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Abstract: Various human activities have been the main causes of surface water pollution. The uneven
distribution of industrial enterprises in the territories of the main river basins of Ukraine do not
always allow the real state of the water quality to be assessed. This article has three purposes:
(1) the modification of the Ukrainian method for assessing the WQI, taking into account the level
of negative impact of the most dangerous chemical elements, (2) the modeling of WQI assessment
using fuzzy logic and (3) the creation of an artificial neural network model for the prediction of the
WQI. The fuzzy logic model used four input variables and calculated one output variable (WQI).
In the final stage of the study, six ANN models were analyzed, which differed from each other in
various loss function optimizers and activation functions. The optimal results were shown using
an ANN with the softmax activation function and Adam’s loss function optimizer (MAPE = 9.6%;
R2 = 0.964). A comparison of the MAPE and R2 indicators of the created ANN model with other
models for assessing water quality showed that the level of agreement between the forecast and
target data is satisfactory. The novelty of this study is in the proposal to modify the WQI assessment
methodology which is used in Ukraine. At the same time, the phased and joint use of mathematical
tools such as the fuzzy logic method and the ANN allow one to effectively evaluate and predict WQI
values, respectively.

Keywords: water quality index; surface water; fuzzy logic; artificial neural network

1. Introduction
1.1. Water Quality Assessment

Surface water quality monitoring is a complex procedure that includes a number of
chemical analyses of water. In Ukraine, nine river basins have been identified, and water
quality monitoring is carried out according to nine chemical indicators. The areas of river
basins are quite significant and range from tens of thousands to hundreds of thousands
of square kilometers [1]. The quality of surface waters is influenced by human activities.
The activities of industrial enterprises, the mining industry and others always affect the
environment to a certain extent. Thus, the qualitative and quantitative analysis of surface
waters is directly dependent on anthropogenic impacts. For example, if there is a deposit of
heavy metals in the area of a river basin and it is extracted, then such heavy metals should
be included in the list of controlled chemical indicators [2]. If a chemical industry facility is
located in the area of a river basin, the specific chemicals produced by that facility should
be included.

Given the uneven distribution of industrial enterprises in the territories of the river
basins in Ukraine, monitoring the quality of surface waters by nine indicators does not
allow the real state of the water near the river to be assessed. When analyzing the above, it
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is expedient to select the necessary chemical indicators to monitor the quality of surface
waters in accordance with a preliminary analysis of the anthropogenic impact on the
basin of a particular river. Thus, it is advisable to make the list of controlled chemical
indicators for water individually, depending on the type of anthropogenic activity [3,4]. The
process of monitoring the quality of surface waters, including the systematic performance
of chemical analyses of water, always comes with financial costs. If there are various
industrial enterprises in the territory of a river basin, then the need to increase the number
of controlled chemical indicators is obvious. In turn, this leads to an increase in monitoring
costs. However, if there is no anthropogenic impact on the river basin, then the number
of controlled chemical indicators of water quality can be reduced. This will reduce the
cost of monitoring the water quality of such a river or an entire basin. It is important
that with this approach, reducing the cost of monitoring such a river basin will increase
the cost of monitoring a river basin with a high anthropogenic impact. There are various
indices used to assess and monitor water quality in aquatic systems [5,6]. One of the first
systems developed by Horton [7] was the creation of general indices that allow for the
systematization of various water quality parameters. This methodology was then refined
by the US National Sanitation Foundation (NSF), resulting in the well-known Water Quality
Index (WQI) [8]. The WQI is an index that shows the level of cumulative influence of
selected parameters on the overall water quality as a single numerical value [9,10]. This
concept is widely used to assess water quality around the world [11,12].

A system for monitoring and assessing the quality of surface water, a method of
examining individual sections of water in terms of their chemical, biological and nutritional
components, has been introduced in many countries. Generic indices are used as com-
prehensive assessment tools that help assess water quality at an early stage and provide
data and information for decision making by regulators. The assessment of water quality
indicators makes it possible to establish the compliance or non-compliance of the water
of a certain water body with requirements set by water users. The WQI has an advantage
over other methods because it determines the overall water quality without interpreting
individual factors [13]. Using a method that combines input parameters into a single result-
ing index has both advantages and limitations. The advantage is that the interpretation of
the input variables is reduced to a single number, which makes it easier to understand the
situation. The limitation of the method is due to the inability to assess individual factors,
as well as the interdependence between them [14]. In addition, with numerous factors and
data, calculating WQI can be time-consuming and difficult. Therefore, various mathemati-
cal models, including fuzzy logic and ANNs, deserve consideration as alternative tools for
the assessment of water quality [15].

1.2. Fuzzy Logic

The use of mathematical modeling allows situations that arise and proceed in an
uncertain environment to be simulated. Given the dynamic variability and a significant
number of variables, there is a trend in the mathematical modeling of water quality to
develop methods that minimize uncertainty and facilitate the numerical solution of prob-
lems. One of the methods is fuzzy logic, which generalizes classical set theory and formal
logic. Fuzzy logic is an extension of classical logic and can be used to solve problems that
have a significant amount of subjectivity. The use of fuzzy logic was first proposed by the
scientist Lotfi Zadeh in 1965 [16]. The main reason for the appearance of a new theory was
the presence of fuzzy reasoning in the description of processes, systems and objects by
a person.

Fuzzy logic is capable of handling linguistic, vague and uncertain data and can be
defined as a logical, reliable and transparent process of collecting and using data that creates
opportunities for decision making in the environment. The uniqueness of fuzzy logic is that
it allows complex environmental problems with numerous input variables and complex
interdependencies between them to be solved [17,18]. Fuzzy logic tools and capabilities
are used to assess water quality by calculating the WQI [19]. Modeling ecological systems
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is a challenging scientific task because researchers often fail to make accurate statements
about inputs and results. Fuzzy logic can be applied to the development of environmental
monitoring indicators to solve this problem [20].

Due to its simplicity, fuzzy logic is successfully used to model natural-language-based
water quality assessment [21]. Linguistic calculations used in fuzzy inference systems
give better results than an algebraic expression for the estimation of the WQI. Fuzzy
inference systems have been used to create water quality indices because these methods
can provide alternative approximations when targets and boundaries are imprecise or
poorly defined [22]. Thus, the authors conducted an extensive retrospective analysis of
the evolution of methods for the calculation of the water quality index. Various options
were analyzed, which concerned the choice of variables and the methods of weighting
and aggregating these variables into a final value. The authors confirmed that the use
of the fuzzy logic method can lead to significant progress in the methodology for the
determination of the water quality index [23]. Caniani et al. [24] proposed to use a fuzzy
model to assess the complex environmental vulnerability of an aquifer. The comparison
of the obtained results with the traditional method showed that the fuzzy logic method
turned out to be a useful and objective tool for environmental modeling. Yang et al. [25]
created an early warning system aimed at accurately predicting algal blooms in rivers.
The values of dissolved oxygen, velocity, ammonia nitrogen, total phosphorus and water
temperature were used as input data for the fuzzy logic model. The fuzzy logic model
successfully reproduced algal bloom events over a certain period of time. The authors
of a study [26] used a Mamdani fuzzy logic model to classify groundwater quality for
irrigation. The operation of the fuzzy model is based on the input membership functions
of the electrical conductivity and sodium absorption coefficient, as well as on the output
membership function of the irrigation water quality index.

Thus, the advantages of using fuzzy logic, compared to currently used water quality
indices, are:

- The solution of issues with numerous input variables and complex interdependencies
between them.

- The calculation of the final index occurs by evaluating the behavior of each analyzed
parameter in relation to others.

1.3. Artificial Neural Network

A large amount of data have to be used to assess water quality. Traditional methods
(for example, linear and non-linear regression) do not fully satisfy the needs of researchers,
and artificial neural network (ANN) models come to the fore. ANNs are a family of models
whose architecture is based on biological neural networks [27,28]. Scientists consider ANNs
as a collection of artificial neurons that are systematized into one interconnected network.
The neural network can detect implicit relationships between inputs and outputs and is able
to predict the water quality index [29]. It is enough to train the network, and in the future,
it will be able to predict values based on previous experience. In addition, ANN models
are able to work effectively with a non-linear relationship between data and provide high
accuracy of forecasts [30]. Creating an ANN requires an appropriate network structure, a
number of inputs and outputs and the number of epochs used for simulation. The selection
of the optimal network structure occurs by using experience and trial and error. Choosing
the optimal network architecture, activation function, loss function and optimization
algorithm is an important step to approximate complex non-linear relationships [31,32].

Modeling artificial neural networks for water quality prediction has been repeatedly
used by scientists. Elkhatip and Komur [33] showed that the level of quality of forecasting
by an ANN model has a strong dependence on the amount of initial data. Chen et al. [34]
showed that ANN models demonstrate high potential for solving problems of the prediction
of the quality of groundwater and surface water. Palani et al. [35] analyzed Multilayer
Perceptron (MLP) and General Regression Neural Network (GRNN) models with various
inputs chosen by incremental constructive methods for prediction. The authors proved
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that a small dataset was a significant disadvantage for creating an optimal neural network.
Wang et al. used a three-level MLP framework with a Back-Propagation (BP) algorithm to
predict Chl-a levels. The dataset was divided into training (75%) and test (25%) samples.
The results showed that an ANN model can effectively predict the value of the resulting
indicator [36]. Miao et al. [37] used the Back-Propagation Neural Network (BPNN) to
predict COD and ammonia nitrogen levels. A random non-linear relationship between
input and output data was identified using the sigmoid function. Singh et al. [38] used
eleven variables for the output layer. The data were split into three parts: 60% training
set, 20% validation set and 20% testing set. As a result of using the neural network, the
predicted output values were close to the real data.

Chen et al. [39] scaled the datasets so that the values were between 0 and 1, which
allowed the use of a sigmoid transfer function. They applied constructive and clipping
stepwise methods to maximize model performance by constantly adjusting predictions.
Markus et al. [40] used trial and error to create an ANN architecture in their study. The result
showed that the use of an ANN can improve the accuracy of NO3 prediction compared to
previous studies. Al-Mahallawi [41] argued that ANNs can model the complex process of
water quality assessment because they provide a relationship between non-linear input and
output data. Ai and Kisi [42] tested various ANN models. The results of the comparison
showed that the Rotated Binary Neural Network (RBNN) model performs better than
MLP in predicting the level of dissolved oxygen. Baek et al. [43] used modular neural
networks (MNNs) that could effectively solve the problem of not sufficiently accurate
prediction. They used momentum gradient descent and the back-propagation of the
Levenberg–Marquardt error (TRAINLM). Chen and Liu [44] used a sigmoid function in the
hidden layer and a linear function in the output layer. As a result, it was proven that the
Adaptive Neuro-Fuzzy Inference System (ANFIS) and BPNN can predict DO with high
accuracy. Han et al. [45] used cross-correlation for BOD prediction and cross-information
for DO to select input data. Ta and Wei [46] applied the Adam optimization method which
could handle sparse gradients on noisy issues to train the Convolutional Neural Network
(CNN) parameters.

Thus, the novelty of this study is in the proposal to modify the WQI assessment
methodology, which is used in Ukraine. At the same time, the phased and joint use of
mathematical tools such as the fuzzy logic method and the ANN allow one to effectively
evaluate and predict WQI values, respectively.

This article had three aims:

(1) To propose a diversified approach to assessing the quality of surface water using the
number of analyzed chemical indicators depending on the degree of anthropogenic
impact on a river basin;

(2) To model WQI evaluation using fuzzy logic;
(3) To create an artificial neural network model for WQI prediction.

The object of the study was to monitor data on the quality of water in the Western Bug
River (Ukraine) for the period 2016–2021.

2. Study Area and Datasets

The assessment of the quality of surface waters is of great importance in the trans-
boundary movement of hazardous pollutants along rivers from one state to another. This
can contribute to negative changes in surface water and create threats to the environment
and people. The Western Bug River flows from Podolsk Upland within western Ukraine
(near Verkhobuzh, Lviv Oblast, Ukraine, coordinates 49◦52′0.5736′′ N 25◦5′48.609′′ E). At
first, it flows in a westerly direction, but soon turns north. It flows past Brest (Belorussia)
along the eastern outskirts of Lublin Upland (Poland) and further along Podlasie, flowing
near Warsaw into the Narew River, not far from its confluence with the Vistula. The length
of the river is 772 km, and the basin area is 73,470 km. The average slope is 0.8 m/km. The
height of the source is 335 m above sea level. The height of the mouth is 68 m above sea
level [47].
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The Western Bug River is an unregulated river with a natural flow, but over the past
50 years, in the upper part of the basin, a number of its tributaries have been partially
diverted, which has led to negative consequences in the ecological system. The surface
waters of the Western Bug River are used to meet the needs for general types of water
use, and are also used as a drinking water supply for settlements. The main sources of
pollution in the Western Bug and its tributary are: wastewater discharges into the river
without proper treatment; the unauthorized discharge of sewage; non-compliance with
the regime in the coastal strips and water protection zones; coast erosion. Consequently,
the anthropogenic factor has the greatest impact on the functioning of the river ecosystem,
disrupting the natural state of the watercourse and introducing unusual components that
degrade the water quality in the Western Bug River. The flow of pollutants with sewage
into the Western Bug complicates the process of water treatment and requires an increase
in energy costs for it. In this regard, establishing the causes, sources and extent of surface
water pollution in this river and its tributaries is important, since even discharges of water
treated according to the standard scheme into small rivers are accompanied by a sharp
deterioration in water quality, posing a threat to public health. Monitoring the ecological
state of surface waters of transboundary rivers is an important task in environmental
activities, the result of which depend on efforts and funds from neighboring states.

For this study, the initial data (chemical indicators) were provided by the State Agency
for Water Resources of Ukraine, which conducts systematic monitoring of the quality of
surface waters. Data were collected from eight observation posts located in the Western
Bug River (Figure 1). Observation posts were selected according to the criterion of the
maximum matching of chemical indicators.
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In Ukraine, for the integral assessment of surface water quality, several methods were
developed that take into account the mutual influence of certain indicators by calculating
water pollution indices. The methodology that is used most often is the “Methodology
for the ecological assessment of the quality of surface waters for the relevant categories”,
approved by the Ministry of Environmental Protection No. 89-M dated 4 June 2003 [48].
This methodology is based on the indicators of the chemical composition of water, and
the criterion for assessing the admissibility of the content of substances in water is the
multiplicity of exceeding the Maximum Contaminant Level (MCL) of harmful substances.
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The assessment of water quality is carried out by calculating the Pollution Index (PI)
(Formula (1)).

PI = ∑10
i=1(

1
Ni

∑Ni
n=1 xi), (1)

xin =

{
i f Ci > MCL then xi =

ci
MCLi

i f Ci ≤ MCL then xi = 1

where i—the index number, Ni—the total number of measurements of i indicator, xi—the
multiplicity of MPL excess for n measurement of i indicator, Ci—the actual concentration
of i substance in water, MCLi—the MPL i of a substance in water.

Depending on the results of PI value, surface waters are divided into five quality cate-
gories: <1.00—good; [1.01, 2.50]—fairly good; [2.51, 5.00]—satisfactory; [5.01, 10.00]—bad;
>10.00—very bad.

The output data were obtained from the website of the State Agency for Water Re-
sources of Ukraine, Monitoring data (for the area of the river basin or sub-basin). The
monitoring period was 1 January 2016–31 December 2021 to sub-basin–Vistula-Western
Bug [49]. The number of chemical indicators was nine, the number of records in the
database was 977. Table 1 shows an example of data from the Zabuzhye observation post
for 22 August 2021.

Table 1. An example of chemical parameters obtained at the Zabuzhye post.

Indicator Actual Value MCL

Biochemical oxygen consumption in 5 days (BOD5), mgO/dm3 2.3 3

Suspended substances (SS), mg/dm3 22 15

Dissolved oxygen (DO), mgO2/dm3 8.5 4

Sulfate ions (SO4
2−), mg/dm3 52 100

Chloride ions (Cl−), mg/dm3 19 300

Ammonium ions (NH3), mg/dm3 0.18 0.5

Nitrate ions (NO3
−), mg/dm3 0.11 40

Nitrite ions (NO2
−), mg/dm3 0.016 0.08

Phosphate ions (PO4
3−), mg/dm3 0.046 -

3. Methods
3.1. Fuzzy Logic Modeling

The next stage of the study was the modeling of the WQI assessment using fuzzy
logic. After analyzing the methodology of a number of previous studies in which the fuzzy
logic methodology was used to assess the water quality indicator, it can be argued that the
main difference was in the number of input variables used and, accordingly, the number
of rules created. For example, Raman et al. [50] used 6 variables and created 86 rules.
Lermontov et al. [22] used 9 variables and created 3125 rules. Semiromi et al. [51] used
6 variables and created 58 rules. Gharibi et al. [21] used 20 variables and created 550 rules.
Tiri et al. [52] used 10 variables; however, the number of rules was not specified.

All of these studies used the Mamdani-type fuzzy inference system. Fuzzy logic is a
process of decision making and the evaluation of situations by an expert in the form of an
algorithm consisting of three main stages: fuzzification, aggregation and defuzzification. In
this study, the fuzzy inference system was also implemented using Mamdani-type inference,
which is the most commonly used method and is based on a set of “If-Then” rules.

At the initial stage (the fuzzification stage), a set of clear input data was collected,
which, using fuzzy linguistic variables, fuzzy linguistic terms and membership functions,
was transformed into a fuzzy set.
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The characteristic of the fuzzy set is the membership function. In this study, a triangu-
lar membership function was used, which can be expressed as:

µ∆(x) =


0, x ≤ x1

x−x1
x2−x1

, x1 ≤ x ≤ x2
x3−x
x3−x2

, x2 ≤ x ≤ x3

0, x > x3

(2)

where x1, x2, x3 are numeric parameters that can take arbitrary values and are ordered by
the ratio x1 < x2 < x3.

Each of the four input variables corresponds to a triangular membership function with
three ranges of values that correspond to three levels: low, medium and high [53]. The
next stage (aggregation stage) includes a rule base and an inference algorithm based on the
membership function. The rule base contains logical causal relationships between input
and output variables. Fuzzy aggregation is central to fuzzy logic. This system connects
the basic concepts of fuzzy logic: membership functions, linguistic variables and fuzzy
logical operations [54]. At the defuzzification stage, based on the created rule base and
using membership functions, the resulting fuzzy inference was transformed into a crisp
inference [55].

3.2. ANN Modelling

The final stage of the study was to create an artificial neural network model for
WQI prediction. In this study, six ANN models were created, and their effectiveness was
analyzed. The preparation and normalization of input variables, as well as the modeling,
training and validation of the ANN, were carried out using the Keras library in Python
language. Visualization was implemented using the Matplotlib library in Python language.

The ANN architecture shown in Figure 2 has:

− The input layer, which consists of four variables;
− The first hidden layer, which has 64 neurons;
− The second hidden layer, which has 32 neurons;
− The output layer, which consists of a single output variable.
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The number of hidden layers and neurons in them was determined by trial and error.
ANN models were analyzed using three activation functions: sigmoid, softmax

and ReLU.
The sigmoid function is defined as [34]:

f (x) =
1

1 + e−x (3)

Using the sigmoid function in a network with a large number of neurons can lead
to the activation of almost all neurons. In turn, this will reduce the performance of the
model. In such a situation, the ReLU function has the advantage. Using ReLU allows one
to activate fewer neutrons, which improves the performance of the entire network. If the
argument x < 0, then the function f(x) is equal to 0; if x ≥ 0, then the function f(x) returns
the number itself:

f (x) =
{

0 f or x < 0
x f or x ≥ 0

(4)

Softmax is a multivariate generalization of the logistic function and converts a vector
of numbers into a vector of probabilities. Softmax is used to normalize the output by
converting it from weighted sum values to probabilities that amount to 1. The softmax
function transforms a vector z of dimension K into a vector σ of the same dimension, where
each coordinate σi of the resulting vector is represented by a number in the interval [0, 1]
and the total of the coordinates is 1.

The coordinates σi are calculated as follows:

σ(z)i =
ezi

∑K
k=1 ezk

. (5)

The next important step in ANN modeling is the selection of loss function. The loss
function calculates the difference between the actual and target values for each neuron,
thereby estimating the accuracy of the prediction. The network is trained until the global
minimum error is reached.

To calculate the loss function, the root mean square error (MSE) was used:

MSE =
1
n

n

∑
i=1

(
Y′i −Yi

)2. (6)

where Y′i is the output calculated by the model, and Yi is the target output.
Each dataset (difference between actual and target values) was squared, and then the

values were summed and divided by the total number of datasets. To eliminate overfitting,
the early stopping method was used [56]. Network training stopped when the monitored
metric (loss function) no longer showed improvement. The learning cycle checked to see if
the loss decreased at the end of each epoch. Various optimization algorithms were used
to minimize the loss function. We tested two methods: stochastic gradient descent (SGD)
and Adaptive Moment Estimation (Adam). The algorithm of SGD uses one training set at
each step and updates the weights of neural network [57]. Adam’s method is efficient for
significant calculations, requires little memory and is well suited for problems with large
amounts of data and parameters [58]. The quality metric mean absolute error (MAE) was
used to evaluate the performance of the models. The MAE indicator is determined using
Formula (7) [59]:

MAE =
1
n ∑n

i=1

∣∣Y′i −Yi
∣∣. (7)

A comparative analysis of the performance of six neural networks was carried out
using the mean absolute percentage error (MAPE) and the coefficient of determination (R2).
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The MAPE indicator is determined using Formula (8) [60]:

MAPE =
100%

n ∑n
i=1

∣∣∣∣Yi −Y′i
Yi

∣∣∣∣. (8)

R2 is a statistical measure used to predict future outcomes or test hypotheses based on
other related information. R2 is determined using Formula (9) [61]:

R2 = 1− ∑
(
Yi −Y′i

)2

∑
(
Yi −Yi

)2 . (9)

where Yi—the mean of the target output data.

4. Results and Discussion

In the first stage of the research, the collection, systematization and processing of the
available initial chemical information on the quality of water in the Western Bug River was
carried out.

As mentioned earlier, the methodology for assessing the quality of surface waters in
Ukraine is based on the use of nine chemical indicators (Table 1), and it does not differentiate
chemical indicators in terms of the level of negative impact. The analysis of these indicators
and the level of their influence on the functioning of flora and fauna showed that they can
be divided into three groups.

Group I (O2 and BOD5) indicators are the most important and require constant mon-
itoring. The concentration of soluble oxygen in water over 4 mgO2/dm3 can accelerate
the processes of the oxidation of organic substances to CO2 and H2O [62]. It should be
noted that with a decrease in the concentration of soluble oxygen, the pH value of water
may decrease while its acidity may increase. There are almost always heavy metals and
phosphates at the bottom of every body of water in immobile form. Increasing the acidity
of water can cause the dissolution of mineralized forms of heavy metals and phosphates,
thereby seriously deteriorating the condition of water.

Group II (NO3
−, NO2

−, NH4
+)—chemical indicators from this group may have a

lesser negative impact compared to group I if the O2 concentration is less than 4 mgO2/dm3.
The concentrations of NO2

− and NH3 indicators will not have high values since they will
be oxidized to NO3

−. In addition, this value of O2 concentration will make it possible to
maintain the pH of water within the range of a neutral and slightly alkaline environment,
and, consequently, the newly formed NO3

− will not reduce the pH of water. At these pH
values, the NH3 present will be less toxic than in an acidic environment [62].

Group III (SO4
2−, Cl, PO4

3−, SS)—chemical indicators from this group are present
in water due to the release of highly concentrated wastewater and mine water from the
mining industry. Therefore, when analyzing the anthropogenic impact on a water body
and the absence of such sources of pollution, monitoring for SO4

2− and Cl− can be omit-
ted [63,64]. The presence of phosphates in high concentrations in water is associated with
anthropogenic impacts [65]. Elevated phosphate concentrations cause the phenomenon of
eutrophication and, consequently, an increase in suspended solids. Thus, we can say that
the increase in suspended solids depends on the increase in phosphates in water.

In this regard, we propose to divide the water quality assessment process into two
stages (Figure 3).
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Figure 3. Step by step water quality assessment process.

Stage 1 consists of measuring the concentration of DO and BOD5. The level of
DO value determines which chemical indicators will be measured in stage 2. Thus, if
DO ≥ 4 mgO2/dm3, then the water has the highest quality level “good”. If the value of
DO concentration is in the range from 2 to 4 mgO2/dm3, it is necessary to additionally
measure the concentrations of NH3 and NO2

−. The water body will have anoxic living
conditions for flora and fauna. If the value of DO concentration < 2 mgO2/dm3, then it
is necessary to measure both BOD5 and all forms of nitrogen NH3, NO2, NO3. The water
body will have anaerobic living conditions for flora and fauna.

Four chemical indicators were used as input variables: BOD5, NH3, NO2 and NO3.
The fuzzy logic system was created and tested using the Fuzzy logic Toolbox Matlab
R2015b. The triangular membership function was used for the fuzzification of the input
variables (Figure 4). Each of the variables was described by three terms: low, medium
and high. The linguistic value of the BOD5 indicator is in the ranges: low—[−6, 0, 6];
medium—[1.5, 7.5, 13.5]; high—[9, 15, 21]; NH3 indicator is in the ranges: low—[−1.2, 0, 1.2];
medium—[0.3, 1.5, 2.7]; high—[1.8, 3, 4.2]; NO2 indicator is in the ranges: low—[−0.16, 0,
0.16]; medium—[0.04, 0.2, 0.36]; high—[0.2, 0.4, 0.56]; NO3 indicator is in the ranges: low—
[−32, 0, 32]; medium—[8, 40, 72]; high—[48, 80, 112]. To calculate the output value, the
centroid defuzzification method was used, in which the output value was determined
based on the center of the weight of the output fuzzy set.
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The inference system checks the values of each linguistic variable using fuzzy logic
rules and transforms the input set into an output linguistic variable. The next step in fuzzy
inference is to aggregate the output data based on the generated rules. Numerous rules are
simultaneously processed with their further aggregation into the final solution with fuzzy
inference. The set of rules in this study included 25 rules (Figure 5). This study used a
Mamdani-type inference based on the logical function “If-Then”, using the “And” function
as a connector. Thus, If the values of the input indicators corresponded to the level of
BOD5—“low” And NH3—“middle” And NO2—“middle” And NO3—“middle”, Then the
output value WQI was equal to “fairly bad”.
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An example of the rules used in this study is shown in Table 2. Thus, if the values of
the input indicators corresponded to the level of “low”, “middle”, “middle”, “middle”,
then the output value was equal to “fairly bad”.
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Table 2. Example of rules used in the study.

BOD5 NH3 NO2 NO3 WQI

low low middle middle fairly good

low low middle high satisfactory

low middle middle middle fairly bad

high high middle low bad

high middle middle high very bad

The linguistic output variable WQI could take one of five values: fairly good (FG),
satisfactory (S), fairly bad (FB), bad (B) or very bad (VB) (Figure 6). The linguistic value of
the BOD5 indicator was in the ranges: fairly good—[−1.5, 0, 1.5]; satisfactory—[1, 2.5, 4];
fairly bad—[3.5, 5, 6.5]; bad—[6, 7.5, 9]; very bad—[8.5, 10, 11.5].
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The final stage is defuzzification, when fuzzy linguistic output variables are converted
into exact numbers.

Figure 7 shows an example of a defuzzification step. For example, for input variables
(BOD5, NH3, NO2 and NO3), whose numerical values are (9; 2; 0.3; 60), respectively, the
value of the output variable WQI is 5.03.

The output variable WQI was calculated for 977 monitoring records.
After applying the created fuzzy logic model, a matrix was formed that contained

977 rows and 5 columns (4 columns of input variables (BOD5, NH3, NO2 and NO3), and
1 column (WQI) of output data). Before using the data in the ANN model, they were
normalized. The normalization of the input data meant the calculation of the arithmetic
mean and standard deviation. Further, the arithmetic mean was subtracted from the input
data, and the result was divided by the standard deviation. The database was split into
a training set (70%), a validation set (15%) and a testing set (15%). The next stage of this
research was the training, validation and testing of six ANN models. Table 3 shows the
performance of six ANN models. The models were tested at 20, 50 and 100 epochs. With
increasing epochs greater than 100, no improvement in model performance was observed.
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Table 3. Parameters of ANN models.

Parameters
Models

ANN 1 ANN 2 ANN 3 ANN 4 ANN 5 ANN 6

activator Sigmoid Sigmoid ReLU ReLU softmax softmax
optimizer Adam SGD Adam SGD Adam SGD

epochs 20 50 100 20 50 100 20 50 100 20 50 100 20 50 100 20 50 100

R2 0.872 0.919 0.944 0.830 0.896 0.937 0.396 0.553 0.348 0.355 0.302 0.398 0.898 0.933 0.964 0.833 0.911 0.916

MAPE, % 15.8 12.5 10.8 16.6 14.0 11.1 17.8 14.1 14.4 16.5 14.7 13.8 13.6 11.2 9.6 15.1 13.8 13.2

The comparison of six ANN models showed that the best performance results (lowest
average absolute error in percentage and the largest coefficient of determination) were in
ANN 5. In this network, the Adam loss function optimizer and the softmax activation
function were used. The optimal MAPE and R2 values were reached at the 100th epoch
and were equal to 9.6% and 0.964, respectively.

The following description of the results of the study refers to the ANN 5 network and
allows us to evaluate its adequacy and the possibility of using it to predict the output value
in new datasets. Figure 8 shows a comparison of the loss function for the training and
testing sets.

Figure 9 shows a comparison of the quality metric for training and testing sets.
Table 4 shows the loss function (MSE) and quality metric (MAE) values of the training

and validation dataset for the initial and final epochs.

Table 4. Loss function (MSE) and quality metric (MAE) values of the training and validation set.

Epochs
Training Set Validation Set

MSE MAE MSE MAE

1 7.2669 0.9170 5.3289 0.4579

2 3.9745 0.2824 3.0942 0.1824

3 2.4992 0.1372 2.2143 0.1204

4 1.8949 0.1013 1.8098 0.1000

5 1.5088 0.0817 1.4278 0.0788
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Table 4. Cont.

Epochs
Training Set Validation Set

MSE MAE MSE MAE

. . . . . . . . . . . . . . .

94 0.1087 0.0106 0.1494 0.0138

95 0.1088 0.0106 0.1512 0.0140

96 0.1086 0.0106 0.1501 0.0140

97 0.1075 0.0105 0.1545 0.0144

98 0.1083 0.0107 0.1530 0.0140

99 0.1064 0.0105 0.1541 0.0136

100 0.0961 0.0104 0.1548 0.0146
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For the training set, the value of the MSE loss function at the 1st epoch was 7.2669
and decreased to 0.0961 at the 100th epoch. The value of the MAE metric was 0.9170 and
decreased to 0.0104 at the 100th epoch. The lowest MSE and MAE values were recorded
at the 100th epoch. For the validation set, the value of the MSE loss function at the 1st
epoch was 5.3289 and decreased to 0.1548 at the 100th epoch. The value of the MAE metric
was equal to 0.4579 and decreased to 0.0146. The lowest values of MSE and MAE were
recorded at the 94th epoch—0.1494 and 0.0138, respectively. In general, it can be argued
that the values of the loss function (MSE) and the quality metric (MAE) of the training
and validation sets did not differ much, and the ANN model was able to predict the WQI
values with high accuracy.

Previously, in various scientific studies of water quality, scientists used the integration
of several methods. Elkiran et al. [66] and Naja et al. [67] showed the possibility of using
the ANFIS method to predict the quality of river water. The model proposed by the
authors was able to overcome the shortcomings of ANN models (overfitting and falling
into local minima) and systematized fuzzy logic with ANN, which allows problems that
have uncertainty to be solved.

Huang et al. [68] synthesized a model that combined neural networks, fuzzy logic,
wavelet transforms and GA and was capable of solving non-linear problems and coping
with data oscillation problems. Hu et al. [69] used a Long Short-Term Memory (LSTM)
neural network. The results showed a prediction accuracy of 98.97%, which confirms the
possibility of using the LSTM model for long-term prediction. Ding et al. [70] collected 23
water quality parameters and, using raw data compression methods, moved to 15 aggregate
indices. Then, a genetic algorithm approach was applied to optimize the BPNN parameters,
which made it possible to achieve an average forecast accuracy of 88%.

In general, it can be argued that the use of a combination of mathematical modeling
methods to assess water quality was successful. One of the main methods for analyzing
an ANN model is the comparison of various indicators (mean absolute percentage error,
MAPE, root mean square error, RMSE and root mean square error, MSE), as well as
coefficients of determination (R2) and regression (R).

Yesilnacar et al. [71] predicted groundwater nitrate concentrations using four ANN
inputs. The model tracked the experimental data very accurately, with an R value of 0.93.
Antanasijevic et al. [72] analyzed the performance of Regression Neural Network (RNN),
GRNN and MLP models for water quality prediction. The results showed that the error in
the RNN model on the test data was less than 10%, and the GRNN error was lower than
that of MLP. Alqahtani et al. [73] compared various machine learning models, such as gene
expression programming (GEP) and ANNs, with a random forest (RF) model, for river
water quality prediction. The neural network showed an R2 value of 0.88 and an MSE of
5.5% for the validation dataset. Akiner and Akiner [74] used an ANN model to estimate
the concentration of dissolved oxygen in water. The model performed better (R2 = 0.856
and MSE = 9.5%) than the traditional multiple linear regression analysis. Shah et al. [75]
analyzed the effectiveness of using GEP, ANN and linear regression model to predict the
level of dissolved solids and electrical conductivity. The outcomes were evaluated using
various performance measures, error levels and external criteria. The artificial neural
network showed an R2 value of 0.90 and an MSE of 13.1% for the test dataset. Kulisz
et al. [76] used neural network models to predict groundwater quality in industrial areas.
The best parameters were obtained for a network with five input neurons (conductivity,
pH and calcium, magnesium and sodium ions), in addition to five hidden layer neurons.
The authors summarized that ANNs demonstrated the ability to predict the water quality
index with the desired level of accuracy (RMSE = 65.13%; R2 = 0.9984).

Thus, comparing the MAPE and R2 indicators of the created ANN model (MAPE = 9.6%;
R2 = 0.964) with other models, we can state that, in general, the level of agreement between
the predicted and target data is satisfactory.
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5. Conclusions

The object of the study was to monitor data on the quality of water of the Western
Bug River (Ukraine) for the period 2016–2021. On the basis of the conducted studies, we
proposed a modification of the method for assessing the WQI, which is used in Ukraine. The
change consists of the division of chemical indicators into three groups, depending on the
level of negative impact on the quality of surface waters. Based on the grouping of chemical
indicators, it is proposed to use an algorithm for assessing water quality, which consists
of two stages. The next step of the study was the modeling of the WQI assessment using
fuzzy logic. The model used input variables (BOD5, NH3, NO2 and NO3) and calculated
the WQI as an output value. The final stage of the study was to create an artificial neural
network model for WQI prediction. We tested six ANN models using different activation
functions and loss function optimizers.

The network with the Adam loss function and the softmax activation function showed
the best performance results. The optimal values of MAPE and R2 were reached at the
100th epoch and were equal to 9.6% and 0.964, respectively. The comparison of the MAPE
and R2 indicators of the created ANN model with other models for assessing water quality
showed that the level of agreement between the forecast and target data was satisfactory.
Future studies will concern the interpretation of the proposed model in the assessment of
groundwater quality for the study area. This will create a database for the comparison of
groundwater and surface water quality in the same area.
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