed in

Appendix A.7. This file calls on the built-in MATLAB function ODE23 to integrate

differential equations of low order. ODE23 integrates a system of ordinary differential

equations using
2n

and
3r

order Runge-Kutta formulas. The function returns the state

variables v and r over the time interval specified for the simulation. The lateral and

angular displacement, y and 6, can then be found by integrating v and r over the same

time period.

At each time step the ODE23 function refers to the file DOF2LDE.m which

calculates the state derivatives v and r based upon the instantaneous values of the state

variables v and r. DOF2LDE.m is listed in Appendix A.8. The state derivatives are found

by solving Eq. (4.32) for vand r and resubstitutingEqs. (4.24), (4.26), (4.28), (4.29), and

(4.30):
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- F
y _

front -tire
v = - ur

m

Jl (4-33)
a r

y front -tire
r = i--i

Prior to running the ODE23 function, DOF2LSIM.m calls on three separate files

to input the parameters for the simulation. The first file, DOF2PARA.m listed in

Appendix A.5, loads in the mass, the yaw moment of inertia, the fraction of weight on the

main landing gear (in this case all the weight is on the main gear), the wheelbase, the

forward velocity, and the tire cornering
stiffness'for the linear simulation. It also

contains some parameters for the non-linear simulation that will be discussed later in the

chapter. DOF2CONT.m then sets the time interval for the simulation and the tolerance

accuracy for the outputs. DOF2CONT.m is listed in Appendix A.4. DOF2DEPA.m,

listed in Appendix A.6, uses the file DOF2PARA.m to calculate the remaining aircraft

parameters such as the distance from the front landing gear to the CG and the distance

from the vertical tail aerodynamic center to the CG. This file will also calculate the front

tire normal load based on the mass and the fraction of weight on the front landing gear

that is used in the non-linear study. Finally, DOF2LSIM.m calculates the tire slip angle

and tail incidence angle from Eq. (4.24) and (4.26) and the front tire lateral force from

Eq. (4.28). Plots can then be generated for the lateral displacement and angular rotation

to analyze stability.

The simulation of just the main landing gear is used to determine how its location

affects stability. Therefore, two locations of the main gear will be examined: one directly

at the CG and one in front of the CG. The location of the CG does not play a role in this
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part of the simulation due to the absence of the tail wheel. This can be seen in Eq. (4.33).

The only variable that is being changed in this equation is the distance from the main

landing gear to the CG, which is a. Therefore, the CG can be placed at any location. The

forward and aft limits of the CG only become critical when the distance from the tail

wheel to the CG, b, is also in the equation. Then there is a direct relationship between a

and b in which the forward and aft limits of the CG play a role.

Also of interest is the stability of the aircraft as it is taking off or landing.

Changing the value of the front tire cornering stiffness can simulate this. Two different

values for cornering stiffness are used. First, the full cornering stiffness for one tire, as

shown in Table 4.2 for two tires, is used. This condition represents the full-static load.

Then, this value is halved to represent the condition when only half of the tire may be

touching the runway. This condition will be termed the half-static load. The

configurations used in this section are given in Table 4.3. The model was simulated for

an aircraft traveling at 100 km/hr.

Table 4.3: Main Landing Gear Simulation Configurations
Trial

#
Distance From Main Gear to CG,

a(m)

Main Gear Cornering Stiffness,
Cf (one tire) (N/deg)

1 0 441.630

2 0 220.815

3 0.5 441.630

4 0.5 220.815

51



Chapter 4 Two Degree-of-Freedom Aircraft Model

The results of the simulations are given numerically in Table 4.4 and shown

graphically in Figure 4.5 through 4.8. Figures 4.5 and 4.6 show the lateral displacement

and angular rotation, in aircraft coordinates, over the time period of 5 seconds for the case

when the main gear is at the CG, Trial #1 and #2. The effect of decreasing the front tire

cornering stiffness can also be seen in Figure 4.5. Inspection of the figure and the steady

state results in Table 4.4 show that the response increased when the cornering stiffness

was decreased.

There is no rotation of the aircraft, as seen in Figure 4.6, because the main gear is

at the CG. Thus, there is no moment about the z-axis.

Trial #3and #4, on the other hand, show that the aircraft is unstable. Figure 4.7

shows that the displacement increases exponentially with time regardless of the cornering

stiffness. The same is true of the rotation of the aircraft, as shown in Figure 4.8. This

means that the aircraft will be unstable at all times during take-off and landing. It is

interesting to note that when the aircraft is inherently unstable, as in Trial #3 and #4,

reducing the cornering stiffness actually helps the response. As shown in Figures 4.7 and

4.8, the rate at which the aircraft goes out of control is slower for the lower cornering

stiffness.

Table 4.4: Resultn ofLinear Simulation of Idain Gear Only

Trial
#

Eigenvalues
Steady State
Displacement

(m)

Steady State
Angle

(deg)

Time
Constant

(sec)

Settling
Time

(sec)

Rise
Time

(sec)

Peak

Overshoot

(%)
1 -2.43, 0 0.041 0.000 0.411 1.23 0.907 N/A
2 -1.22,0 0.082 0.000 0.822 2.46 1.81 N/A
3 -5.37, 2.67 N/A N/A N/A N/A N/A N/A
4 -3.44, 2.09 N/A N/A N/A N/A N/A N/A
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Q Trial #1,Cf=441 .63 N/deg
Trial #2, Cf=220.8 15 N/deg
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Figure 4.5: Linear Lateral Displacement Response for Main Gear at CG, Main Gear

Only
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Table 4.4 also includes other parameters, besides the steady state value, that are

useful in stability analyses. These are the time constant, settling time, rise time, and peak

overshoot. The time constant tells us how fast the system approaches a new steady state

condition after being disturbed. If the time constant is small, the system will respond

very rapidly; if the time constant is large, the system will respond very slowly. It is found

by taking the negative of the reciprocal of the eigenvalues. The time constant for Trial #1

is 0.41 1 seconds while for Trial #2 it is 0.822 seconds. Therefore, the aircraft is

responding twice as slow when it is taking off or landing as compared to when it is

actually cruising down the runway. The settling time, the time it takes the response to

stay within a specified tolerance band of 5% of the final value, is approximately 1 .23

seconds for Trial #1 and 2.46 seconds for Trial #2. The rise time is the time required for

the response to rise from 10% to 90% of the final value. For Trial #1 the rise time is

0.907 seconds and for Trial #2 it is 1.81 seconds. The peak overshoot is a measure of the

oscillations about the final output. Since there are no oscillations, the peak overshoot is

0%. It is desirable to have a system that responds rapidly with minimum overshoot.

Thus, there are trade-offs for each configuration.

The results of the main gear simulation are important to the designers of aircraft.

What we have learned, and what has been known by pilots for years, is that placing the

main landing gear in front of the CG makes the aircraft inherently unstable. That is why

the tricycle gear configuration, where the main landing gear is behind the CG, is preferred

over the taildragger configuration.
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4.5.7 Simulation ofMain Landing Gear & Vertical Tail Only

Further development of the model can be achieved by modifying Eq. (4.31) to allow for

the vertical tail force as follows:

-C

f v + ar^

u

(\

v
- ;
(

-a*C

-p"2\cLY
v -br

'f

v + ar
+ b

V u

^Pu ApCLy

- m(y + ur)

v-br\

I = Lr
(4.34)

Simulation is performed just as in Section 4.5.6. The state derivatives for this model are

-F
- F

y -
front -tire y tail

v = L ur

m

- a* F +h* F" l
y _

front-tire T u r
v tail

r = '!

/

(4.35)

As you can see from the state derivatives in Eq. (4.35), the response of the aircraft

is not only a function of the distance from the main gear to the CG, a, as in the previous

section, but it also depends on the distance from the aerodynamic center of the vertical

tail to the CG, b. Therefore, for the following simulations, the location of the CG is

varied between its forward and aft limits, which directly affects the distance from the CG

to the vertical tail as shown in Figures 4. 1 through 4.4. The main gear is also varied to

simulate a taildragger and a tricycle gear aircraft, as in Figures 4.2 and 4.4, respectively.

Also, as in the previous section, two values of cornering stiffness are used to simulate an

aircraft that is completely on the runway and one that is in the process of taking off or

landing. Table 4.5 shows the configurations that are used for this simulation.

56



Chapter 4 Two Degree-of-Freedom Aircraft Model

Table 4.5: Main Landing Gear & Vertical Tail Simulation Configurations

Trial
#

CG Location

(inches)
Distance From Main
Gear to CG, a (m)

Vertical Tail

Position, b (m)
Main Gear Cornering

Stiffness, Cf (one tire) (N/deg)
5 13.6 -0.5 3.92176 441.630

6 13.6 -0.5 3.92176 220.815
7 16.8 -0.5 3.84048 441.630
8 16.8 -0.5 3.84048 220.815
9 13.6 0 3.92176 441.630
10 13.6 0 3.92176 220.815

11 16.8 0 3.84048 441.630
12 16.8 0 3.84048 220.815
13 13.6 0.5 3.92176 441.630
14 13.6 0.5 3.92176 220.815
15 16.8 0.5 3.84048 441.630
16 16.8 0.5 3.84048 220.815

The numerical results of the simulation of these configurations are summarized in

Table 4.6 and shown graphically in Figures 4.9 through 4.20. Figures 4.9 through 4.12

simulate the tricycle gear configuration. The main landing gear is located behind the CG

at a distance of 0.5m, or a is -0.5m. Figures 4.9 and 4.10 represent the scenario when the

CG is at its forward limit. This is an underdamped response, as shown by the oscillations

and the imaginary eigenvalues listed in Table 4.6. As you can see, the aircraft reaches

steady state values for both the lateral displacement and angular rotation. However, the

steady state values increase as the cornering stiffness decreases. Consequently, the time

constant, settling time, rise time, and peak overshoot all increase.

Figures 4.1 1 and 4.12 show the same responses for the case when the CG is at its

aft limit. As you can see, the response almost exactly matches that of the forward CG

limit. A closer look at the data shows that the steady state values for this configuration

are actually less than those for the forward CG limit. The difference is approximately
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2%. Because the steady state values are less, the time constants, settling times, and rise

times are all faster than in the previous configuration. This would suggest that it is

favorable to move the CG to its aft limit when the main gear is behind the CG. The peak

overshoot, on the other hand, increases when the CG is aft instead of forward. So

depending on the type of response desired, the CG location can be modified to

accommodate the designer's interests.

When the cornering stiffness is halved to simulate a load change due to the wheels

leaving the runway during take-off or just touching the runway during landing, the

stability of the aircraft decreases. The steady state values, time constants, settling times,

rise times, and peak overshoots all increase due to the decreased lateral force generated by

the main gear.

Figures 4.13 through 4.16 show the results of the main gear being positioned right

at the CG. Again, these responses are underdamped, and both the lateral displacement

and angular response reach steady state values regardless of the CG location or the

cornering stiffness. All of the parameters listed in Table 4.6 show the same trends as

when the main gear is behind the CG. Also, the same conclusion can be made about

decreasing the cornering stiffness in that it decreases the stability of the aircraft. The

major difference between placing the main gear at the CG as opposed to behind it is that

the steady state values of displacement more than double when the CG is at the main

gear, but the steady state values of the rotation actually decrease. This is due to the

elimination of the moment created by the main gear. Moving the main gear to the CG

did have other positive effects. The time constant and settling time increased, and the
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peak overshoot decreased. In exchange for the decreased overshoot, the rise time

increased. Thus, if the designer and pilot can live with an increase in lateral displacement

and increased time in getting there, it is beneficial to move the main gear closer to the

CG.

Figures 4.17 through 4.20 simulate the conditions that represent a taildragger

aircraft. In these configurations, the main landing gear is 0.5m in front of the CG. As

with the previous simulations, the CG is varied between its forward and aft limits and the

cornering stiffness of the main gear is reduced to simulate take-off and landing

conditions. These figures show the aircraft to be unstable. All of the responses,

regardless of CG location or cornering stiffness, increase exponentially with time.

Figures 4.17 and 4.19 show that the aircraft is sliding in the positive y-direction, while

Figures 4.18 and 4.20 show that the aircraft is rotating in a counterclockwise manner.

This agrees with what is known about the stability of taildragger aircraft while on the

runway. The CG is realigning itself to be in front of the main gear. The location of the

CG determines the rate of the lateral displacement and angular rotation. The response is

slower when the CG is at its forward limit, as seen when comparing Figures 4. 17 and

4.18 to Figures 4.19 and 4.20. This is because the CG has less distance to travel to get in

front of the main gear as compared to when it is at its aft limit.

Furthermore, this is the first simulation for which the cornering stiffness has had a

significant effect on the response of the aircraft. In the previous configurations, the

cornering stiffness only slightly affected the steady state values of the lateral displacement

and angular rotation. However, when the main gear is in front of the CG, the reduced
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cornering stiffness greatly reduces the displacement and yaw. Figure 4.17 shows that the

displacement for the full-static condition is approximately 10m at 4 seconds, whereas the

half-static condition shows a displacement of approximately 2m at 5 seconds. The same

is true for the rotation of the aircraft. Figure 4.18 shows that is takes the full-static

condition approximately 2 seconds to rotate -10 degrees, as compared to the half-static

condition that takes 5 seconds for the same rotation. These results show that a taildragger

aircraft flies better in the air than it drives on the runway. That is why it is often said that

such a plane has to be flown on the ground.

Table 4.6: Results ofLinear Simulation ofMain Gear & Vertical Tail Only

Trial

#
Eigenvalues

Steady State
Displacement

(m)

Steady State
Angle

(deg)

Time

Constant

(sec)

Settling
Time

(sec)

Rise

Time

(sec)

Peak

Overshoot

(%)
5 -1.6868 4.0996i 0.0043 0.1948 0.0279 2.2531 0.0365 281

6 -1.01351 3.2999i 0.0060 0.1968 0.0390 4.5638 0.0497 295

7 -1.6747+ 4.0877i 0.0042 0.1952 0.0274 2.2661 0.0357 290

8 -1.0014 3.2865i 0.0059 0.1972 0.0386 4.5314 0.0495 302

9 -1.5574+ 1.7867i 0.0105 0.1535 0.0728 2.8585 0.0982 135

10 -0.9488 1.99981 0.0120 0.1760 0.0805 4.3865 0.1060 178

11 -1.5453 1.7562i 0.0103 0.1543 0.0713 2.9064 0.0958 141

12 -0.9367+ 1.9763 0.0118 0.1766 0.0788 4.4850 0.1039 185

13 -5.0356, 1.6621 N/A N/A N/A N/A N/A N/A

14 -2.7804, 0.7533 N/A N/A N/A N/A N/A N/A

15 -5.0403, 1.6909 N/A N/A N/A N/A N/A N/A

16 -2.7951,0.7922 N/A N/A N/A N/A N/A N/A
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As with the main gear simulation, it is helpful to examine the frequency and

damping of this system which includes the vertical tail. Figures 4.21 and 4.22 show how

the frequency and damping ratio compare for different CG locations and main gear

cornering stiffnesses as a function of the main gear location. Notice that there is no data

for a positive main gear location because all of those simulations were unstable. Figure

4.21 shows that the frequency of the system decreases as the main gear is moved closer to

the CG, just as in the main gear simulation. There is relatively no difference in frequency

when the CG is at its forward limit as compared to its aft limit. The interesting feature of

this plot is that the frequencies are lower when the cornering stiffness is decreased.

However, this is only true up to a main gear location of approximately -0.06 meters.

From this point on, as the main gear gets closer to the CG, the frequency is lower for the

higher cornering stiffness value.

The damping ratio is shown in Figure 4.22. As the main gear is moved closer to

the CG, the damping ratio increases meaning the aircraft will become more stable.

Again, there is very little difference in the damping ratio when the CG is moved from the

forward limit to the aft limit. The damping ratio does, however, decrease when the

cornering stiffness is decreased. Thus, the aircraft is more stable on the ground than

when taking off or landing.
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4.5.8 Simulation of the Main Landing Gear, Vertical Tail, & Tail Wheel

The final component to be added on to the model to complete it fully is the tail

wheel. The differential equations for the complete model were developed in Section

4.5.5 and are repeated here for convenience.

Cf
+ ar\

V u J

+ F
y _

disturbance

1 2, r,

Yv-br^

-a*Cf
v + ar ,

- b* F + h*
y _ disturbance

v
u

,

1 , . Yv-b

m{y + ur)

(4.31)

-pu'ApCLy + Cf_,ail | = IJ
2 A "

j

Simulation for this model is performed in the same manner as the previous

simulations. The state derivatives are found by solving Eq. (4.31) for vand r and

resubstituting Eqs. (4.24), (4.26), (4.28), (4.29), and (4.30):

- F + F - F - F
v_ front-tire y disturbance v tail v tail-wheel

v = ur

m

-a*F -h*F +h*(F +F }
(4-3")

_
y_ front-tire y _

disturbance V y_la<7 y_tail-wheel '
r _

_

In performing this simulation, the location of the CG and the main landing gear

were set at their default locations of 15.2 inches and 0.6401 meters, respectively. The

only variables in this section are the main gear cornering stiffness and the tail wheel

cornering stiffness. The cornering stiffnesses of the main gear are the same as those used

in the previous section which correspond to the aircraft at full-static load and half-static

loads. Full-static is when the aircraft is completely on the runway and the full cornering

stiffness of the tires is used. Half-static is when the aircraft is taking off or landing and

lift is being generated to get the main gear off the runway, so the cornering stiffness is

halved. In a similar manner, the tail wheel cornering stiffness is varied to simulate
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conditions of 2x, lx, and 0.5x the static load on the tail wheel. These configurations will

help us to better understand how the down force on the tail wheel affects stability. The

tail wheel cornering stiffness is found by using the default fraction of weight on the tail

wheel in conjunction with Figure 3.8. Then the value of the cornering stiffness is found

for two-times this load and half of this load. The parameters used for simulation in this

section are given in Table 4.7.

Table 4.7: Main Gear & Tail Wheel Cornering Stiffnessfor Simulating Main Gear,
Vertical Tail, & Tail Wheel

Trial
#

Main Gear Cornering Stiffness,
Cf (one tire) (N/deg)

Tail Wheel Cornering
Stiffness, Cf (N/deg)

17 441.630 145

18 441.630 112

19 441.630 70
20 220.815 145
21 220.815 112
22 220.815 70

The numerical results of the simulations are summarized in Table 4.8 while

Figures 4.23 through 4.26 show the graphical results. Figure 4.23, the lateral

displacement response, shows that the cornering stiffness of the tail wheel significantly

influences the stability of the aircraft when the main gear is completely on the runway.

As the tail wheel stiffness decreases, the steady state values of the displacement increase.

The steady state value of the rotation angle, on the other hand, is positive when the tail

wheel cornering stiffness is at its highest, and then decreases and becomes negative as the

tail wheel cornering stiffness is decreased. Also, the time constant, settling time and rise

time all increase as the tail wheel cornering stiffness is decreased. The peak overshoot,
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on the other hand, decreases. It is important to note that Trial #19 in Figure 4.23 is stable.

The steady state value of the displacement is more than 10 times greater than the other

trials. You can see in Table 4.8 that the time constant is extraordinarily high as compared

to the other trials. Thus, in order to compare the results on the same graph, the upper

limit was set at a value that showed all three results. Consequently, Trial #19 looks as

though it is unstable, when in actuality, it is overdamped.

When the cornering stiffness is halved to simulate take-off or landing conditions,

as in Figures 4.25 and 4.26, the aircraft is still stable for both the displacement and yaw

responses regardless of the tail wheel cornering stiffness. However, as the tail wheel

cornering stiffness is decreased, the steady state values for the lateral displacement

increase. The angular rotation, on the other hand, sees a reduction in steady state values

as the tail wheel cornering stiffness is decreased. The time constant, settling time, and

rise time all show the same increasing trend as in Figures 4.23 and 4.24, just as the peak

overshoot decreases as in these figures.

Table 4.8: Results ofLinear .Simulation ofMain Gear, Vertical Tail & Tail Wheel

Trial

#
Eigenvalues

Steady State
Displacement

(m)

Steady State
Angle

(deg)

Time

Constant

(sec)

Settling
Time

(sec)

Rise

Time

(sec)

Peak

Overshoot

(%)
17 -3.241.98i 0.025 0.058 0.216 0.487 0.388 3

18 -2.56, -3.26 0.036 -0.003 0.391 1.10 0.802 0

19 -4.84,-0.118 0.394 -1.97 8.49 25.2 18.7 0

20 -2.533.47i 0.018 0.148 0.133 1.01 0.192 29

21 -2.19 + 2.92i 0.021 0.141 0.153 1.19 0.223 28

22 -1.761.92i 0.030 0.115 0.229 1.68 0.350 20
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The frequency and damping ratio were also plotted for this set of simulations, this

time as a function of the tail wheel cornering stiffness. The results are shown in Figures

4.27 and 4.28. The frequency plot shows that for each main gear cornering stiffness, the

frequency decreases as the tail wheel cornering stiffness decreases. However, at any tail

wheel cornering stiffness, the system shows a lower frequency for the main gear at its

full-static load, Cf = 441.63 N/deg.

The damping ratio results shown in Figure 4.28 concur with the frequency results.

As the tail wheel cornering stiffness is decreased, the damping ratio increases. Also, the

damping ratios are higher for the case when the main gear is at full-static load as

compared to half-static.

The results of this simulation provide the designer and the pilot with the down

force necessary on the tail wheel in order to get the best frequency and damping ratio.

However, as we have seen, there are several trade-offs to be considered when deciding

the location of the main landing gear and the stiffness of the tail wheel. Although the

frequency and damping ratio may improve, the steady state value, time constant, settling

time, and rise time may worsen.
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4.6 Non-Linear Model

Development of a non-linear model becomes necessary as tire slip angles increase

to a point where the linear model can no longer accurately predict the tire lateral forces.

Chapter 3 discusses the technique that was used to model the behavior of a tire at high

slip angles. This method, called tire data non-dimensionalization developed by Hugo

Radt, is discussed in detail in Section 3.4. The equations and results of Section 3.4 are

put to use in simulating the two degree-of-freedom non-linear system.

4.6.1 Non-Linear Model Equations

The general equations ofmotion for the system have already been derived in

Sections 4.3 and are repeated here for convenience.

F -\- F F F = mlv -I- ur )
y_ front-tire y _

disturbance y_tail y_tail-wheel ""v */

-a*F -h*F +h*(F +F ) = F r
y~ front-tire y _

disturbance vx

y y_lail-wheel> iz

The difference between the linear and non-linear models is in the development of the slip

angles. Expressions for the general tire slip angles and the tail incidence angle have

already been derived in Section 4.4 and are shown here again.

v + arr ,

a = atan

\ u
)

y = atan
v br

(4.14)

(4.19)
V u

J
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The tire lateral force is given by the following expressions as described in Section 3.4 and

repeated here for convenience. From these equations the tire lateral force, Fyjront-tire, can

be calculated based upon the vertical load, Fz, and the tire slip angle, a.

CC=B3 + C3FZ (3.3)

fiy=B5 + C5Ft (3.5)

a =
Cctan(a) (3 6)

My

Fy=Dxsin() (3.8)

e=Ciatan(B,y7) (3.9)

w^{l_E^+E1atan(jBJa) (3 1Q)
B\

Fy=Fyfi,Ft (3-11)

4.6.2 Simulation ofMain Landing Gear Only

In order to simulate the model without the effects of the vertical tail and tail

wheel, Eq. (4.9) should be modified as follows

m(v + ur)

(4.37)
F , , ,

= m(v + ur)
y -

front-lire \ '

a* F = I r
y -

front-tire zz

Simulation of the non-linear model uses the same tools as the linear model. The

files used to perform the simulation are also listed in Appendix A and are very similar to
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those used in the linear model. The MATLAB script file DOF2NLSIM.m, listed in

Appendix A.9, implements the simulation much like the file DOF2LSIM.m implemented

the linear simulation. The files DOF2CONT.m, DOF2PARA.m, and DOF2DEPA.m are

again used in the non-linear simulation to input the controls and the dependent and

independent parameters that are going to be used. The built-in MATLAB function

ODE23 is again used to perform integration on the differential equations of motion,

which are contained in the script file DOF2NLDE.m. At each time step the ODE23

function refers to the file DOF2NLDE.m which calculates the state derivatives v and r

based upon the instantaneous values of the state variables v and r. DOF2NLDE.m can be

found in Appendix A. 10. The state derivatives are found by solving Eq. (4.37) for vand

r :

-2F
y front-tire

v = -^- ur

-la^F
(4-38)

_
}'_ front-tire

The most significant difference between the non-linear and linear model

simulations is in the calculation of the tire lateral forces. The MATLAB script file

NLTIRE.m that is listed in Appendix A.3 calculates the tire lateral forces. This file uses

the tire vertical load and slip angle as inputs and returns the tire lateral force. Note that

with the non-linear tire model the lateral force, Fy_front-tire, is only for one tire, while for the

simplified linear model it is for two tires. Thus, here they are multiplied by the factor of

two in Eq. (4.38). DOF2NLDE.m calls NLTIRE.m at each time step.
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For comparison purposes, the non-linear model is simulated using the same

configurations as in the linear model. For the main gear only simulation, those

configurations are listed in Table 4.3 in Section 4.5.6. The results of the non-linear

simulations performed in this section are listed in Table 4.9 and shown graphically in

Figures 4.29 through 4.32. The linear simulation results are included in these plots for

comparison. Notice that only the configurations for Trial #1 and #3 are used, which

correspond to an aircraft with full-static loading. In these configurations, the aircraft is

fully on the runway and has not started to take-off or begin landing. Simulation of an

aircraft taking off or landing is not performed in this section. For the linear model,

simulation of a take-off was done by using only half of the cornering stiffness. Non

linear modeling of a take-off becomes much more complex because the cornering

stiffness is no longer a constant as in the linear model. Thus, to ease the analysis,

simulation is done as if the aircraft is not generating any lift and it is still fully on the

runway. As you will see, this provides enough data to draw reasonable conclusions about

the use of a linear model.

Figure 4.29 shows the lateral displacement response when the main landing gear

is at the CG. As you can see, the response is overdamped and the system reaches steady

state. The difference in steady state values for the linear and non-linear model is

approximately 2%. As expected, the angular rotation, shown in Figure 4.30, is zero due

to the absence of a moment arm for the tire lateral force.

When the main landing gear is moved in front of the CG, the aircraft becomes

unstable as we saw in the linear simulation. As a result, the magnitude of the
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displacement and rotation both increase with time. This can be seen in Figures 4.31 and

4.32, respectively. In comparison, the linear model is more unstable than the non-linear

model. The exponential rise is greater in the linear model. This is due to the linear

model overestimating the tire lateral forces. Thus, the aircraft displaces faster and shows

a faster yaw rate.

Table 4.9: Results ofNon-Linear Simulation ofMrain Gear Only

Trial
#

Steady State
Displacement

(m)

Steady State
Angle

(deg)

Time
Constant

(sec)

Settling
Time

(sec)

Rise
Time

(sec)

Peak
Overshoot

(%)
1 0.042 0.000 0.417 1.25 0.917 0.0000
3 N/A N/A N/A N/A N/A N/A

Trial #1, Non-Linear

Trial #1, Linear

2 2.5 3

Time (sec)

Figure 4.29: Non-Linear Lateral Displacement Response for Main Gear at CG, Main
Gear Only
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Figure 4.30: Non-Linear Angular Rotation Response for Main Gear at CG, Main Gear

Only
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Figure 4.31: Non-Linear Lateral Displacement ResponseforMain Gear 0.5 m in Front

ofCG, Main Gear Only
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Figure 4.32: Non-Linear Angular Rotation Response for Main Gear 0.5 m in Front of

CG, Main Gear Only

4.6.3 Simulation ofMain Landing Gear & Vertical Tail Only

The previous section allowed us to develop a better understanding of the effects of

the location of the main landing gear. Those results can be put to use in this section

where the vertical tail component is added into the model. The equations of motion

should then be modified to be:

-F, Fy_tail = m(V + Ur)

-a*F +b* F .,
= I rU ry_front-tire T u 1

V
L zz'

y_ front -tire
(4.39)

Simulation for this model is performed in the same manner as the previous

simulations. The state derivatives are found by solving Eq. (4.39) for v and r :
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-F -F
_ y _

front -tire y tail
V ' _ ur

m

-a*F +h* F
_

L
y _ front-tire ^U F

y _
tail

(4.40)

The configurations used to perform the analysis with the addition of the vertical

tail are the same as those used in the linear model. They can be found in Table 4.5 in

Section 4.5.7.

The results of the non-linear simulation are shown numerically in Table 4.10 and

graphically in Figures 4.33 through 4.38. The linear simulation results are also plotted for

comparison. When the aircraft is stable, as in Figures 4.33 through 4.36, the linear model

accurately predicts the behavior. In fact, the difference in steady state values is less than

1%. When the system is unstable, as in Figures 4.37 and 4.38, the linear results predict a

faster response for the aircraft in both displacement and rotation.

Table 4.10: Results ofNon-Linear Simulation <ofMain Gear & Vertical Tail Only

Trial
#

Steady State
Displacement

(m)

Steady State
Angle

(deg)

Time
Constant

(sec)

Settling
Time

(sec)

Rise
Time

(sec)

Peak
Overshoot

(%)
5 0.004 0.195 0.029 2.87 0.038 277
7 0.004 0.195 0.028 2.27 0.037 286
9 0.011 0.154 0.074 2.96 0.099 135
11 0.010 0.155 0.072 2.95 0.094 140
13 N/A N/A N/A N/A N/A N/A
15 N/A N/A N/A N/A N/A N/A
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Figure 4.34: Non-Linear Angular Rotation Responsefor Main Gear

Position -0.5 m, Main Gear & Vertical Tail Only

Figure 4.33: Non-Linear Lateral Displacement Response for Main Gear

Position -0.5 m, Main Gear & Vertical Tail Only
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Figure 4.35: Non-Linear Lateral Displacement ResponseforMain Gear

Position 0 m, Main Gear & Vertical Tail Only
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Figure 4.36: Non-LinearAngular Rotation Response for Main Gear

Position 0 m, Main Gear & Vertical Tail Only
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Figure 4.37: Non-Linear Lateral Displacement Response for Main Gear

Position 0.5 m, Main Gear & Vertical Tail Only
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Figure 4.38: Non-LinearAngular Rotation Response forMain Gear

Position 0.5 m, Main Gear & Vertical Tail Only
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4.6.4 Simulation ofMain Landing Gear, Vertical Tail, & Tail Wheel

With the effects of the main landing gear and vertical tail better understood, the

tail wheel component can now be added in to complete the non-linear model. The

equations of motion for the complete model have already been developed and are

repeated here for convenience:

_

y_front-tire
"*"

y_disturbance
~ "

y tail
~

*
'

y_mil-wheel
~ WV + Ur )

, , n

(4.9)
-a*F -h*F +h*(F + F } = I r

y_ front -tire
u L

y^disturbance
~

u \l
y_tail

^ l
y_lail -wheel > l zz'

Simulation for this model is performed in the same manner as the previous

simulations. The state derivatives are found by solving Eq. (4.9) for v and r :

- F + F - F - F
y -
front-lire y disturbance y tail v tail-wheel

V = - ur

m

(4.41)
-a*F -h*F +h*(F +F )

_
y_ front-lire y_disturbance ^ y_lail y_lail-wheel>

r ~

Ta
For comparison purposes, the same configurations were used for the complete non-linear

model as those that were used for the complete linear model. Those configurations are

listed in Table 4.7 in Section 4.5.8. The generalized non-linear form of all angles is used

for this simulation as well as the non-linear tire model described in Chapter 3.

The results of the non-linear model are listed in Table 4.1 1 and shown graphically

in Figures 4.39 and 4.40. In this case, the linear model was not as accurate in predicting

the response as the non-linear model. For example, the difference in steady state

displacement for Trial #17 is 67%. The difference in steady state angle for the same trial

is over 70%. On the other hand, Trial #18 and #19 do not show drastic differences
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between the linear and non-linear results. The steady state values have approximately a

10% error in these cases.

Table 4.11: Results ofNon-Linear Simulation ofMain Gear, Vertical Tail, & Tail

Wheel

Trial
#

Steady State
Displacement

(m)

Steady State
Angle

(deg)

Time
Constant

(sec)

Settling
Time

(sec)

Rise
Time

(sec)

Peak

Overshoot

(%)
17 0.0234 0.0758 0.1970 0.9421 0.3387 6
18 0.0323 0.0308 0.2991 0.7729 0.5935 N/A
19 0.2736 -1.2803 5.5305 17.2026 12.7399 N/A

0.2

0.18

0.16

0.14

| 0.12
cf 0.1

|_0.08
g 0.06

Trial #1 7, Non-Linear
Trial #1 8, Non-Linear
Trial #19, Non-Linear

? Trial #17, Linear
---a--- Trial #18, Linear
- *- - Trial #1 9, Linear

kkJJUL^4.^k.^-^z:^:2A.-..k::::k::::^::::k-:::^::::^r.r^^

? ? ? ? 4 * ? ? ? ? * *>

0 0.5 1.5 2 2.5 3 3.5

Time (sec)

4.5

Figure 4.39: Non-Linear Lateral Displacement Response with Main Gear at

Full-Static Load, Main Gear, Vertical Tail & Tail Wheel
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Figure 4.40: Non-Linear Angular Rotation Response with Main Gear at Full-Static

Load, Main Gear, Vertical Tail & Tail Wheel

4.7 Summary

The exact location of the roots was found using digital computer solution.

However, if we were only interested in knowing whether the system was stable, unstable,

marginally stable, or limitedly stable we could use the Routh-Hurwitz criterion. This is

an alternative method used to determine how many roots, if any, are located in the
right-

half s plane or on the imaginary axis. The Routh-Hurwitz criterion can also be used to

determine relationships among system parameters necessary for stability. The major

disadvantage of this criterion is that is does not specifically locate the roots of the

characteristic equation. Consequently, we know only the absolute stability of the system

29

and nothing about the degree of stability or the nature of the transient
response.
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As we have seen through numerous simulations, the linear model has proved to be

a very good approximation of the non-linear model. Both Chapter 3 and this chapter have

described the major difference between these two models. The most significant factor

was the calculation of the lateral force of the main gear. The non-linear model's purpose

was to predict this lateral force at high slip angles. As it turns out, for stable

configurations, the front tire slip angle was very small. Thus, the linear model was

capable of predicting this force just as well. Perhaps higher speeds would have caused

this angle to increase to a point where the non-linear model was necessary. However, the

lOOkm/hr speed used is very representative of a landing aircraft.

When the system was unstable, the front tire slip angles were large enough so that

use of a non-linear model was justified. Figure 4.41 is an example of the slip angle over

the time period for one of the unstable configurations used in the non-linear model. As

you can see, the magnitude of the angle increases dramatically over the time period.

Notice that the maximum angle is only 0.21. This may not seem like a large enough

angle to warrant use of a non-linear model. However, keep in mind that the aircraft never

goes through any large radius turns while on the runway as a car would on the road.

Therefore, the front tires will not experience large slip angles. Thus, for an aircraft, these

are high slip angles and linear model does not accurately predict the tire lateral forces.

Consequently, the linear model overestimated the response.
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Figure 4.41: Front Tire Slip Angle Resultfrom Non-LinearModel

Finally, it is sometimes helpful to see certain results from a different point of

view. Figure 4.42 puts the lateral displacement of the aircraft into perspective. The

response is still in the aircraft coordinate system. This data was taken from stable

configurations for the non-linear simulations to show what happens as the airplane travels

down the runway at 100 km/hr. The responses may look like as if the airplane is out of

control. However, notice the units are in meters. At most, the maximum displacement of

the airplane is less than 2 inches. These responses will probably not even be noticed by

the pilot.
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0.6 Main Gear Only
Main Gear & Vertical Tail
Mai Gear, Vertical Tail, & Tail Wheel
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Lateral Displacement (m)
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Figure 4.42: Lateral Displacement versus ForwardMotion
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5 Conclusion

An understanding of flight stability and control played an important role in the

ultimate success of the earliest aircraft designs. In later years the design of automatic

controls was widespread across the aviation industry. Today, both military and civilian

aircraft rely heavily on automatic control systems to provide artificial stabilization and

autopilots to aid pilots in navigating and landing their aircraft in adverse weather

conditions. Unfortunately, controls have not yet been developed that will land a

taildragger aircraft in the hands off condition. Most likely they will never be developed.

There are very few taildraggers being flown today. The issue over their stability has

driven most pilots towards tricycle gear aircraft. However, it is my understanding that

taildraggers are more fun to fly. If the results of this study are put to use then we will be

taking away the thrill of flying and landing a taildragger.

The goal of this thesis was to present a well developed model that would allow

the basic elements of aircraft ground stability to be analyzed in hopes of improving the

performance of the aircraft. Mathematical modeling of the system proved to be a useful

tool for understanding the effects of the interaction between the tires, the runway, and the

vertical tail. There is a great deal of literature available on both flight stability and

vehicle dynamics. Together with the appropriate tire model, these topics can be brought

together to produce an accurate description of aircraft ground stability.

In Chapter 3 the tire model used in this thesis was described in detail. The model

for the main landing gear was developed for both the linear and non-linear scenario. The

tire data nondimensionalization technique proved to be an accurate method of fitting a
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curve to tire data. This allowed the tire lateral force to be predicted as a non-linear

function of both the vertical load and slip angle.

The tail wheel model was developed using empirical data provided by the

manufacturer of the tire. This data was used in conjunction withMICROSOFT EXCEL

and the TRENDLINE function to produce a fourth order polynomial that fit the data

perfectly. The tail wheel only used a linear model.

In Chapter 4 the equations of motion were developed for the two degree-of-

freedom bicycle model. These equations were then broken down into components and an

analysis was done by usingMATLAB to perform simulation on the system. The

differential equations of motion were integrated over a time period using the ODE23

function. After each components results were verified, the system was developed into a

linear and non-linear model. Several different configurations of landing gear and CG

location were used to describe the lateral displacement and angular rotation response.

The responses were simulated for an aircraft that was completely on the runway as well

as an aircraft that had just started to take-off or land. These responses were compared for

the linear and non-linear model. It turned out that the front tire slip angle remained small

for stable configurations, so the linear model was just as accurate as the non-linear model

in these cases. When the aircraft was inherently unstable, the tire slip angle was

sufficiently large enough to warrant the use of a non-linear model.

In conclusion, the results of this study should be helpful to aircraft designers and

pilots when deciding what configuration an aircraft should have. This thesis has also

brought to light the issues surrounding aircraft ground stability and lateral dynamics.
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Appendix A MATLAB Script Files

A.1 MAGICFIT.m

% MagicFit Curve Fitting of Tire Data to Magic Formula
%

% Finds parameters for Magic Formula curve fit of tire lateral force,
% longitudinal force, or aligning moment versus slip angle data read from file

% TireSlip.dat

%
% Created 12/17/97

% Howard Brott

% Initialization
clear all;

clc;

% Load data from file

load TireSlip.dat

t = TireSlip(:,l);

y = TireSlip(:,2);

% Find curve fit parameters
x0= [0.7407 1.35 1.00-0.51];
x = leastsqCMagicError', xO, [],[], t, y)

% Construct fit function

tl = linspace(0, max(t), 10);
psi = (l-x(4))*tl + x(4)/x(l)*atan(x(l)*tl);

theta = x(2)*atan(x(l)*psi);

F = x(3)*sin(theta);

% Plot data and fit function

plot(tl,F,t,y, b")
title([Tire Data Magic Formula Fit (B= num2str(x(l)) ',

C='
num2str(x(2))...

', D='num2str(x(3)) ',
E='

num2str(x(4)) 01)

xlabelCf)

ylabel('y')

grid
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A.2 MAGICERROR.m

function e = MAGICERROR(x, t, y)
% MagicError Error in Magic Formula Curve Fit
%
% e = MagicError(x, t, y)
%

Calculates vectors of errors ofMagic Formula Curve Fit given parameters
x and data (t, y)

%
%
%

% Inputs:
%
%

%
%
%
%

%

% Outputs:
% e

%
% Created 12/17/97
% Howard Brott

Vector of curve fit parameters

x(l) B

x(2) C

x(3) D

x(4) E

t

y

Vector of independent data
Vector of dependent data

Vector of errors between data and fit function

psi = (l-x(4))*t + x(4)/x(l)*atan(x(l)*t);
theta = x(2)*atan(x(l)*psi);

F = x(3)*sin(theta);

e = y-f;
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A.3 NLTIRE.m

function Fy = NLTire(Fz, alpha)
% NLTire Non-Linear Tire Model Lateral Force
%

% Fy = NLTire(Fz, alpha)
%

Calculates tire lateral force from inputs of tire vertical load and slip
angle. Based on Radt's tire data nondimensionalization model and the

Magic Formula Model. Focre is for one tire. Called by the function
DOF2NLDE.m.

%

%
%

%
%

%

%
%
%
%
%

% Created 1/13/98

% HowardW. Brott Jr.

Inputs:
alpha

Fz

Outputs:

Fy

Tire slip angle (rad)
Tire vertical load (N)

Tire lateral force (N)

global Bl CI Dl El B3 C3 B5 C5;

% Normalization Parameters

Cc = B3 + C3*Fz;
mu = B5 + C5*Fz;

% N/deg/N

%N/N
Cornering coefficient
Friction coefficient

% Normalized Slip Angle
alphaN = Cc.*tan(alpha)./mu*180/pi;

% Normalized Lateral Force

psiFN = (l-El)*alphaN + El/Bl*atan(Bl*alphaN);

thetaFN = Cl*atan(Bl*psiFN);
FyN = Dl*sin(thetaFN);

% Lateral Force

Fy = -FyN.*mu.*Fz;
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A.4 DOF2CONT.m

% DOF2Control 2 DOFModel Execution Control
%

% Controls execution of 2 DOF model. Sets control input type(step)
% Sets simulation parameters
%
% Created 1/12/98
% HowardW. Brott Jr

% Control Input Type

step=l; %Step Steer

input = 1 ; %select which control input to use

% Simulation Parameters

tO = 0.0; % s Initial time for steer input

tf = 4; % s Final time for simulation

tol = le-5; % Simulation accuracy (default = le-3)
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A.5 DOF2PARA.m

% D0F2Para 2 DOF Model Independent Parameters and Simulation Control
%
% Sets independent vehicle, tire, and disturbance parameters
% for 2 DOF model.
%

% Created 1/1 1/98
% Howard W. Brott Jr.

% Initialization
clear all;

clc;

global m Izz L a b f rho Ap CLgamma Fy_disturbance Cfjail u Cf Fz tO tf input;
global Bl CI Dl El B3 C3 B5 C5;

% Constants

g = 9.81; % m/sA2 Acceleration due to gravity
rho= 1.225; % kg/mA3 Density of air

% Aircraft Independent Parameters
m = 748.43; %kg Gross vehicle mass
Izz= 1760; % kg-mA2 Yaw inertia

f=i; % Fraction of weight on front axle
L = 4.7752; % m Wheelbase

u = 100; % km/hr Vehicle forward speed

Ap = 0.6929; %mA2 Area of vertical tail

Cl_gamma = 0.1; % (0. 1) 1/deg Coefficient of lift on tail

% Disturbance Inputs
Fy_disturbance = 0; % N Aerodynamic side force

% linear Tire Model Parameters

Cf = -44 1.63; % N/deg front cornering stiffness (one tire)
Cf_tail = 0; % N/deg tail wheel cornering stiffness (one tire)

% Non-Linear Tire Model Parameters

% Normalized Lateral Force Magic Formula Parameters

Bl =0.7947;
CI =0.1901

Dl =6.1197

El = 1.0637

% Cornering Coefficient Parameters
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B3 = 0.2117;
C3 = -2.2918e-5;

% Friction Coefficient Parameters
B5 = .7221;

C5 = -8.81055e-5;

Appendix A MATLAB Script Files

% Unit Conversions
u = u* 1000/3600; % m/s Vehicle forward speed
Cf = Cf* 1 80/pi*2; % N/rad Front tire cornering stiffness (two tires)
Cf_tail = Cf_tail* 1 80/pi; % N/rad Tail wheel cornering stiffness (one tire)
CLgamma = Cl_gamma* 180/pi; % 1/radCoefficient of lift on tail
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A.6 DOF2DEPA.m

% D0F2DePa 2 DOF Model Dependent Parameter Calculation

%
% Calculate values of dependent parameters for 2 DOF model

%

% Created 1/11/96

% HowardW. Brott Jr.

% Dependent '.Parameters

a=(l-f)*L; %m Distance from front tire to CG

b = f*L; %m Distance from rear tire to CG

V = u; %m/s Vehicle speed

Fz = m*g*f/2; %N Front tire normal load (one tin
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A.7 DOF2LSIM.m

%D0F2LSim Simulation of Linear 2 DOF Model Response to Control and Disturbance

%

%
%

%

%

%

%

%

% Created 1/12/98
% Howard W. Brott Jr.

Inputs

Performs simulation of linear 2 DOF model response to control and

disturbance inputs. Determines yaw speed, lateral speed, sideslip angle,

front and rear tire slip angles, front and rear tire lateral forces, and
lateral acceleration. Plots these responses versus time. Reads data from

DOF2Param, DOF2DependParam.

DOF2Para;
DOF2Cont;
DOF2DePa;

% Set independent parameters

% Set execution control parameters

% Calculate dependent parameters

% Perform Simulation

[t,x] = ODE23('DOF2LDE', tO, tf, [0.1 0 0 0]', tol);
v = x(:,l);

r = x(:,2);

y = x(:,3);

theta = x(:,4)*l 80/pi;

Vehicle sideslip angle

Front tires slip angle
tail incidence angle

% Vehicle, tire, & tail Angles

beta = (v/u); % rad

alpha = ((v+a*r)/u); % rad

gamma = ((v-b*r)/u); % rad

% External Forces and Moments

Fy_fronttire = Cf*alpha; % N Front tires lateral force

Fy_tail = ((l/2)*rho*uA2*Ap*Cl_gamma)*gamma; % N Vertical tail force

Fy_tailwheel = Cf_tail*gamma;

% State Derivatives

vdot = (-Fy_fronttire+Fy_disturbance-Fy_tail-Fy_tailwheel)/m-u*r;

rdot = (-a*Fy_fronttire-b*Fy_disturbance+b*(Fy_tail+Fy_tailwheel))/Izz;

% Lateral Acceleration

ay = vdot + u*r;

% Do Plots

subplot(2,l,l)

% m/sA2 Lateral Acceleration
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plot(t,y)
grid

title('Linear Lateral Displacement (y)')
xlabel('Time (s)')
ylabel('Displacement (m)')

figure

subplot(2,l,2)
plot(t,theta)
grid

title('Linear Angular Displacement (Theta)')
xlabel('Time (s)')
ylabel('Displacement (deg)')

figure

plot(t,v)
grid

title('Linear Lateral Speed (v)')
xlabel('Time (s)')
ylabel('Speed (m/s)')

figure
plot(t,r*l 80/pi)
grid

title('Linear Yaw Speed (r)')
xlabel(Time (s)')
ylabel('Speed (deg/s)')

figure
plot(t,beta*l 80/pi)
grid

title('Linear Vehicle Sideslip Angle (beta)')
xlabel('Time (s)')
ylabel('Slip Angle (deg)')

figure
plot(t,alpha*l 80/pi)
grid

title('Linear Front Tire Slip Angle (alpha)')
xlabel('Time (s)')
ylabel('Slip Angle (deg)')

figure

plot(t,ay/g)

Appendix A MATLAB Script Files
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grid

title('Linear Lateral Acceleration')
xlabel('Time (s)')
ylabel('Acceleration (g)')
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A.8 DOF2LDE.m

function xdot = DOF2LDE(t,x)
% DOF2LDE Linear Differential Equations for 2 DOF Model
%

% xdot = DOF2LDE(t,x)
%

% Determines derivatives of lateral speed and yaw speed given time and

% state vector. Linea tire and linear slip angles. Used with ode23
% for simulation.
%

% Inputs:

% t Time (s)
% x(l)=v Lateral speed (m/s)
% x(2)=r Yaw speed (rad/s)
% Outputs:
% xdot(l) Derivative of lateral speed (m/sA2)
% xdot(2) Derivative of yaw speed (rad/sA2)
%
% Created 1/12/98
% Howard W. Brott Jr.

global m Izz L a b Cf Cl_gamma rho Ap u Fy_disturbance Cf_tail

xdot=[(l/m)*(-((x(l)+a*x(2))/u)*Cf+Fy_disturbance-((x(l)-

b*x(2))/u)*(Cl_gamma*(l/2)*rho*uA2*Ap+Cf_tail))-x(2)*u

( l/Izz)*(-((x( 1 )+a*x(2))/u)*Cf*a-b*Fy_disturbance+((x( 1 )-

b*x(2))/u)*(Cl_gamma*(l/2)*rho*uA2*Ap+Cf_tail)*b)
x(l)

x(2)];
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A.9 DOF2NLSI.m

%D0F2NLSi Simulation of Non-Linear 2 DOF Model Response to Control and

Disturbance

Inputs

Performs simulation of non-linear 2 DOF model response to control and

disturbance inputs. Determines yaw speed, lateral speed, sideslip angle,
front and rear tire slip angles, front and rear tire lateral forces, and
lateral acceleration. Plots these responses versus time. Reads data from

DOF2Param, DOF2DependParam.

%

%
%

%

%

%
%

%

% Created 1/12/98
% Howard W. Brott Jr.

DOF2Para;
DOF2Cont;
DOF2DePa;

% Set independent parameters

% Set execution control parameters

% Calculate dependent parameters

% Perform Simulation

[t,x] = ode23('DOF2NLDE',0,tf,[0.1 0 0 0]',tol);
v = x(:,l);

r = x(:,2);

y = x(:,3);

theta = x(:,4)*180/pi;

% Vehicle and tire Slip Angles
beta = atan(vm); % rad

alpha = atan((v+a*r)/u); % rad

gamma = atan((v-b*r)/u); % rad

Vehicle sideslip angle

Front tires slip angle

Rear tires slip angle

% External Forces andMoments

Fy_fronttire = NLTire(Fz, alpha); % N Front tire lateral force (one tire)

Fy_tail = ((l/2)*rho*uA2*Ap*Cl_gamma)*gamma; % N Vertical tail force

Fy_tailwheel = Cf_tail*gamma;

% State Derivatives

vdot = (-2*Fy_fronttire+Fy_disturbance-Fy_tail-Fy_tailwheel)/m-u*r;

rdot = (-2*a*Fy_fronttire-b*Fy_disturbance+b*(Fy_tail+Fy_tailwheel))/Izz;

% Lateral Acceleration

ay = vdot + u*r; % m/sA2 Lateral Acceleration

%Do Plots
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subplot(2,l,l)
plot(t,y)
grid

title('Non-Linear Lateral Displacement (y)')
xlabel('Time (s)')
ylabel('Displacement (m)')

figure

subplot(2,l,2)

plot(t,theta)
grid

title('Non-Linear Angular Displacement (Theta)')
xlabel('Time (s)')
ylabel('Displacement (deg)')

figure

plot(t,v)
grid

title('Non-Linear Lateral Speed (v)')
xlabel('Time (s)')
ylabel('Speed (m/s)')

figure
plot(t,r*l 80/pi)
grid

title('Non-Linear Yaw Speed (r)')
xlabel(Time (s)')
ylabel('Speed (deg/s)')

figure
plot(t,beta*l 80/pi)
grid

title('Non-Linear Vehicle Sideslip Angle (beta)')
xlabel(Time (s)')
ylabel('Slip Angle (deg)')

figure
plot(t,alpha*l 80/pi)
grid

title('Non-Linear Front Tire Slip Angle (alpha)')
xlabel('Time (s)')
ylabel('Slip Angle (deg)')

figure
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plot(t,ay/g)
grid

title('Non-Linear Lateral Acceleration')
xlabel('Time (s)')
ylabel('Acceleration (g)')
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A.10 DOF2NLDE.m

function xdot = DOF2NLDE(t,x)
% DOF2NLDE Non-Linear Differential Equations for 2 DOFModel

%

% xdot = DOF2NLDE(t,x)
%

% Determines derivatives of lateral speed and yaw speed given time and

% state vector. Non-linear tire and non-linear slip angles. Used with ode23
% for simulation.

%

% Inputs:

% t Time (s)
% x(l) Lateral speed (m/s)
% x(2) Yaw speed (rad/s)
% Outputs:

% xdot(l) Derivative of lateral speed (m/sA2)
% xdot(2) Derivative of yaw speed (rad/sA2)

%

% Created 1/12/98

% HowardW. Brott Jr.

global m Izz L a b Fz Cf CLgamma rho Ap u Fy_disturbance Cf_tail

alpha = atan((x(l)+a*x(2))/u);

Fy_fronttire = NLTire(Fz, alpha);

xdot=[(l/m)*(-2*Fy_fronttire+Fy_disturbance-((x(l)-

b*x(2))/u)*(Cl_gamma*(l/2)*rho*uA2*Ap+Cf_tail))-x(2)*u

(l/Izz)*(-2*Fy_fronttire*a-b*Fy_disturbance+((x(l)-

b*x(2))/u)*(Cl_gamma*(l/2)*rho*uA2*Ap+Cf_tail)*b)

x(D

x(2)];
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