
f* £' 

1W 
7;=«   jl 7;=-. a     «"' Z** IP l~* 

MAY 1i 2 1995 

A STUDY OF CROSSOVER OPERATORS 

IN GENETIC PROGRAMMING 

William M. Spears 
Navy Center for Applied Research in AI 
Naval Research Laboratory, Code 5510 

Washington, D.C 20375-5000 
and 

Vic Anand 
Massachusetts Institute of Technology 

Cambridge, MA 02139 

19950510 103 
Abstract 

Holland's analysis of the sources of power of genetic algorithms has served as guidance 

for the applications of genetic algorithms for more than 15 years. The technique of applying 

a recombination operator (crossover) to a population of individuals is a key to that power. 

Neverless, there have been a number of contradictory results concerning crossover operators 

with respect to overall performance. Recently, for example, genetic algorithms were used to 

design neural network modules and their control circuits. In these studies, a genetic algorithm 

without crossover outperformed a genetic algorithm with crossover. This report re-examines 

these studies, and concludes that the results were caused by a small population size. New 

results are presented that illustrate the effectiveness of crossover when the population size is 

larger. From a performance view, the results indicate that better neural networks can be 

evolved in a shorter time if the genetic algorithm uses crossover. 

1. Introduction 

Recently, two heuristic search techniques have generated interest in the artificial intelli- 

gence community: genetic algorithms (GAs) and neural networks (NNs). Both GAs and NNs 

are based on models from nature. A genetic algorithm is modeled on genetics and Darwinian 

evolution, whereas a neural network is based on models of human cognition. One common 

application of a genetic algorithm is as a function optimizer. Another common application of 

a genetic algorithm is to evolve organisms that perform well in a given environment. In either 

application,  the GA is based on the survival-of-the-fittest (natural  selection)  tenet of 

This document has beeti approved 
foi public release and sale; its 
distribution is unlimited 



Darwinian evolution. Neural networks, on the other hand, appear to be useful as control 

mechanisms for organisms themselves (e.g., an organism should avoid danger and seek food). 

These two methods naturally reflect a difference in scale. While a neural network can be used 

to control a particular organism, a genetic algorithm can be used to evolve a population of 

organisms (e.g., NNs) that perform well in a given environment. If a neural network is used to 

encapsulate a particular behaviour, then genetic algorithms can be used to evolve that 

behaviour, by evolving a population of neural networks. 

One particular approach to the evolution of behaviour is described by de Garis [1]. In 

this approach, a GA is used to evolve a population of neural networks. Each NN has a set of 

adjustable weights and is used to encapsulate some desired behaviour (e.g., walking). In other 

words, once good weights have been found, the NN can be used by itself to perform the 

desired behaviour. However, since a set of good weights is not known in advance, they must 

be learned. Instead of the more traditional NN learning algorithms (e.g., backpropagation) de 

Garis uses a genetic algorithm to learn a set of good weights. No learning is being done by 

the neural network itself. This approach is called genetic programming [1]. 

As mentioned above, GAs evolve a population of individuals according to the process of 

natural selection. During this process, genetic operators create new (child) individuals from 

highly fit old (parent) individuals. Recombination (also referred to as crossover in this report) 

is one of the genetic operators and is a key to the power of the genetic algorithm [6]. In his 

studies of genetic programming, though, de Garis reports that a genetic algorithm without 

recombination outperforms a genetic algorithm with recombination. These results motivated 

us to re-examine genetic programming for two reasons. First, from a theoretical standpoint, 

we sought to explain what appear to be anomalous findings. Second, from a practical stand- 

point, we wished to use recombination (as theory suggests) to improve de Garis's results, 

allowing better behaviour to be learned in less time. 

2. Genetic Algorithms 

The book "Adaptation in Natural and Artificial Systems" [6], lays the groundwork for  

GAs. A genetic algorithm consists of a population of individuals that reproduce (over many  \ 

generations) according to their fitness in an environment. Those individuals that are most fit "a 

are most likely to survive, mate, and bear children.  Children are created by the stochastic n 

application of genetic operators to the (parent) individuals. Individuals of the population, cou-    ..,  

pled with the genetic operators, combine to perform an efficient domain-independent search 

strategy that makes few assumptions about the search space. ^■/°S- • JQfc> 

Codas 

Dist 
Avaii ana/or 

Special 



Each individual in a population is a point in the search space. Traditionally, an indivi- 

dual in a GA is represented as a bit string of some length n. Each individual thus represents 

one point in a space of size 2". Given a bit string representation, a genetic algorithm will pro- 

duce offspring using the genetic operators crossover (recombination) and mutation. Mutation 

operates at the bit level by randomly flipping bits within the current population. Mutation 

rates are low, generally around one bit per thousand. 

Crossover operates at the individual level. A crossover point is randomly chosen for two 

randomly selected individuals (parents). This point occurs between two bits and divides each 

individual into left and right sections. Crossover then swaps the left (or the right) section of 

the two individuals. As an example of crossover, consider the two parents: 

Parent 1: 1010101010 

Parent 2:1000010000 

Suppose the crossover point randomly occurs after the fifth bit. Then each new child 

receives one half of the parent's bits: 

Child 1: 1010110000 

Child 2: 1000001010 

In genetic programming, a GA is used to evolve a population of increasingly fit neural 

networks. The fitness of each neural network is some measure of how well a desired 

behaviour is being performed. In order to use a traditional genetic algorithm for this task, a 

bit string representation of a neural network is required. Also required is a fitness function 

that indicates how well a neural network is performing a desired behaviour. These issues are 

addressed in the next section. 

3. Neural Networks and Genetic Programming 

The class of neural networks (NNs) is a subclass of parallel distributed processing (PDP) 

models [7]. PDP models assume that information processing is a result of interactions 

between simpler processing elements (e.g., neurons). In genetic programming, the number of 

neurons is set by the user. This number depends on the behaviour to be learned. The network 

is fully connected (i.e., each neuron has a connection to itself and all others) with real valued 

weights ranging from -1.0 to 1.0. The net input to each neuron (propagation rule) is simply 

the sum of the products of its inputs and their weights. Finally, the output of each neuron is 

simply its activation, and the activation rule uses the traditional sigmoid function [7]. 

Each genetic programming neural network (called a GenNet by de Garis) consists of a 

set of input neurons, output neurons, and optional hidden neurons. Input neurons are neurons 



that receive information from the environment. Output neurons provide actions that affect the 

environment. Hidden neurons can be used to provide arbitrary transformations of the input 

stimuli. 

Let us now consider an example from [1] that is also used for the experiments described 

in this report. We will refer to this example as the Walker. In this example, a GenNet is 

evolved to control a set of stick legs. The behaviour to be learned by the genetic algorithm is 

that of walking. The GenNet considered by de Garis consists of 12 neurons: 8 input neurons 

and 4 output neurons. The stick legs are composed of 2 legs joined at the hip. Each leg con- 

sists of a thigh and a calf, joined at the knee. This is represented as 4 segments (one for each 

calf and thigh). As the legs are moving, it is possible to sense the angle and angular velocity 

of each segment. This information is sensed by the 8 input neurons. The 4 output neurons are 

used to represent the angular acceleration to be sent to each segment (see Figure 1). 

Hip Joint 

Right Leg Left Leg 

Figure 1. The Stick Legs 

In this example, it is possible to use the network as a controller for the stick legs. For any 

state of the inputs (i.e., angles and angular velocities), the GenNet will output a set of angular 

accelerations that controls the stick legs. These angular accelerations will change the angles 

and angular velocities of the segments, providing new inputs to the GenNet. For computa- 

tional purposes, the GenNet is used as a discrete time simulation in which the stick legs move 

in small time increments. Given an arbitrary setting of weights in the GenNet, the stick legs 

will move in a random fashion. However, with the proper weights it is possible for the Gen- 

Net to control the stick legs in such a way as to perform the behaviour of walking [1]. The 

goal is to learn the appropriate weights. 

As mentioned earlier, a genetic algorithm is used to learn the weights of the GenNet. 

This requires a bit string representation of the neural network and a fitness function that 

quantifies how well the behaviour of walking is achieved. In genetic programming, each real 

valued weight is represented by a set number of bits b [1]. Since each neuron is connected to 

all others (including itself), the weights of an n neuron network can be stored in an n by n 

matrix. Each element of the matrix stores the weight of one connection. Each matrix specifies 



a GenNet uniquely and can be represented as a bit string in row major order. Each individual 

of the GA, then, represents the linearized weight matrix [1]. If there are n neurons in the net- 

work, bn2 bits are required for each individual. For the stick legs, de Garis represents each 

weight by 7 bits, resulting in individuals that are 1008 bits long, since there are 12 neurons in 

the network. 

The fitness function (used to evaluate each individual described above) should accept 

each individual in the population and return some quantification of how well the behaviour of 

walking is being performed by that individual. One straightforward fitness function is to com- 

pute the distance traveled by the stick legs [1]. Better individuals travel farther (e.g., walk 

better) and worse individuals travel less far. The goal is to find a set of weights such that the 

resulting GenNet will produce good walking behaviour. The following sections outline how 

well genetic programming succeeds in achieving this goal. 

4. Genetic Programming and Crossover Experiments 

As mentioned earlier, a genetic algorithm evolves a population of individuals according 

to some fitness function (environment). Theory indicates that the size of the population is cru- 

cial to the performance of the genetic algorithm [3]. Small populations generally find good 

solutions quickly, but are often stuck on local optima. Larger populations are less likely to be 

caught by local optima, but generally take longer to find good solutions. Another way to view 

a population is as a source of statistics about the environment. A larger population allows the 

space to be sampled more thoroughly, resulting in more accurate statistics. Small populations 

sample the space less thoroughly, producing results with higher variance. 

In his experiment with the Walker problem, de Garis reported that a GA without recom- 

bination outperformed a GA with recombination [1]. This is surprising, since an important 

key to the power of a genetic algorithm is the recombination operator [3, 4, 6]. A genetic 

algorithm without recombination should amount to little more than random search. However, 

after examining the program, we noticed that de Garis ran his GA with an extremely small 

population (20). Our hypothesis, then, was that the small population size produced highly 

variable results, due to the extremely sparse sampling of the search space. Assuming this 

hypothesis to be true, we felt that we should be able to explain the reported results. Further- 

more, we felt that a larger population size would produce a more accurate sampling of the 

space, allowing recombination to perform as theory indicates [6]. From a practical standpoint, 

this should improve the efficiency of the GA search, resulting in improved performance. To 

test our hypothesis, we ran two experiments. In an attempt to explain the results reported by 

de Garis, the first was run with a population of size 20. In an attempt to show that a larger 

population size allows recombination to be more effective, the second was run with a larger 



population size (100). Each experiment was run with two GAs, one written by de Garis 

(referred to as the GenNet GA), and one (developed by Spears) that is used as a control 

(referred to as GAQ. The purpose of the control is to indicate the generality of the results. 

Since the two GAs differ in how they choose individuals for survival, similar results indicate 

generality. 

In the earlier example of crossover (Section 2), a single crossover point is selected. This 

is referred to as one point crossover and was the crossover used by de Garis. Since the 

emphasis of this report is on the effectiveness of crossover, it is appropriate to also consider 

other forms of crossover. We chose two other common forms: two point crossover and uni- 

form crossover. With two point crossover, two crossover points are selected. In this case, the 

parents only swap the bits between the two crossover points. As an example of two point 

crossover, consider the two parents defined earlier. Suppose the two crossover points ran- 

domly occur after the third and sixth bit. Then the children are: 

Child 1: 1010011010 

Child 2: 1000100000 

Uniform crossover does not select a set of crossover points. It simply considers each bit 

position of the two parents, and swaps the two bits with a probability of 50%.t Suppose the 

first, third, fourth, and ninth bits positions (of the original parents) are swapped. Then the chil- 

dren are: 

Child 1:1000101000 

Child 2: 1010010010 

Spears [8] has analyzed the effects of crossover on genetic algorithm performance. In 

this study it is shown that (with large search spaces) a GA using uniform crossover outper- 

forms a GA using one point crossover, which in turn outperforms a GA using two point cross- 

over. In general, however, theory suggests that a GA with crossover should outperform a GA 

that does not use crossover (i.e., mutation alone). 

5. Experimental Results 

There were two experiments, both applied to the Walker problem. A single experiment 

compared a GA with and without recombination. The mutation operator was always used, 

and was the only genetic operator used when the GA did not use recombination. There is one 

graph  for  each  experiment.  Each  graph  shows four curves,  one  for  a GA without 

t Spears [8] considers uniform crossover with probabilities other than 50%. 



recombination, and one for a GA with each of the three forms of crossover defined above. 

The horizontal axis of each graph is a measure of the amount of work done by the GA. For 

genetic programming, the evaluation of one GenNet constitutes the bulk of the computation. 

Each horizontal axis terminates after 10,000 evaluations. When the GenNet GA was run, a 

point was plotted for every generation. In this case the number of evaluations is the product 

of the number of generations and the population size. The vertical axis indicates the fitness of 

the best individual seen, measured by the fitness function. Since we are maximizing, a higher 

curve represents better performance. Each curve is an average of 10 independent runs. To 

indicate statistical significance, we also show error bars for uniform crossover and mutation, 

at the end of the runs. These error bars are two standard deviations in total height. 

The first experiment was an attempt to understand the results reported by de Garis. The 

original GenNet program was written in C for the Macintosh [2]. For purposes of speed we 

ported this program to a Sun 4 Workstation. We then modified the program to handle one 

point, two point, and uniform crossover. Figure 2 indicates the results of running the GenNet 

GA with a population of size 20. 

0 100 200        300 

Generations 

400 500 

Figure 2. GenNet with a population of size 20 

Figure 2 indicates that although all forms of crossover outperform mutation alone (no 

recombination), the differences are not dramatic. In fact, comparisons of individual runs (not 

shown here) indicate that a run without crossover (but with mutation) can easily beat a 

number of runs with crossover. This explains de Garis's results.! The lack of predictable 

effectiveness is due to the large variance caused by the poor sampling of a small population 

size. Crossover requires good sampling information in order to be effective [3]. However, 

despite high variance (note the error bars), when averaged over 10 runs, mutation loses. The 

results with GAC are similar. 

f Due to computational limitations, de Garis was only able to make one run [2]. 



Apparently, crossover is hampered by a small population size (i.e., poor sampling). A 

natural way to improve the sampling is with a larger population. If our hypothesis is correct, 

crossover should become more effective with a larger population size. We reran the previous 

experiment with a population of size 100. Figure 3 presents the results. 

20 40 60 

Generations 

80 100 

Figure 3. GenNet with a population of size 100 

Figure 3 indicates that, with a population of size 100, all forms of crossover dramatically 

outperform mutation alone. Again, the results with GAC are similar. It is also interesting to 

note the dramatic reduction in variance (especially for uniform crossover). This is due to the 

better sampling afforded by a larger population size. This confirms the hypothesis that cross- 

over is more effective with a larger population. 

It is also important to note the relative performance of the crossover operators in Figures 

2 and 3. In both cases, uniform crossover outperforms both one and two point crossover. This 

is expected, since uniform crossover more strongly encourages recombination. 

In summary, as mentioned earlier, this study was motivated for two reasons. First, we 

wished to explain why de Garis found that a GA without recombination outperformed a GA 

with recombination. We hypothesized that the result was caused by a small population size. 

The first experiment confirmed this hypothesis. The second experiment confirmed the 

effectiveness of recombination with a larger population. 

The second reason for this study was to improve the performance of genetic program- 

ming, allowing better neural networks to be evolved in less time. In the context of the Walker 

problem, this has been done. The experiments indicate that genetic programming with recom- 

bination consistently outperforms genetic programming without recombination on large popu- 

lations.   More importantly, despite higher statistical variance, genetic programming with 



recombination generally outperforms genetic programming without recombination on small 

populations. Finally, the greatest performance improvements were obtained by using uniform 

crossover. 

6. Discussion and Conclusions 

The interacting roles of population size and crossover are of extreme interest to the 

genetic algorithm community. Recent theory indicates that crossover is most effective when 

the sampling is representative of the space being searched [3]. This is achieved in a natural 

manner by using a larger population. Theory would indicate, then, that recombination is more 

effective with larger populations. Theory also indicates that uniform crossover is extremely 

useful in those situations where recombination is important (e.g., when the search space is 

very large). This study supports these views, although it should be emphasized that the study 

was limited to one particular genetic programming problem. Future work will extend this 

analysis to a broader class of problems. 

It is also interesting to note that although quick performance improvements occur with a 

smaller population size, a larger population helps the genetic algorithm find better solutions. 

This is caused by the slower accumulation of more accurate statistics when using the larger 

population. Clearly the fast accumulation of accurate statistics would allow the best of both 

worlds. Future research will focus on such ideas. 

Finally, it should be noted that the above observations hold qualitatively for both GAs 

studied, despite differences between the GAs. This indicates a generality to the observations 

that could not be assumed otherwise. Recent theory has addressed this issue and indicates 

that GAs are robust with respect to many implementation details [5]. This report provides 

some confirmation of this theory. 

References 

[1] de Garis, H. (1990a). Genetic Programming: Building Nanobrains with Genetically Pro- 

grammed Neural Network Modules, Proceedings of the International Joint Conference on 

Neural Networks, San Diego, CA, June 1990. 

[2] de Garis, H. (1990b). Personal Communication. 

[3] De Jong, K. A. and William M. Spears (1990). An Analysis of the Interacting Roles of 

Population Size and Crossover in Genetic Algorithms, in the International Workshop 



Parallel Problem Solving from Nature, University of Dortmund, Oct. 1-3, 1990. 

[4] De Jong, K. A. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive Sys- 

tems, Doctoral dissertation, Dept. Computer and Communication Sciences, University of 

Michigan, Ann Arbor. 

[5] Grefenstette, J. (1990). Conditions for Implicit Parallelism, Proceedings of the Founda- 

tions of Genetic Algorithms Workshop, Bloomington, Indiana, 1990. 

[6] Holland, John H. (1975). Adaptation in Natural and Artificial Systems, The University of 

Michigan Press. 

[7] McClelland, James L. and David E. Rumelhart (1988). Explorations in Parallel Distri- 

buted Processing, The MIT Press, Cambridge, MA. 

[8] Spears, William M. and K. A. De Jong (1991). On the Virtues of Uniform Crossover, to 

appear in the 4th International Conference on Genetic Algorithms, La Jolla, California, 

July 1991. 


