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ABSTRACT 

For the solution of a set equation (linear or non-linear) with n 

number (n > 1) of variables we need at least n number of 

different relations (called as rank). Our present work is 

showing how the bio-inspired Bacteria Foraging Optimization 

Algorithm (BFOA), which is mimicry of the life-cycle of 

common type of bacteria like E.Coli, can be used to solve 

such system of equation with rank less than or equal to n. The 

BFOA simulates efficient nutrient foraging technique called 

as Chemotaxis to maximize the intake energy per unit time 

spend, the reproduction for evolution and the elimination-

dispersal for environmental changes like any kind of natural 

calamities that are observed in the Bacterial system. As a 

sample tests we have used a numbers of system of linear 

equations with rank equal to the number of variables and a 

system of non-linear equations used in the derivation process 

of 4th order Runge-Kutta method for the ordinary differential 

equation solution, and experimental results are showing the 

applicability of the BFOA and in case of Runge-Kutta method 

we present an alternative form of the recursive equation. 

General Terms 

Evolutionary computing, System of linear and non-linear 

equations, Runge-Kutta method, Taylor method, Simulation 

Algorithm. 
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1. INTRODUCTION 
In 2002, Prof. K.M. Passino [14] proposed a new nature 

inspired computation technique after mimicking the food 

foraging, evolutionary reproduction and environmental 

elimination-dispersal behaviors of common Escherichia Coli 

(E.Coli) bacteria named as called as Bacteria Foraging 

Optimization Algorithm (BFOA). This is a meta-heuristic 

type algorithm, because it provides a general framework and 

set of guidelines for creating solution of a problem rather than 

providing the detailed structure and analysis. To simulate the 

natural and evolutionary properties this algorithm adds 

randomness and iterations respectively. This statistical bio-

inspired optimization technique is a relatively new member in 

the swarm intelligence and researchers are considering this as 

new state-of-the art of the optimization paradigm [2]. A 

number of improvements and models have already been 

developed by the researchers and also a number of successful 

applications in the engineering and other fields are available 

in the literatures and also some theoretical analysis have been 

studied for the effectiveness of this optimization algorithm. 

As an evolutionary computational technique, BFOA is also an 

iteration based optimization tool. As initialization all artificial 

or simulated bacteria are placed at random positions in 

multidimensional search space of problem and then measure 

the costs or fitness of these solutions and using these fitness 

find the global optimum solution among these solution 

positions. After this implement certain algorithm dependent 

operations on these individual bacteria to generate newer 

solutions. These processes are iterated until predefined 

objective is attended or maximum number of iterations 

passed. 

Generally system of linear equations can be solved using 

several popular mathematical theory based techniques like 

exponential time complexity based Crammers rule, Matrix-

inversion, numerical computation based techniques with 

polynomial time complexity like Gauss-elimination, Gauss-

Jordon Elimination, LU Factorization and iteration based 

Gauss-Jacobi iteration, Gauss-Seidel iteration etc. methods 

[13][23][25]. In this work we have successfully used the 

BFOA to solve a system of linear equations, even for non-

converging conditions required for iteration based techniques; 

also for some cases we obtain multiple solutions which is not 

possible for these popular techniques. It has been successfully 

implemented for system of linear and non-linear equations 

with rank less than or equal to the number of unknowns, but 

these are not applicable to other popular methods. 

2. BFOA FUNDAMENTALS 
The BFOA is a non-gradient, bio-inspired self-organizing 

natural and newly developed efficient optimization technique. 

In this technique the foraging, evolutionary reproduction and 

natural birth-death based elimination and dispersion strategies 

of common E.Coli bacteria survives in the complex human 

intestine system is mimicked. In complex and impossible 

problem domain, BFOA searches optimum living fuels i.e. 

energy intake per unit time, which is considered as the fitness, 

and it is collected by the bacterium using foraging behaves 

called as chemotaxis, and due to limited life span they survive 

through evolution based reproduction by the fittest bacterium 

and to provide variation in the bacteria society and hence to 

globalize the search space to avoid trapping into local and 

premature solution the natural calamities dependent birth-

death based elimination-dispersal technique is used. Also, 

inter-communication based social swarming is considered for 

faster solution searches. 

2.1 Chemotaxis 
The random moving patterns that the bacteria generate in the 

presence of chemical attractants and repellants are called 

chemotaxis. For E.Coli, this process was simulated by two 

different moving modes ‘tumble ’and ‘run or move ’, and 

bacterium alternates between these modes until divided into 
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two. In tumble bacterium randomly searches a direction of 

moving and in run it moves a number of small fixed length 

steps  𝐶 𝑖   in the selected tumble direction  ∅ 𝑖   or better 

nutrients collection. Mathematically this can be expressed as  

𝜃𝑖 𝑗 + 1, 𝑘, 𝑙 = 𝜃𝑖 𝑗, 𝑘, 𝑙 + 𝐶 𝑖 ∅ 𝑖 , 

∀𝑖 = 1,2,… , 𝑆 

where S is size of the colony 𝑗, 𝑘 and 𝑙 are respectively the 

Chemotaxis, reproduction and elimination-dispersal step 

indices respectively and 

 𝜃𝑖 𝑗 + 1, 𝑘, 𝑙  𝑜𝑟 𝜃𝑖 𝑗, 𝑘, 𝑙 ∈ 𝐷1 × 𝐷2 × …× 𝐷𝑁   

(𝑖𝑛 𝑠𝑕𝑜𝑟𝑡 𝑖𝑡 𝑖𝑠 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 𝜃𝑖)  

be position or solution vector for 𝑖𝑡𝑕  bacterium, 

(𝐷𝑖
′𝑠  𝑎𝑟𝑒 𝑑𝑜𝑚𝑎𝑖𝑛 𝑜𝑓 ℝ𝑁𝑆𝑒𝑎𝑟𝑐𝑕 𝑆𝑝𝑎𝑐𝑒).  

If 𝐽(𝜃𝑖(𝑗, 𝑘, 𝑙)) be the cost or fitness function then bacterium 

uses run if 𝐽(𝜃𝑖(𝑗 + 1, 𝑘, 𝑙)) is better than 𝐽(𝜃𝑖(𝑗, 𝑘, 𝑙)), 

otherwise it enters into the next tumbling step.  

For tumble  

∅𝑖 𝑚 =
∆(𝑚)

 ∆𝑇 𝑚 ∆(𝑚)
, ∀𝑚 = 1,2,… , 𝑁 

∆(𝑚) is a random number in [0,1] 

and  ∅ 𝑖 = {∅𝑖(𝑚)}𝑚=1
𝑁 . 

2.2 Reproduction 
As bacteria are not immortal and like to grow population for 

better social structure they uses rule of evolution and when 

appropriate conditions appear then individual will reproduce 

themselves after certain number of chemotaxis steps. For this 

purpose health of the bacteria, which is sum of fitness in each 

chemotaxis including initialization step is considered 

𝐽𝑕𝑒𝑎𝑙𝑡 𝑕
𝑖 =  𝐽(𝜃𝑖 𝑗, 𝑘, 𝑙 )

𝑁𝑐
𝑗=1  and to keep constant population 

bacterium with better health capture the position of bacterium 

with poor heath, for this purpose individual reproduce one of 

its identical clone. 

2.3 Elimination-Dispersal 
In the evolutionary process, elimination and dispersal events 

occur such that bacteria in a region are eliminated or a group 

is dispersed from current location and may reappear in the 

other regions due to environmental changes or some natural 

calamities. They have the effect of possibly destroying 

chemotactic progresses, but they also have the effect of 

assisting the chemotaxis, since dispersal may place bacteria 

near good food sources. From evolutionary point of view, 

elimination and dispersal was used to guarantee diversity of 

the individuals and to strengthen the ability of global 

optimization. In BFOA, bacteria are eliminated with a 

probability 𝑃𝑒𝑑 , and to keep population size constant, if a 

bacterium is eliminated, simply disperse one new bacterium to 

a random location of the search space. 

2.4 Swarming 
Prof. Passino had experimented for an interesting group 

behavior of the E.Coli bacteria and then he was successful to 

explain this swarming behavior using the following 

mathematical model. He observed that when a group of E.Coli 

bacteria is placed in the center of a semisolid agar with a 

single nutrient chemo-effecter, they move out from the center 

in a traveling ring of cells by moving up the nutrient gradient 

created by consumption of the nutrient by the group, and this 

cell-to-cell signaling attractant and a replant based network 

group can be modeled: 

𝐽𝑐𝑐
𝑖  𝜃𝑏𝑒𝑠𝑡

𝑖  𝑗, 𝑘, 𝑙 , 𝜃𝑏𝑒𝑠𝑡  = 𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑖) 

=  (−𝑑𝑎𝑡𝑡𝑟𝑎𝑐𝑡

𝑆

𝑖=1

𝑒−𝑤𝑎𝑡𝑡𝑟𝑎𝑐𝑡  (𝜃𝑏𝑒𝑠𝑡
′𝑗

−𝜃𝑏𝑒𝑠𝑡
𝑖𝑗

)2𝑁
𝑗=1 ) + 

 (−𝑕𝑟𝑒𝑝𝑒𝑙𝑙𝑎𝑛𝑡

𝑆

𝑖=1

𝑒−𝑤𝑟𝑒𝑝𝑒𝑙𝑙𝑎𝑛𝑡  (𝜃𝑏𝑒𝑠𝑡
′𝑗

−𝜃𝑏𝑒𝑠𝑡
𝑖𝑗

)2𝑁
𝑗=1 ) 

Where𝐽𝑐𝑐
𝑖  𝜃𝑏𝑒𝑠𝑡

𝑖 , 𝜃𝑏𝑒𝑠𝑡  is the cell-to-cell cost or penalty 

(𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑖)) for 𝑖𝑡𝑕  bacteria in the colony,  𝜃𝑏𝑒𝑠𝑡
′𝑗

is the 

𝑗𝑡𝑕component of the current 𝑁-dimensional global best 

solution vector 𝜃𝑏𝑒𝑠𝑡
′ and 𝜃𝑏𝑒𝑠𝑡

𝑖𝑗
 is the 𝑗𝑡𝑕  component of 𝑁-

dimensional best solution vector attended by the 𝑖𝑡𝑕  bacteria 

in the colony. Other parameters are attractant and repellant 

dependent constant, 𝑑𝑎𝑡𝑡𝑟𝑎𝑐𝑡  - is the depth of the attractant 

released by the bacterial cell and 𝑤𝑎𝑡𝑡𝑟𝑎𝑐𝑡  is the measure of 

the width of the attract signal. Generally 𝑕𝑟𝑒𝑝𝑒𝑙𝑙𝑎𝑛𝑡  is the 

height of the repellant effect and 𝑤𝑟𝑒𝑝𝑒𝑙𝑙𝑎𝑛𝑡  is a measure of 

the width of the repellant. 

3. BFOA Algorithm 
Following pseudo code structure is representing the step-by-

step details of the simulation of BFOA used in our study. 

Algorithm BFOASimulation  

(* 𝑆-Size of colony or population, 𝑁𝑐  - Number of 

Chemotaxis Steps, 𝑁𝑠-Number of Swimming Steps, 𝑁𝑟𝑒 - 

Number of reproduction steps, 𝑁𝑒𝑑 -Number of elimination 

and dispersal steps, 𝑃𝑒𝑑 -Probability of elimination and 

dispersal, 𝐶𝑖- Constant step size for Chemotaxis, 𝑑𝑎𝑡𝑡𝑟𝑎𝑐𝑡  & 

𝑤𝑎𝑡𝑡𝑟𝑎𝑐𝑡 - Chemotactic Attraction parameters for swarming, 

𝑕𝑟𝑒𝑝𝑒𝑙𝑙𝑎𝑛𝑡  & 𝑤𝑟𝑒𝑝𝑒𝑙𝑙𝑎𝑛𝑡  - Chemotactic Repulsion parameters 

for swarming, 𝑁-Dimension of solution vector or problem or 

number of optimizing parameters, 𝑕𝑖  - is the health of the 𝑖𝑡𝑕  

bacterium, 𝐽 𝜃  - is the objective or fitness function*) 

Step 1: [Initialization of Simulation Parameters] 

1.1 𝑟𝑒𝑎𝑑 𝑆, 𝑁𝑐 , 𝑁𝑠 , 𝑁𝑟𝑒 , 𝑁𝑒𝑑 , 𝑃𝑒𝑑 , 𝐶𝑖 , 𝑑𝑎𝑡𝑡𝑟𝑎𝑐𝑡 , 
𝑤𝑎𝑡𝑡𝑟𝑎𝑐𝑡 , 𝑕𝑟𝑒𝑝𝑒𝑙𝑙𝑎𝑛𝑡 , 𝑤𝑟𝑒𝑝𝑒𝑙𝑙𝑎𝑛𝑡  

1.2 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑆 𝑑𝑜  
begin 

Randomly generate an N-dimensional position 

vector 𝜃𝑖 ∈ 𝐷1 × 𝐷2 × …× 𝐷𝑁 . 
Calculate fitness value:𝐽𝑖 = 𝐽(𝜃𝑖). 

Initialize the 𝑖𝑡𝑕  bacterium with 𝐽𝑏𝑒𝑠𝑡
𝑖 = 𝐽𝑖 ,  

 𝜃𝑏𝑒𝑠𝑡
𝑖 = 𝜃𝑖  and 𝑕𝑖 = 0 

end 

1.3 Find the initial global best solution vector 𝜃𝑏𝑒𝑠𝑡 = 𝜃𝑖  and 

fitness 𝐽𝑏𝑒𝑠𝑡 = 𝐽𝑖from current bacteria colony 

1.4 Initialize Elimination-dispersal loop index 𝑙 = 1  

Step 2: [Perform all elimination-dispersals] 

𝑟𝑒𝑝𝑒𝑎𝑡 𝑆𝑡𝑒𝑝 3 𝑡𝑕𝑟𝑢 𝑆𝑡𝑒𝑝 10 𝑤𝑕𝑖𝑙𝑒 𝑙 ≤ 𝑁𝑒𝑑𝑑𝑜 

Step 3: [Perform all reproductions] 

𝑘 = 1 

𝑟𝑒𝑝𝑒𝑎𝑡 𝑆𝑡𝑒𝑝 4 𝑡𝑕𝑟𝑢 𝑆𝑡𝑒𝑝 8 𝑤𝑕𝑖𝑙𝑒 𝑘 ≤ 𝑁𝑟𝑒  𝑑𝑜 

Step 4: [Perform all chemotaxis steps] 

𝑗 = 1 

𝑟𝑒𝑝𝑒𝑎𝑡 𝑆𝑡𝑒𝑝 5 𝑡𝑕𝑟𝑢 𝑆𝑡𝑒𝑝 7 𝑤𝑕𝑖𝑙𝑒 𝑗 ≤ 𝑁𝑐  𝑑𝑜 

Step 5: [For each bacterium in the colony do the 

chemotaxis] 

𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑆 𝑑𝑜 

begin 



International Journal of Computer Applications (0975 – 8887)  

Volume 72– No.5, May 2013 

3 

5.1 Tumble 

Generate a random number ∆(𝑚) in [0,1] 

∅𝑖 𝑚 =
∆(𝑚)

 ∆𝑇 𝑚 ∆(𝑚)
, ∀𝑚 = 1,2,… , 𝑁 

∅ 𝑖 = {∅𝑖(𝑚)}𝑚=1
𝑁  

5.2 Move 

𝜃𝑖 𝑗 + 1, 𝑘, 𝑙 = 𝜃𝑖 𝑗, 𝑘, 𝑙 + 𝐶 𝑖 ∅(𝑖) 

5.3 Compute fitness 

𝐽𝑖 = 𝐽(𝜃𝑖 𝑗 + 1, 𝑘, 𝑙 ) 

if(𝐽𝑖  is better than 𝐽𝑏𝑒𝑠𝑡 ) then  

set 𝐽𝑏𝑒𝑠𝑡 = 𝐽𝑖  

  𝜃𝑏𝑒𝑠𝑡 = 𝜃𝑖(𝑗 + 1, 𝑘, 𝑙) 
endif 

if(𝐽𝑖  is better than 𝐽𝑏𝑒𝑠𝑡
𝑖  then  

set 𝐽𝑏𝑒𝑠𝑡
𝑖 = 𝐽𝑖  

    𝜃𝑏𝑒𝑠𝑡
𝑖 = 𝜃𝑖(𝑗 + 1, 𝑘, 𝑙) 

 𝑕𝑖 = 𝑕𝑖 + 𝐽𝑖  
endif 

5.4 Swim 

𝑝 = 0 

𝑤𝑕𝑖𝑙𝑒  𝑝 ≤ 𝑁𝑠⋀ 𝐽
𝑖  𝑖𝑠 𝑏𝑒𝑡𝑡𝑒𝑟 𝑡𝑕𝑎𝑛 𝐽𝑏𝑒𝑠𝑡

𝑖   𝑑𝑜 

begin 

𝜃𝑖 𝑗 + 1, 𝑘, 𝑙 = 𝜃𝑖 𝑗, 𝑘, 𝑙 + 𝐶 𝑖 ∅(𝑖) 

 𝐽𝑖 = 𝐽(𝜃𝑖 𝑗 + 1, 𝑘, 𝑙 ) 

if(𝐽𝑖  is better than 𝐽𝑏𝑒𝑠𝑡 ) then  

set 𝐽𝑏𝑒𝑠𝑡 = 𝐽𝑖  

  𝜃𝑏𝑒𝑠𝑡 = 𝜃𝑖(𝑗 + 1, 𝑘, 𝑙) 
endif 

if(𝐽𝑖  is better than 𝐽𝑏𝑒𝑠𝑡
𝑖  then  

set 𝐽𝑏𝑒𝑠𝑡
𝑖 = 𝐽𝑖  

    𝜃𝑏𝑒𝑠𝑡
𝑖 = 𝜃𝑖(𝑗 + 1, 𝑘, 𝑙) 

 𝑕𝑖 = 𝑕𝑖 + 𝐽𝑖 , 𝑝 = 𝑝 + 1 
endif 

end 

 

Step 6: [Update the chemotaxis step counter] 

𝑗 = 𝑗 + 1 

Step 7: [Reproduction] 

7.1 Arrange bacteria in descending order of health 

𝑆𝑜𝑟𝑡(𝐶𝑜𝑙𝑜𝑛𝑦) 

7.2 Reproduce 

Replace all 𝑆/2 number of relatively unhealthy 

bacteria appearing at the end half of the sorted list 

by the copy of bacteria with better health appearing 

towards the beginning of the list. 

Step 8: [Update reproduction Counter] 

𝑘 = 𝑘 + 1 

Step 9: [Perform eliminate and dispersal of bacteria 

colony] 

For each bacterium 𝑖 = 1 𝑡𝑜 𝑆 in the colony with 

probability𝑃𝑒𝑑 , eliminate and disperse. For this purpose 

generate a random probability (𝑟) and check whether it is 

greater or equal to the given elimination probability 𝑃𝑒𝑑  

or not, if successful then eliminate the bacterium and 

place it at a random position in the search space 𝜃𝑖 ∈
𝐷1 × 𝐷2 × …× 𝐷𝑁 , calculate fitness value 𝐽𝑖 = 𝐽(𝜃𝑖) and 

then initialize the 𝑖𝑡𝑕  bacterium with 𝐽𝑏𝑒𝑠𝑡
𝑖 = 𝐽𝑖 ,  𝜃𝑏𝑒𝑠𝑡

𝑖 =

𝜃𝑖  and 𝑕𝑖 = 0, if lucky also update the global best 

𝜃𝑏𝑒𝑠𝑡 = 𝜃𝑖  and fitness 𝐽𝑏𝑒𝑠𝑡 = 𝐽𝑖 . 
Step 10: [Update eliminate – dispersal counter] 

𝑙 = 𝑙 + 1 

Step 11: [Finished] 

Return solution vector 𝜃𝑏𝑒𝑠𝑡 and fitness𝐽𝑏𝑒𝑠𝑡 . 

4. SYSTEM OF EQUATIONS WITH 

BFOA COST FUNCTION DESIGN 
As application of BFOA we have studied solution of different 

system of linear and non-linear equations. In our study we 

have used two cases – first case rank is equal to the number of 

unknowns or variables and for second case rank is less than 

the number unknowns. 

4.1 System of Linear Equations with Rank 

Equal to Number of Unknowns 
Systems of Linear Equations are used to model different 

system behaviors in the field of Science, Social Science and 

Engineering applications. Finding solution to these set of 

equations through the evolutionary process of bio-mimic 

BFOA is a new and developing research area of interest. It is 

a set of non-homogeneous equations, and to obtain a solution, 

the system should be non-singular and have a point in space 

where it coincides. 

A system of linear equations has the form: 

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯+ 𝑎1𝑁𝑥𝑁 = 𝑑1  

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯+ 𝑎2𝑁𝑥𝑁 = 𝑑2 

   … … 

𝑎𝑁1𝑥1 + 𝑎𝑁2𝑥2 + ⋯+ 𝑎𝑁𝑁𝑥𝑁 = 𝑑𝑁  

Subject to 𝑥𝑖
𝐿 ≤ 𝐷𝑖 ≤ 𝑥𝑖

𝑈  𝑜𝑟 𝑥𝑖
𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑈 , ∀𝑖 = 1,2,… , 𝑁, 

where 𝑥𝑖
𝐿 and 𝑥𝑖

𝑈  are lower and upper limit for 𝑖𝑡𝑕component 

of the 𝑁-dimensional solution vector  

𝑋 =  𝑥1 , 𝑥2, … , 𝑥𝑁 ∈ 𝐷1 × 𝐷2 × …× 𝐷𝑁. 

This set of equations can be represented in matrix-vector form 

as 𝐴𝑋 = 𝑏, where 𝐴 is the coefficient matrix with determinant 

value non-zero and 𝑋 is the solution vector and 𝑏 is the 

constant vector and can be solved using different popular 

matrix methods, numeric algorithm methods and iterative 

methods available in [13][23][25]. 

This system of linear equations can be solved using BFOA, if 

we can formulate a proper objective or fitness function, and a 

trial solution will be correct if it can satisfy this objective 

function.  In our method we have considered sum of square 

errors as the objective or fitness or cost function and this is 

defined as follow: 

 𝑋 =  𝑥1 , 𝑥2, … , 𝑥𝑁   - will be a solution for the above system 

of linear equations if we have  

  𝑓𝑖 𝑥1 , 𝑥2, … , 𝑥𝑁 − 𝑐𝑖  = 0𝑁
𝑖=1 ,  

where 𝑓𝑖 𝑥1, 𝑥2 , … , 𝑥𝑁 − 𝑐𝑖 = 𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 + ⋯+ 𝑎𝑖𝑁𝑥𝑁 −
𝑑𝑖 = 𝛿𝑖  (𝑒𝑟𝑟𝑜𝑟), ∀𝑖 = 1,2,… , 𝑁 

So the objective function is: 

minimize 𝐽 𝜃 𝑗, 𝑘, 𝑙  =  𝛿𝑖
2𝑁

𝑖=1  ,  

where 𝛿𝑖
2 is the square error and 𝑋 =  𝑥1 , 𝑥2 , … , 𝑥𝑁 =

𝜃(𝑗, 𝑘, 𝑙) is the solution or position vector of the bacteria. 

4.2 System of Non-Linear Equations with 

Rank Less Than Number of Unknowns 
Derivation of Runge-Kutta Method: To study the dynamic 

behavior of any system the gradient or variation relations of 

the system are expressed as a set of differential equation of 

equal or different orders. Most of the simple form is the first 
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order form called as Ordinary Differential Equations (ODE). 

The solutions of these ODEs describe the functional behavior 

of the system and for this purpose different calculus oriented 

methods like integrating factor etc are used, and to find the 

numerical values a number of numerical optimization 

techniques like Euler’s method, Taylor’s series method, 

Runge-Kutta method etc used. The Runge-Kutta method is 

very much efficient, as it avoids all kind of differentiation 

required in Taylor Series method. In the derivation of the RK4 

method we get eleven independent algebraic relations for 

thirteen different coefficients and these are forming a system 

of equations with rank less than number unknowns. To find 

the value of unknowns Runge-Kutta had assigned fixed values 

for two such variables and then solve the system of equation 

using numeric algorithm [13], finally we got the most popular 

recursive equation for evaluation. 

ODE is of the form: 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) 

with initial condition 𝑥 = 𝑥0, 𝑦 = 𝑦0 the solution will be of 

the form 𝑦 = 𝑔(𝑥). Different complex forms of 𝑓(𝑥, 𝑦) are 

possible and to get 𝑔(𝑥) different techniques are used and for 

numeric solution different approximate numeric algorithms 

are used. Most popular and accurate numeric method is 

Runge-Kutta method. This method is derived from Taylor 

Series method after approximating it upto 4th order term in the 

series. 

Runge-Kutta assumed the recursive solution of the following 

form: 

𝑦𝑘+1 = 𝑦𝑘 + 𝑤1𝑘1 + 𝑤2𝑘2 + 𝑤3𝑘3 + 𝑤4𝑘4  

where  

𝑘1 = 𝑕𝑓(𝑥𝑘 , 𝑦𝑘)  

𝑘2 = 𝑕𝑓(𝑥𝑘 + 𝑎1𝑕, 𝑦𝑘 + 𝑏1𝑘1)  

𝑘3 = 𝑕𝑓(𝑥𝑘 + 𝑎2𝑕, 𝑦𝑘 + 𝑏2𝑘1 + 𝑏3𝑘2)  

𝑘4 = 𝑕𝑓(𝑥𝑘 + 𝑎3𝑕, 𝑦𝑘 + 𝑏4𝑘1 + 𝑏5𝑘2 + 𝑏6𝑘3). 

After coefficient comparison with the Taylor’s series method 

following equation are generated to determine the values of 

𝑤𝑖 ′𝑠 and 𝑘𝑖 ′𝑠. 

𝑏1 = 𝑎1 

𝑏2 + 𝑏3 = 𝑎2 

𝑏4 + 𝑏5 + 𝑏6 = 𝑎3 

𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 = 1 

𝑤2𝑎1 + 𝑤3𝑎2 + 𝑤4𝑎3 =
1

2
 

𝑤2𝑎1
2 + 𝑤3𝑎2

2 + 𝑤4𝑎3
2 =

1

3
 

𝑤2𝑎1
3 + 𝑤3𝑎2

3 + 𝑤4𝑎3
3 =

1

4
 

𝑤3𝑎1𝑏3 + 𝑤4(𝑎1𝑏5 + 𝑎2𝑏6) =
1

6
 

𝑤3𝑎1𝑎2𝑏3 + 𝑤4𝑎3(𝑎1𝑏5 + 𝑎2𝑏6) =
1

8
 

𝑤3𝑎1
2𝑏3 + 𝑤4(𝑎1

2𝑏5 + 𝑎2
2𝑏6) =

1

12
 

𝑤4𝑎1𝑏3𝑏6 =
1

24
 

 

For this system of equations we have thirteen unknowns and 

eleven relations, so the rank is less than number of unknowns. 

Runga-Kutta equalized these after assuming 𝑎1 =
1

2
, 𝑏1 = 0, 

then solved these equations and finally derived the recursive 

relation: 

𝑦𝑘+1 = 𝑦𝑘 + 𝑕(
𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4

6
) 

with the solutions 

 𝑎2 =
1

2
, 𝑎3 = 1, 𝑏2 = 𝑏3 =

1

2
, 𝑏4 = 𝑏5 = 0, 𝑏6 = 1,𝑤1 =

𝑤4 =
1

6
, 𝑤2 = 𝑤3 =

1

3
 

For BOFA technique we use these thirteen constants as 

𝑁 = 13 -dimensional position vector: 

 𝜃 = (𝑎1, 𝑎2 , 𝑎3 , 𝑏1, 𝑏2 , … , 𝑏6 , 𝑤1, 𝑤2 , 𝑤3, 𝑤4)  

and difference of left hand sides with the right hand sides of 

these equations for certain position vector is the respective 

error 𝛿𝑖  and sum of these square error as objective function: 

minimize 𝐽 𝜃 𝑗, 𝑘, 𝑙  =  𝛿𝑖
2𝑁

𝑖=1  , 

5. RELATED WORKS 

5.1 The Analysis of BFOA  
Most important step in BFOA is chemotaxis. In 2009, S. 

Dasgupta and S. Das et al. [19] made an analysis of the 

chemotaxis operation in BOFA. The analysis undertaken 

provides important insights into the search mechanism of 

BOFA.  

The analysis points out that the chemotaxis usually results in 

sustained oscillation, especially on flat fitness landscapes, 

when a bacterium cell is close to the optima. Therefore, it is 

necessary to bound on the chemotactic step-height parameter 

that avoids limit cycles and guarantees convergence of the 

bacterial dynamics into an optimum. Two simple schemes for 

adapting the chemotactic step-height have been subsequently 

proposed. 

In the same year, A. Abraham and A. Biswas [1] provided a 

simple mathematical analysis of the reproduction step used in 

BFOA. The analysis focuses on the reproduction in a simple 

two-bacterial system working on a one dimensional fitness 

landscape and is showing that the reproduction event 

contributes to the quick convergence of the bacterial 

population near optima. 

In 2009, S.Das and S.Dasgupta et al. [20] provided an analysis 

on the stability of chemotactic dynamics using the concept of 

Lyapunov stability theorems and show that the bacterial 

dynamics exhibits an asymptotically stable behavior with 

respect to the single optimum for certain constraint on step 

size. 

5.2 Improved BFOAs 
BFOA use function to model the cell-to-cell signaling via an 

attractant and a repellant. However, its value does not depend 

on the nutrient concentration at position 𝜃. In 2002, Y. Liu 

and K. M. Passino [28] used a new function to represent the 

environment-dependent cell-to-cell signaling –  

𝐽𝑎𝑟  𝜃
𝑖 𝑗, 𝑘, 𝑙  = 𝑒

(𝑀−𝐽 𝜃 𝑖 𝑗 ,𝑘,𝑙  )𝐽𝑐𝑐  𝜃
𝑖 𝑗 ,𝑘,𝑙  )

 

where 𝑀 is a tunable parameter. Then, for swarming, we need 

to minimize the new objective or cost function will be: 

𝐽  𝜃𝑖 𝑗, 𝑘, 𝑙  + 𝐽𝑎𝑟 (𝜃𝑖 𝑗, 𝑘, 𝑙 ). 

By performing social foraging with chemical-attractant-

induced swarming, E. Coli have better chance in locating the 

optimal point in a noisy environment.  
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H. Chen et al. [6]-[10] have introduced the idea of exploration 

and exploitation for they have used adaptive strategy called as 

the producer-scrounger foraging which dynamically 

determine the chemotactic step size for the whole bacteria 

colony during a run and self-adaptive foraging for single 

bacteria for area concentrated search.  

Tripathy et al. [17] proposed an improved BFOA using two 

approaches (i) in order to speed up the convergence, the 

average value is replaced by the minimum value of all the 

chemotactic cost functions for deciding the bacterium health; 

(ii) for swarming, the distances of all the bacteria in a new 

chemotactic step are evaluated from globally optimum 

bacterium to these points and not the distance of each 

bacterium from the rest of the others.  

Considering BFOA lacks in adaptation according to the 

operating condition, S. Mishra [21] presented a new algorithm 

Fuzzy Bacterial Foraging (FBF). FBF uses variable run length 

in the chemotaxis step in place of the original constant 

through a Takagi-Sugeno type fuzzy inference scheme. The 

results are showing that FBF has superior performance than 

GA when applied to the harmonic estimation problem.  

W. J. Tang et al. [27] proposed a dynamic bacterial foraging 

algorithm (DBFA) which aims at optimization in dynamic 

environments. The DBFA adopts a selection scheme which 

enables the bacteria to flexibly adapt to the changing 

environment. Compared with BFA, DBFA is able to provide 

satisfactory performance, and can react to most of the 

environmental changes in time.  

W. Korani [26], H. Shen et al.[11] and S. S. Patnaik et al.[24] 

proposed an improved BFOA using hybridization with PSO, 

namely BF-PSO. The BF-PSO combines both algorithm BF 

and PSO. The aims are to make use of PSO ability to 

exchange social information and BF ability in finding a new 

solution by elimination and dispersal. In BFOA, a unit length 

direction of tumble behavior is randomly generated and this 

random direction may lead to delay in reaching the global 

solution, for this reason idea of PSO for global best position is 

used to find the best position of bacteria. More hybridization 

is observed in GA-BF and these are proposed by D. H. Kim 

and A. Abraham et al. [5] and its application by N. Kushwaha 

et al.[18].  

H. Chen et al. [8] proposed a multi-colony BFOA called as 

MC-BFO, which integrates the cell to-cell communication 

strategies of multi-colony bacterial community with the 

chemotaxis behavior of single cell and for this purpose it 

combines two algorithms BFOA and the Bacterial 

Chemotaxis Algorithm (BCA), which are both inspired by the 

bacterial chemotactic behavior of E. Coli.  

M. S. Li et al. [16] have shown how BFOA requires less time 

in the more realistic model of bacterial foraging in variable 

population environment and this idea breaks the fixed 

population concept of most evolutionary algorithms (EA). 

5.3 Significant Applications of BFOA 
BFOA was used for solving highly non-linear and non-convex 

problems like optimal current harmonic mitigation by non-

linear Active Power Filter (APF), power distribution of RFID 

based sensor network using MCBFOA [8] and Adaptive 

BFOA [10]. Modified BFOA used for active filter design by 

S. Mishra et al.[22] and L. Ulagammai et al. [15] used BFOA 

as learning method for Wavelet-based Artificial Neural 

Network (WANN) and identify the inherent non-linear 

characteristics of power system loads. BFOA can be used 

general optimization problems like Job Shop Scheduling 

problem [3]. 

5.4 Solving System of Equations using 

Evolutionary Computing Techniques 
We took inspiration from similar approaches undertaken using 

Genetic Algorithm in the year 2011 by Ikotun Abiodun M et 

al. [12], they have used squared multiple correlation 

coefficient as fitness function for the simultaneous solution of 

a system of linear equations with rank equal to the number of 

unknowns. 

6. SIMULATION AND RESULTS 
For simulation we use following parameter values in most of 

the simulations: 

𝑆 = 20, 𝑁𝑐 = 200,  𝑁𝑠 = 5, 𝑁𝑟𝑒 = 8,  𝑁𝑒𝑑 = 4,𝑃𝑒𝑑 =
0.25, 𝐶𝑖 = 0.01, 𝑑𝑎𝑡𝑡𝑟𝑎𝑐𝑡 = 0.1, 𝑤𝑎𝑡𝑡𝑟𝑎𝑐𝑡 = 0.2, 𝑕𝑟𝑒𝑝𝑒𝑙𝑙𝑎𝑛𝑡 =

0.1,𝑤𝑟𝑒𝑝𝑒𝑙𝑙𝑎𝑛𝑡 =10 

Table I. Results of Linear Equation Solution 

Set BFOA Gen GE 
GS 

𝑥 + 2𝑦 + 3𝑧 = 14 
𝑥 + 𝑦 + 𝑧 = 6 

3𝑥 + 2𝑦 + 𝑧 = 10 

2.6667 

-1.3333 

4.6667 

& 

4.1131 

-4.2258 

6.1130 

2 

2.6667 

-1.3333 

4.6667 

 

 

NaN 

NaN 

NaN 

2𝑥 + 4𝑦 + 𝑧 = 5 
4𝑥 + 4𝑦 + 3𝑧 = 8 
4𝑥 + 8𝑦 + 𝑧 = 9 

0.4980 

0.7510 

1.0012 

4 

0.5000 

0.7500 

1.0000 

NaN 

NaN 

NaN 

10𝑥 + 𝑦 + 𝑧 = 12 
2𝑥 + 10𝑦 + 𝑧 = 13 

2𝑥 + 2𝑦 + 10𝑧 = 14 

1.0002 

1.0004 

0.9996 

5 

1.0000 

1.0000 

1.0000 

1.000 

1.000 

1.000 

𝑥 + 2𝑦 + 3𝑧 = 6 
2𝑥 + 4𝑦 + 𝑧 = 7 

3𝑥 + 2𝑦 + 9𝑧 = 14 

0.9871 

1.0042 

1.0034 

7 

1.6667 

1.0000 

1.3333 

NaN 

NaN 

NaN 

2𝑥 + 𝑦 + 3𝑧 = 13 
𝑥 + 5𝑦 + 𝑧 = 14 

3𝑥 + 𝑦 + 4𝑧 = 17 

0.9844 

2.0022 

3.0110 

1 

1.0000 

2.0000 

3.0000 

NaN 

NaN 

NaN 

2𝑥 + 4𝑦 + 8𝑧 = 44 
2𝑥 + 6𝑦 + 10𝑧 = 66 

6𝑥 + 4𝑦 + 10𝑧 = 84 

13.3339 

17.6704 

-6.6689 

8 

13.3333 

17.6667 

-6.6667 

NaN 

NaN 

NaN 

4𝑤 + 3𝑥 + 2𝑦 + 𝑧 = 10 
3𝑤 + 2𝑥 + 𝑦 + 4𝑧 = 9 

2𝑤 + 𝑥 + 4𝑦 + 3𝑧 = 14 
3𝑤 + 2𝑥 + 𝑦 + 10𝑧 = 10 

6.9879 

-7.1538 

1.6689 

0.1678 

1 

7.0000 

-7.1667 

1.6667 

0.1667 

NaN

NaN 

NaN 

NaN 

 

We had simulated individual bacterium and corresponding 

colony using object oriented technology in Microsoft Visual 

Studio.net (Visual C#) which is used as implementation 

programming language and then a number of linear equation 

with and without converging conditions as object oriented 

problem environment in each cases. We get successful 

solutions and compared with other standard non-iterative and 

iterative methods, results are very much satisfactory and these 

are shown in the Table I. For the first set of linear equations 

we get two solutions. Here number generation column is 

representing the number reproductions steps used to generate 

the required solutions. In last column of the table we are 

presenting the results from Gauss-Seidel iteration method, 

most of the cases results are ‘NaN’ (not a number) because set 

of equations are not diagonally dominant and cannot be 
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arranged in diagonal dominant form, this indicates that the 

iteration method is not applicable for these sets of equations. 

One more experiment had been done for eleven non-linear 

equations with thirteen unknowns used by Runge-Kutta in the 

derivation of the recurrence relation for the fourth order 

convergence of the solution of ordinary first order differential 

equation. We get different values for these thirteen variables 

which were found by Runge-Kutta, this is shown in Table II, 

so we get a new form of the recurrence relation with equal 

performance, even in some cases it outperforms.  

 Table II. Results of Linear Equation Solution 

Parameters RK Solution BFOA Solution 

𝑎1 0 0.197491 

𝑎2 
1

2
 0.665014 

𝑎3 1 0.813665 

𝑏1 
1

2
 0.201191 

𝑏2 
1

2
 -0.737769 

𝑏3 
1

2
 1.409750 

𝑏4 0 1.005670 

𝑏5 0 -0.864207 

𝑏6 1 0.667915 

𝑤1 
1

6
 0.109450 

𝑤2 
1

3
 0.277182 

𝑤3 
1

3
 0.362196 

𝑤4 
1

6
 0.248217 

As an experiment we had taken the differential equation: 

𝑑𝑦

𝑑𝑥
= 𝑓 𝑥, 𝑦 = 𝑥𝑦 

where the output function is growing exponentially. The 

Graphs in Fig. 1 and Fig. 3 are representing the comparison of 

the values obtained from library function, conventional RK4 

method and BFOA based method. This comparison is 

showing the effectiveness of the use of BFOA. The Fig. 2 is 

representing the convergence of the BFOA method applied for 

the determination of coefficients and constants used in the 

derivation RK4 method mentioned earlier. 

7. CONCLUSION 
This study, the simulation and experiments are encouraging us 

to find different improvements, modifications of BFOA, and 

important applications so that it can be used as one more 

important tool like GA in the field of AI based computations 

and other optimization paradigm. Like GA we may use BFOA 

as problem solver both linear and non-linear fields with more 

power than the conventional methods. 

 

 

 

Fig 1: 3D view RK4 comparison graph 
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