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A STUDY OF CAKE FILTRATION
FORMULATION AS A STEFAN PROBLEM

Kunio ATSUMIand Tetsuo AKIYAMA*
Department of Chemical Engineering, Shizuoka University,

Hamamatsu, 432

Continuity equations and Darcy's law are utilized to obtain a basic equation for cake filtration.
The boundary condition at the moving surface is newly derived, and the cake filtration is formulated
in a Stefan problem.
A similarity variable is introduced to transform the governing equation into an ordinary one,
which in turn is solved numerically. The momentmethod is shown to offer good initial values
to start the numerical computation.
Satisfactory agreement is observed between experimental data of Shirato et at. and computed
values of some physical properties.

In studies of the internal flow mechanism within
filter cakes, it has been demonstrated that considera-
tion must be given to the liquid flow rate and to
solids movement as well12}13). The solid movement
has greater effect on thick slurries. Basic equations
consist of continuity equations of solid and liquid,

and an integral equation of the solid compressive pres-
sure. These equations were solved by making use of
experimental data from a compression-permeability
cell. An iterative approximation method was

employed to obtain numerical solutions10 12 13).
The purpose of this study is to fomulate constant-
pressure cake filtration as a Stefan problem by com-
bining Darcy's law with the continuity requirement,
and to identify the initial and boundary conditions

relevant to the problem.
The governing equation is solved by two different

methods. One is to use the moment technique5\
The other is to use a similarity transformation to
convert the partial differential equation into an
ordinary one and solve numerically.

Similar problems have been studied by Smiles15}
and Tiller et al.16), but the solution given by Smiles
is applicable only to a limited case owing to its inap-
propriate boundary condition, whereas Tiller et al.
did not give a detailed solution.

Mathematical Treatment
To describe the behavior of cake during filtration the
following five values must be determined : the velocity
of solid particles relative to a fixed coordinate, v89Received March 22, 1975.
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the velocity of liquid relative to the solid, vu the solid
compressive pressure, ps, the hydraulic excess pressure,ph and the porosity, e. Writing in one-dimensional

form, we have the following expressions for the con-
tinuity equations of liquid and solid in a filter cake:

da_{d(evl) _dVs]
Bt {dw+£dwJ
dw

Ihc (1)

and
dx/dw=l/p.(l -e)(2)

where t is time, w the mass of solid per unit filtering
area from the medium, £0 the porosity of feed slurry,
x the distance from the medium, and ps the density of
solid particles.The motion of liquid is assumed to be describable
by Darcy's law:

evt=-

kgcpsjl-e) .dp_i_
fj. d w

(3)

where k is the permeability, ju the viscosity of liquid.
The force balance in cake yields

p,(w, t)+pt(w, t)=pa(t)
(4)

where pa is applied pressure.Utilizing the idea of compression-permeability

cell, and assuming that the solid network in the cake is
purely elastic to stress, we get

e=e(P.)
(5)

Combining Eqs. (1) to (5) yields the governing

equation for flow through compressible porous media
(or filter cake)1'9'1",

dt dw\vdw)
(6)

in which the void ratio, e=efcl-e), is used to express
the equation in a compact form. Cp is defined as

C, = -pVcge/{^} + e)deldps} (7)
and is a variable coefficient associated with per-
meability and compressibility. And in this sense
it may be appropriate to call Cp the compression-
permeability coefficient. Formally, however, Cp is

almost identical to the expression coefficient defined in
the literature1>9'n).

The initial and boundary conditions are
ws(0) =0 (8)

e(wt(t), t)=e, (9)

e(O, t)=ei (10)

where wt is the value of w from the medium to the cake
surface, and et is the void ratio at the cake surface;
e1 is the void ratio at equilibrium under applied pres-
sure, and it will be constant for constant-pressure
filtration.

As the location of the moving boundary, wi9 is
uhknbwn a priori, one more condition is required
to solve the problem. The filtrate at time t is expres-

sible as the difference between the volume of slurry

which contains the solid of wt9 and the volume of cake
at that time. Thus the filtrate volume per unit area,
v(t), is written as

v(t)=(l +et)wtlp.-xt(t)(ll)

where xà¬is the cake thickness.
Utilizing Eqs. (2) and (6) results in

dtJJ"C ii -C,
dw-(!+««>

(12)

Differentiating Eq. (ll) with respect to t and com-
bining it with Eq. (12) yields

de_

dweo-ej d\Vj
'Cp(et) dt

(13)

This is the newly derived boundary condition at
the moving boundary. Thus we have now the Stefan
problem with the basic equation, Eq. (6), and the
boundary and initial conditions, Eqs. (8) to (10), (13).

In filtration, et is usually smaller than eou\ and
the right-hand side of Eq. (13) does not reduce to

zero in general.
Smiles15) set eo=eu which signifies no liquid flux at
the cake surface. This indicates the limited appli-
cability of Smiles' work to real systems. In the case
of expression, the feed slurry is very concentrated,

which causes the difference between e0 and et to be very
small, and the right-hand side of Eq. (13) may reduce
to zero1 9). With regard to this, the expression may
be considered as a limiting case of cake filtration.

Let us introduce the following non-dimensional

variables :

b=w/w*, O=C*t/w*\ 7=(g_gl)/(e<_g1), F=C,/C*
(14)

where C* and w*are characteristic values of Cp and
w, then Eqs. (6), (8)-(10) and (13) become respectively,

W^Jb V^^b ) (15)
6((0)=0 (16)

7(0, e)=o (17)
J?(*i, «)=l (18)

dbbi F(i) dd u;

where b< and n are defined as
bi =wi/w*, n={ess-ei)l{ei-e1)(20)

Solution of the Basic Equation

Manyimportant operations in chemical engineering
such as freezing, melting and evaporation are often

associated with the moving boundary, and they can
be classified as Stefan problems. Due to its non-
linearity, which stems from the presence of the moving
boundary, only a few exact solutions are available2"4}.
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In the case of filtration, one more complication arises
because Cv varies over the operating period, or more
specifically it is usually expressed as a function of the
dependent variable.
To solve Eq. (15) with relevant relations, Eqs. (16)-
(19), some simplication is possible by making use of
experimental facts. Details are illustrated in the
following.
As an alternative form of xi9 we have

xt(t) =(l +eav)Wi/ps(21)

where eav is the average void ratio of the entire cake.
Substituting this into Eq. (ll) results in

Wi{t) = ptv(t)/(eo-eav)(22)

Let us utilize now the well-known experimental facts
that, in the case of constant-pressure filtration, the
average concentration of cake is independent of time8\
except at the begining of the process16\ and that v is
proportional to t1/2 whenthe mediumresistance is
negligible. And w* becomes proportional to t1/2 so

that introducing a similarity variable,
X=b/Vt

(23)

we can transform Eq. (15) into an ordinary differential
equation.

dP "*" drj Kdl)^IFdl
(24)

The boundary and initial conditions become
7(0) =0 (25)

7(1/V7)= 1 (26)

dV/dk =n/(2VjF( l)) (27)

Another form of similarity variable b/bi9 where
bi=\/d/p, is frequently used2>6). However, this
form leaves /3 in the differential equation and the

numerical computation becomesunduly cumbersome.
The numerical computation proceeds as follows:

Assume drj/dX at ^=0, then with the boundary con-
dition 37(0)=0, (Eq. (25)), Eq. (24) is integrated
till r] becomes unity. At this point the independent
variable at rj=\ gives l/V/5 and drjjdl yields nj2*J~$l
jF(1), (Eq. (27)). The latter is compared with the

experimental value (since n and F(X) are determined
experimentally). If these values are not close enough,
we pick another value for drj/d/l at A=0 and proceed
again as stated above. This scheme is continued till
the computed value becomes close enough to the
experimentally obtained value. Quasilinearization
techniques incorporated with the principle of super-
position7) were also tried but a sharp increase of F
with respect to tj at near rj=O (F is nearly an ex-
ponential function of rj) made the convergence very
slow and it turned out to be inadequate. Whereas
the value of drj/dX at A=0is not too difficult to guess
from the solution by the method of moment. This

will be explained later.
As an alternative method to solving Eq. (15) along
with the associated boundary and initial conditions,

Eqs. (16) to (19), the moment method is employed.
Since the mathematical treatment is almost the same
as that shownin the previous paper1}, only an outline
is presented here.

Assuming that r](b, 6) can be expressed, in the
range of 0<b<bu as a cubic equation of b/bii

-/? =A1(0)(b/bi) + A2(d)(b/bi) + A3(0)(b/bi) (28)

where Al9 A2 and A3 are functions of 6, and combin-
ing it with the zeroth and the first moments ofEq. (15)
with respect to b/bu there results

r} =(9/2+ l 5n+3n/4^-a^b/bi)
+(-6-30n-2n/p+2ap)(b/bif

+(5/2+ 1 5n+5n/4p-aP)(b/bif (29)
where

a =30 [1F(7])dr}Jo(30)

and /3 is the positive root of the following relationship :
24aF(O)/33 + (a - 36O«F(O) - l O8JF(O))/32

+(3/2-18rcF(0)-3«)/3-ra/4=0 (31)

The numerical solution and the solution by the
momentmethod are plotted in Figs, la, b, and c.
Wherein F(rj)=cxp (a(l-rj)) is set and five numbers
0.1, 0.5, 1, 2.303 and 4.606 are given for a, and three
numbers 0.1, 1 and 10 for n. This formula and
numbers are chosen to cover some experimental
work. These figures indicate that when F{rj) varies
within the range of several fold over 0<^<l, the
difference between solutions by the two methods
remains less than several percent, whereas when

F{rj) varies more than 10-fold, the difference becomes
very noticeable. However, the values of drj/d/l at X =0
calculated by these methods are very close to each
other even for a 100-fold change of F(rj) and of n
(Fig. 2). From this it may be concluded that the
moment method is useful in estimating drjjdl at A=0
to start the numerical computation, but the method
itself is not a proper technique to obtain the solution
when F(rj) varies more than 10-fold during filtration.
To check the mathematical analysis against exper-
imental data, the work on ignition plug slurry by
Okamura and Shirato8) was used. The Cp was
determined from e vs. ps relation (from Table 3 in
reference 8), and k vs. e relation (from Table 5 in
reference 8). Details are shown in Figs. 3 to 5.

Fig. 5 indicates that Cp can be approximated by the
following formula :

Cp =C*. exp{1.62(e*-e)}
(32)

Due to lack of experimental data in the range
of low compressive pressure, however, it may not
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Fig. 3 Result of compression experiment by Okamura
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Fig. 5 Compression-permeability coefficient

be proper to use this formula for computations
covering low compressive pressure range. Never-
theless, satisfactory results were obtained as shown
later.

Nowthat we have the formula for Cp (Eq. (32)) and
e0, eu and ex values (Table 1), the numerical com-
putation can be done by the Runge-Kutta-Gill
method. The normalized distance x/xt is related to
the solution e by the equation
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Sw/wi

edz)/(l +e) (33) 0
which is derived by combining Eqs. (2), (14) and (21).
The computed results of e vs. xjxi are plotted in
Fig.6.

By using Figs. 3 and 6 and Eq. (4), prdistribution
was calculated for the slurry concentration ^=0.38.
The results are shown in Fig. 7. For the sake of com-
parison, the experimental data of Okamura and
Shirato8) (.5=0.22-0.367) are also included in Fig. 7.
The wet-to-dry cake mass ratio, m, and the product
of Ruth's coefficient, K9 and the solid mass fraction in
slurry, s, are obtained by the following relationships :

m=peav/p.+ l
K-s=C*(eB-enY/{Pp.(etp+p.)}

The calculated values from the above relationships
and the experimental data of Shirato et al.SiU) are
shown in Table 1.
From Fig. 7 and Table 1, it is seen that the analyti-
cal treatment in this study agrees well with the experi-
mental work despite the lack of accurate Q-data for
higher e-values.

As further work, for deeper understanding of the
cake filtration mechanism, it is desirable to obtain
accurate data of Cp in the range of low compressive
pressure.

Conclusion

An attempt has been madeto formulate constant-
pressure cake filtration as a Stefan problem. The
boundary condition at the moving surface is also
derived. By using the fact that the mass of solid
per unit area measured from the mediumto the moving
surface is proportional to the square root of time, the
governing partial differential equation is transformed
to an ordinary differential equation, which in turn is
solved numerically with experimentally determined
compression-permeability coefficient. Computed va-
lues pi(x/Xi), m, and K-s agreed well with the experi-
mental results of ignition plug slurry of Shirato et
al.8>U).

The momenttechnique was tried as an alternative
method to solve the problem, and was found to be
useful in estimating the initial values to start the
numerical computation.

Nomencl ature
A\,A%,A3 = variable coefficient, see Eq. (28) [-]
b = non-dimensional value of w (=w/w*) [-]
bi = non-dimensional value of wi (=Wi/w*) [-]
Cp = compression-permeability coefficient

[g2/cm4 -sec]

C* = characteristic value of Cp (= Cp(ei)) [g2/cm4 - sec]
e = void ratio [-]
eo,ei,ei = e-values of feed, at cake surface, and at

medium [-]

3-0 /I

20 Z^~^~7//

1°0 , 0-5.. 10

X/Xi [-]
Fig. 6 Void ratio vs. x/xi for pa=l, 35[ x lO3G/cm2] and

>a=1 (1 03G/cm2)

Ignition plug slurry
: Present analysis

OO(D: Data of Ref.(8)

X/Xj
0-5 1-0

Fig. 7 Hydraulic pressure distribution in cake

Table 1 Results of constant-pressure filtration
P a     e i                    K - s

[ l OS G / cm ^ ] [ -]  [ -]  [ -]  [- ]  [1 0 - 3c m 2/ s e c] E xp . *  C a l c. * * C a lc .  E x p . C al c .  E x p . C al c .

1. 0    1. 6 7  2 . 2 4  0 . 1 1 4   1 . 6 7  1. 6 9  0 . 5 3  0 . 5 8

3 . 0    1 . 2 9  1 . 9 0  0 . 0 6 4 4  1 . 5 8  1. 5 9  1. 0  1  1

5 . 0    1 . 1 4  1 . 7 7  0 . 0 5 3 7  1 . 5 4  1. 5 5  1. 3  1 . 4

e o = 5 . 2 7 , e ｻ = 3 .5 4 , ｫ s = 3 .2 3

C * = O , f e ) = 1 . 4  x  1 0 - 4  [ g 2 / c m 4 . s e c ]

* Experimental results of Shirato et al.S)
** Calculated results by the present analysis

F(rj) = non-dimensional compression-permeability
coefficient ( = Cp/C*) [-]

gc = gravitational conversion factor [g-cm/G-sec2]
K = Ruth's coefficient per unit area [cm2/sec]
k = permeability coefficient [cm2]
m = ratio of wet-to-dry cake mass [-]
n = (eo-ei)l(ei-ei) [-]

Pa,Pi,Ps = applied, local hydraulic excess, and local solid
compressive pressure [G/cm2]

s = mass fraction of solid in slurry [-]
t = time [sec]
v - filtrate volume per unit area [cm]
vi = velocity of liquid with respect to

surrounding solid [cm/sec]
vs = velocity of solid with respect to fixed

co ordinate [cm/sec]
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w = mass of solid per unit area measured from
medium [g/cm2]

Wi, w* = value of wat cake surface and total mass
of solid per unit area [g/cm2]

x = distance from medium [cm]
x% = thickness of cake [cm]

a = defined by Eq. (30) [-]
/3 = 0\b\ [-]
s = porosity [-]
r] - defined by Eq. (14) [-]
0 = non-dimensional time, defined by Eq. (14) [-]
x = b/VT [-]
li = viscosity of filtrate [g/cm-sec]
P, ps = density of filtrate and of solid [g/cm3]
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Introduction

Liquid-liquid equilibrium data are essential for

the selection of solvent and for the design of separa-
tion processes. Manyinvestigators have reported onliquid-liquid equilibria including ternary aqueous
methanol solutions and /z-paraffin systems. Stephen
and Stephen7) have compiled comprehensive tables
of liquid-liquid equilibrium data. Mutual solubili-
ties for methanol-ft-paraffin systems including n-

pentane to w-decane have been reported by Kiser3).
As the mutual solubilities for systems of //-paraffin and
water are small and measurements of the solubilities
for these systems are very difficult, only a few data
have been reported. Kobayashi4) and Mannheimer5)
have reported the mutual solubilities for the propane-
water system and Reamer6} for the //-butane-water
system. This paper presents the mutual solubility

data for the methanol-n-butane system and the
liquid-liquid equilibrium data for the ternary meth-
anol-water-propane and methanol-water-n-butane

systems at 0°C and 20°C.

1. Experimental

Mutual solubilities for the methanol-/z-butane

system were determined by the cloud point method.
Ternary liquid-liquid equilibrium data for the meth-
anol-water-propane and methanol-water-^-butane

systems were determined by the same method reported
in the previous paper1} except for the determination
of compositions by using gas chromatographic analy-
sis. A column of3 mmdiameter and 3 meter length is
filled with Porapak R as a packing material for gas
chromatograph and hydrogen is used as a carrier gas.

The sample was injected several times into a gas

chromatograph and was analyzed by the total amounts
of the sample. The composition of each component
was determined by the total areas of the gas chro-

matogram. As the amount of water in the hydro-
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